v0.30.5
Browse filesSee https://github.com/quic/ai-hub-models/releases/v0.30.5 for changelog.
README.md
CHANGED
|
@@ -33,22 +33,22 @@ More details on model performance across various devices, can be found
|
|
| 33 |
|
| 34 |
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|
| 35 |
|---|---|---|---|---|---|---|---|---|
|
| 36 |
-
| LiteHRNet | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE |
|
| 37 |
-
| LiteHRNet | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 5.
|
| 38 |
-
| LiteHRNet | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 4.
|
| 39 |
-
| LiteHRNet | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 5.
|
| 40 |
-
| LiteHRNet | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE |
|
| 41 |
-
| LiteHRNet | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 4.
|
| 42 |
-
| LiteHRNet | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 6.
|
| 43 |
-
| LiteHRNet | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 4.
|
| 44 |
-
| LiteHRNet | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 5.
|
| 45 |
-
| LiteHRNet | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 4.
|
| 46 |
-
| LiteHRNet | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX |
|
| 47 |
-
| LiteHRNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 2.
|
| 48 |
-
| LiteHRNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX |
|
| 49 |
-
| LiteHRNet | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 2.
|
| 50 |
-
| LiteHRNet | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 4.
|
| 51 |
-
| LiteHRNet | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX |
|
| 52 |
|
| 53 |
|
| 54 |
|
|
@@ -112,8 +112,8 @@ Profiling Results
|
|
| 112 |
LiteHRNet
|
| 113 |
Device : cs_8275 (ANDROID 14)
|
| 114 |
Runtime : TFLITE
|
| 115 |
-
Estimated inference time (ms) :
|
| 116 |
-
Estimated peak memory usage (MB): [0,
|
| 117 |
Total # Ops : 1113
|
| 118 |
Compute Unit(s) : npu (1111 ops) gpu (0 ops) cpu (2 ops)
|
| 119 |
```
|
|
@@ -202,13 +202,13 @@ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
|
| 202 |
You can also run the demo on-device.
|
| 203 |
|
| 204 |
```bash
|
| 205 |
-
python -m qai_hub_models.models.litehrnet.demo --on-device
|
| 206 |
```
|
| 207 |
|
| 208 |
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
|
| 209 |
environment, please add the following to your cell (instead of the above).
|
| 210 |
```
|
| 211 |
-
%run -m qai_hub_models.models.litehrnet.demo -- --on-device
|
| 212 |
```
|
| 213 |
|
| 214 |
|
|
|
|
| 33 |
|
| 34 |
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|
| 35 |
|---|---|---|---|---|---|---|---|---|
|
| 36 |
+
| LiteHRNet | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 24.057 ms | 0 - 65 MB | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
| 37 |
+
| LiteHRNet | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 5.303 ms | 0 - 67 MB | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
| 38 |
+
| LiteHRNet | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 4.608 ms | 0 - 23 MB | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
| 39 |
+
| LiteHRNet | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 5.598 ms | 0 - 64 MB | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
| 40 |
+
| LiteHRNet | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 24.057 ms | 0 - 65 MB | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
| 41 |
+
| LiteHRNet | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 4.6 ms | 0 - 19 MB | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
| 42 |
+
| LiteHRNet | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 6.528 ms | 0 - 62 MB | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
| 43 |
+
| LiteHRNet | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 4.629 ms | 0 - 23 MB | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
| 44 |
+
| LiteHRNet | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 5.598 ms | 0 - 64 MB | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
| 45 |
+
| LiteHRNet | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 4.634 ms | 0 - 20 MB | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
| 46 |
+
| LiteHRNet | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 5.998 ms | 0 - 23 MB | NPU | [LiteHRNet.onnx](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.onnx) |
|
| 47 |
+
| LiteHRNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 2.768 ms | 0 - 71 MB | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
| 48 |
+
| LiteHRNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 3.749 ms | 0 - 57 MB | NPU | [LiteHRNet.onnx](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.onnx) |
|
| 49 |
+
| LiteHRNet | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 2.359 ms | 0 - 64 MB | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
| 50 |
+
| LiteHRNet | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 4.014 ms | 0 - 52 MB | NPU | [LiteHRNet.onnx](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.onnx) |
|
| 51 |
+
| LiteHRNet | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 6.494 ms | 4 - 4 MB | NPU | [LiteHRNet.onnx](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.onnx) |
|
| 52 |
|
| 53 |
|
| 54 |
|
|
|
|
| 112 |
LiteHRNet
|
| 113 |
Device : cs_8275 (ANDROID 14)
|
| 114 |
Runtime : TFLITE
|
| 115 |
+
Estimated inference time (ms) : 24.1
|
| 116 |
+
Estimated peak memory usage (MB): [0, 65]
|
| 117 |
Total # Ops : 1113
|
| 118 |
Compute Unit(s) : npu (1111 ops) gpu (0 ops) cpu (2 ops)
|
| 119 |
```
|
|
|
|
| 202 |
You can also run the demo on-device.
|
| 203 |
|
| 204 |
```bash
|
| 205 |
+
python -m qai_hub_models.models.litehrnet.demo --eval-mode on-device
|
| 206 |
```
|
| 207 |
|
| 208 |
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
|
| 209 |
environment, please add the following to your cell (instead of the above).
|
| 210 |
```
|
| 211 |
+
%run -m qai_hub_models.models.litehrnet.demo -- --eval-mode on-device
|
| 212 |
```
|
| 213 |
|
| 214 |
|