File size: 7,536 Bytes
b1db513
 
f5f1aa2
b1db513
 
 
4aad588
b1db513
 
 
1d0c72d
b1db513
 
 
 
4e0a4fc
b1db513
 
026f708
4e0a4fc
 
b1db513
 
1d0c72d
b1db513
 
9e50740
b1db513
 
f5f1aa2
b1db513
 
 
f5f1aa2
c9936ba
037d5ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89ada21
 
 
 
 
 
 
8a4267b
 
 
b1db513
 
 
b7103e0
b1db513
07af287
1d0c72d
b1db513
 
 
037d5ab
b1db513
037d5ab
b1db513
 
 
 
 
 
 
037d5ab
b1db513
 
 
8a24d84
b1db513
 
 
 
 
1d0c72d
b1db513
 
 
 
 
 
 
 
1d0c72d
b1db513
 
 
 
 
 
 
 
 
 
 
 
1d0c72d
b1db513
9e50740
b1db513
 
 
 
8a4267b
b1db513
 
 
 
 
 
 
 
 
8a24d84
b1db513
8a24d84
b1db513
 
 
1d0c72d
b1db513
 
c9936ba
b1db513
b7103e0
 
c9936ba
 
 
b1db513
 
 
 
 
c9936ba
 
b1db513
349f595
b1db513
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
library_name: pytorch
license: other
tags:
- generative_ai
- android
pipeline_tag: unconditional-image-generation

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/stable_diffusion_v1_5/web-assets/model_demo.png)

# Stable-Diffusion-v1.5: Optimized for Mobile Deployment
## State-of-the-art generative AI model used to generate detailed images conditioned on text descriptions


Generates high resolution images from text prompts using a latent diffusion model. This model uses CLIP ViT-L/14 as text encoder, U-Net based latent denoising, and VAE based decoder to generate the final image.

This model is an implementation of Stable-Diffusion-v1.5 found [here](https://github.com/CompVis/stable-diffusion/tree/main).


This repository provides scripts to run Stable-Diffusion-v1.5 on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/stable_diffusion_v1_5).



### Model Details

- **Model Type:** Model_use_case.image_generation
- **Model Stats:**
  - Input: Text prompt to generate image

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| text_encoder | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | PRECOMPILED_QNN_ONNX | 5.484 ms | 0 - 162 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 3.945 ms | 0 - 22 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 3.106 ms | 0 - 11 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | PRECOMPILED_QNN_ONNX | 5.757 ms | 0 - 14 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 2.619 ms | 0 - 10 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 5.646 ms | 157 - 157 MB | NPU | Use Export Script |
| unet | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | PRECOMPILED_QNN_ONNX | 112.731 ms | 0 - 899 MB | NPU | Use Export Script |
| unet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 79.969 ms | 0 - 16 MB | NPU | Use Export Script |
| unet | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 63.819 ms | 0 - 21 MB | NPU | Use Export Script |
| unet | w8a16 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | PRECOMPILED_QNN_ONNX | 172.669 ms | 0 - 10 MB | NPU | Use Export Script |
| unet | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 46.846 ms | 0 - 7 MB | NPU | Use Export Script |
| unet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 113.219 ms | 842 - 842 MB | NPU | Use Export Script |
| vae | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | PRECOMPILED_QNN_ONNX | 219.968 ms | 3 - 6 MB | NPU | Use Export Script |
| vae | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 162.551 ms | 3 - 22 MB | NPU | Use Export Script |
| vae | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 147.035 ms | 3 - 14 MB | NPU | Use Export Script |
| vae | w8a16 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | PRECOMPILED_QNN_ONNX | 445.273 ms | 3 - 17 MB | NPU | Use Export Script |
| vae | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 89.9 ms | 3 - 13 MB | NPU | Use Export Script |
| vae | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 218.025 ms | 59 - 59 MB | NPU | Use Export Script |

## Deploy to Snapdragon X Elite NPU
Please follow the [Stable Diffusion Windows App](https://github.com/quic/ai-hub-apps/tree/main/apps/windows/python/StableDiffusion) tutorial to quantize model with custom weights.

## Quantize and Deploy Your Own Fine-Tuned Stable Diffusion

Please follow the [Quantize Stable Diffusion]({REPOSITORY_URL}/tutorials/stable_diffusion/quantize_stable_diffusion.md) tutorial to quantize model with custom weights.



## Installation


Install the package via pip:
```bash
# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[stable-diffusion-v1-5]"
```


## Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub Workbench](https://workbench.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://workbench.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.stable_diffusion_v1_5.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.stable_diffusion_v1_5.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.stable_diffusion_v1_5.export
```






## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on Stable-Diffusion-v1.5's performance across various devices [here](https://aihub.qualcomm.com/models/stable_diffusion_v1_5).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of Stable-Diffusion-v1.5 can be found
  [here](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE)



## References
* [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)
* [Source Model Implementation](https://github.com/CompVis/stable-diffusion/tree/main)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).