File size: 7,536 Bytes
b1db513 f5f1aa2 b1db513 4aad588 b1db513 1d0c72d b1db513 4e0a4fc b1db513 026f708 4e0a4fc b1db513 1d0c72d b1db513 9e50740 b1db513 f5f1aa2 b1db513 f5f1aa2 c9936ba 037d5ab 89ada21 8a4267b b1db513 b7103e0 b1db513 07af287 1d0c72d b1db513 037d5ab b1db513 037d5ab b1db513 037d5ab b1db513 8a24d84 b1db513 1d0c72d b1db513 1d0c72d b1db513 1d0c72d b1db513 9e50740 b1db513 8a4267b b1db513 8a24d84 b1db513 8a24d84 b1db513 1d0c72d b1db513 c9936ba b1db513 b7103e0 c9936ba b1db513 c9936ba b1db513 349f595 b1db513 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
---
library_name: pytorch
license: other
tags:
- generative_ai
- android
pipeline_tag: unconditional-image-generation
---

# Stable-Diffusion-v1.5: Optimized for Mobile Deployment
## State-of-the-art generative AI model used to generate detailed images conditioned on text descriptions
Generates high resolution images from text prompts using a latent diffusion model. This model uses CLIP ViT-L/14 as text encoder, U-Net based latent denoising, and VAE based decoder to generate the final image.
This model is an implementation of Stable-Diffusion-v1.5 found [here](https://github.com/CompVis/stable-diffusion/tree/main).
This repository provides scripts to run Stable-Diffusion-v1.5 on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/stable_diffusion_v1_5).
### Model Details
- **Model Type:** Model_use_case.image_generation
- **Model Stats:**
- Input: Text prompt to generate image
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| text_encoder | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | PRECOMPILED_QNN_ONNX | 5.484 ms | 0 - 162 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 3.945 ms | 0 - 22 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 3.106 ms | 0 - 11 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | PRECOMPILED_QNN_ONNX | 5.757 ms | 0 - 14 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 2.619 ms | 0 - 10 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 5.646 ms | 157 - 157 MB | NPU | Use Export Script |
| unet | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | PRECOMPILED_QNN_ONNX | 112.731 ms | 0 - 899 MB | NPU | Use Export Script |
| unet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 79.969 ms | 0 - 16 MB | NPU | Use Export Script |
| unet | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 63.819 ms | 0 - 21 MB | NPU | Use Export Script |
| unet | w8a16 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | PRECOMPILED_QNN_ONNX | 172.669 ms | 0 - 10 MB | NPU | Use Export Script |
| unet | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 46.846 ms | 0 - 7 MB | NPU | Use Export Script |
| unet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 113.219 ms | 842 - 842 MB | NPU | Use Export Script |
| vae | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | PRECOMPILED_QNN_ONNX | 219.968 ms | 3 - 6 MB | NPU | Use Export Script |
| vae | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 162.551 ms | 3 - 22 MB | NPU | Use Export Script |
| vae | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 147.035 ms | 3 - 14 MB | NPU | Use Export Script |
| vae | w8a16 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | PRECOMPILED_QNN_ONNX | 445.273 ms | 3 - 17 MB | NPU | Use Export Script |
| vae | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 89.9 ms | 3 - 13 MB | NPU | Use Export Script |
| vae | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 218.025 ms | 59 - 59 MB | NPU | Use Export Script |
## Deploy to Snapdragon X Elite NPU
Please follow the [Stable Diffusion Windows App](https://github.com/quic/ai-hub-apps/tree/main/apps/windows/python/StableDiffusion) tutorial to quantize model with custom weights.
## Quantize and Deploy Your Own Fine-Tuned Stable Diffusion
Please follow the [Quantize Stable Diffusion]({REPOSITORY_URL}/tutorials/stable_diffusion/quantize_stable_diffusion.md) tutorial to quantize model with custom weights.
## Installation
Install the package via pip:
```bash
# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[stable-diffusion-v1-5]"
```
## Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub Workbench](https://workbench.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://workbench.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.stable_diffusion_v1_5.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.stable_diffusion_v1_5.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.stable_diffusion_v1_5.export
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on Stable-Diffusion-v1.5's performance across various devices [here](https://aihub.qualcomm.com/models/stable_diffusion_v1_5).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of Stable-Diffusion-v1.5 can be found
[here](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE)
## References
* [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)
* [Source Model Implementation](https://github.com/CompVis/stable-diffusion/tree/main)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).
|