radinplaid commited on
Commit
36ca44f
·
verified ·
1 Parent(s): b48210f

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - de
5
+ tags:
6
+ - translation
7
+ license: cc-by-4.0
8
+ datasets:
9
+ - quickmt/quickmt-train.de-en
10
+ model-index:
11
+ - name: quickmt-de-en
12
+ results:
13
+ - task:
14
+ name: Translation deu-eng
15
+ type: translation
16
+ args: deu-eng
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: deu_Latn eng_Latn devtest
21
+ metrics:
22
+ - name: CHRF
23
+ type: chrf
24
+ value: 68.83
25
+ - name: BLEU
26
+ type: bleu
27
+ value: 44.20
28
+ - name: COMET
29
+ type: comet
30
+ value: 88.88
31
+ ---
32
+
33
+
34
+ # `quickmt-de-en` Neural Machine Translation Model
35
+
36
+ `quickmt-de-en` is a reasonably fast and reasonably accurate neural machine translation model for translation from `de` into `en`.
37
+
38
+
39
+ ## Model Information
40
+
41
+ * Trained using [`eole`](https://github.com/eole-nlp/eole)
42
+ * 185M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
43
+ * 20k separate source/target Sentencepiece vocabulary
44
+ * Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
45
+ * Training data: https://huggingface.co/datasets/quickmt/quickmt-train.de-en/tree/main
46
+
47
+ See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
48
+
49
+ ## Usage with `quickmt`
50
+
51
+ You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
52
+
53
+ Next, install the `quickmt` python library and download the model:
54
+
55
+ ```bash
56
+ git clone https://github.com/quickmt/quickmt.git
57
+ pip install ./quickmt/
58
+
59
+ quickmt-model-download quickmt/quickmt-de-en ./quickmt-de-en
60
+ ```
61
+
62
+ Finally use the model in python:
63
+
64
+ ```python
65
+ from quickmt import Translator
66
+
67
+ # Auto-detects GPU, set to "cpu" to force CPU inference
68
+ t = Translator("./quickmt-de-en/", device="auto")
69
+
70
+ # Translate - set beam size to 5 for higher quality (but slower speed)
71
+ sample_text = 'Dr. Ehud Ur, Professor für Medizin an der Dalhousie University in Halifax, Nova Scotia, und Vorsitzender der Abteilung für Klinik und Wissenschaft des Kanadischen Diabetesverbands gab zu bedenken, dass die Forschungsarbeit noch in den Kinderschuhen stecke.'
72
+ t(sample_text, beam_size=5)
73
+
74
+ > 'Dr. Ehud Ur, a professor of medicine at Dalhousie University in Halifax, Nova Scotia, and chair of the Department of Clinic and Science of the Canadian Diabetes Association, said the research is still in its infancy.'
75
+
76
+ # Get alternative translations by sampling
77
+ # You can pass any cTranslate2 `translate_batch` arguments, e.g.
78
+ t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.99)
79
+ ```
80
+
81
+ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`.
82
+
83
+
84
+ ## Metrics
85
+
86
+ `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("deu_Latn"->"eng_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate (using `ctranslate2`) the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible using a large batch size).
87
+
88
+ | | bleu | chrf2 | comet22 | Time (s) |
89
+ |:---------------------------------|-------:|--------:|----------:|-----------:|
90
+ | quickmt/quickmt-de-en | 44.21 | 68.83 | 88.89 | 1.03 |
91
+ | Helsink-NLP/opus-mt-de-en | 40.04 | 66.16 | 87.68 | 3.47 |
92
+ | facebook/nllb-200-distilled-600M | 42.46 | 67.07 | 88.14 | 21.36 |
93
+ | facebook/nllb-200-distilled-1.3B | 44.44 | 68.75 | 89.08 | 37.58 |
94
+ | facebook/m2m100_418M | 34.27 | 61.86 | 84.52 | 17.89 |
95
+ | facebook/m2m100_1.2B | 40.34 | 65.99 | 87.67 | 35.27 |
96
+
97
+ `quickmt-de-en` is the fastest and is higher quality than `opus-mt-de-en`, `m2m100_418m`, `m2m100_1.2B` and `nllb-200-distilled-600M`.
.ipynb_checkpoints/eole-config-checkpoint.yaml ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## IO
2
+ save_data: de-en/data
3
+ overwrite: True
4
+ seed: 1234
5
+ report_every: 100
6
+ valid_metrics: ["BLEU"]
7
+ tensorboard: true
8
+ tensorboard_log_dir: tensorboard
9
+
10
+ ### Vocab
11
+ src_vocab: de.eole.vocab
12
+ tgt_vocab: en.eole.vocab
13
+ src_vocab_size: 20000
14
+ tgt_vocab_size: 20000
15
+ vocab_size_multiple: 8
16
+ share_vocab: false
17
+ n_sample: 0
18
+
19
+ data:
20
+ corpus_1:
21
+ path_src: hf://quickmt/quickmt-train.de-en/de
22
+ path_tgt: hf://quickmt/quickmt-train.de-en/en
23
+ path_sco: hf://quickmt/quickmt-train.de-en/sco
24
+ # path_src: en-ko/train.cleaned.src
25
+ # path_tgt: en-ko/train.cleaned.tgt
26
+ valid:
27
+ path_src: dev.de
28
+ path_tgt: dev.en
29
+
30
+ transforms: [sentencepiece, filtertoolong]
31
+ transforms_configs:
32
+ sentencepiece:
33
+ src_subword_model: "de.spm.model"
34
+ tgt_subword_model: "en.spm.model"
35
+ filtertoolong:
36
+ src_seq_length: 256
37
+ tgt_seq_length: 256
38
+
39
+ training:
40
+ # Run configuration
41
+ model_path: model
42
+ train_from: model
43
+ keep_checkpoint: 4
44
+ save_checkpoint_steps: 1000
45
+ train_steps: 200000
46
+ valid_steps: 1000
47
+
48
+ # Train on a single GPU
49
+ world_size: 1
50
+ gpu_ranks: [0]
51
+
52
+ # Batching
53
+ batch_type: "tokens"
54
+ batch_size: 8192
55
+ valid_batch_size: 8192
56
+ batch_size_multiple: 8
57
+ accum_count: [16]
58
+ accum_steps: [0]
59
+
60
+ # Optimizer & Compute
61
+ compute_dtype: "fp16"
62
+ #use_amp: true
63
+ optim: "pagedadamw8bit"
64
+ learning_rate: 2.0
65
+ warmup_steps: 5000
66
+ decay_method: "noam"
67
+ adam_beta2: 0.998
68
+
69
+ # Data loading
70
+ bucket_size: 128000
71
+ num_workers: 4
72
+ prefetch_factor: 32
73
+
74
+ # Hyperparams
75
+ dropout_steps: [0]
76
+ dropout: [0.1]
77
+ attention_dropout: [0]
78
+ max_grad_norm: 2
79
+ label_smoothing: 0.1
80
+ average_decay: 0.0001
81
+ param_init_method: xavier_uniform
82
+ normalization: "tokens"
83
+
84
+ model:
85
+ architecture: "transformer"
86
+ layer_norm: standard
87
+ share_embeddings: false
88
+ share_decoder_embeddings: true
89
+ add_ffnbias: true
90
+ mlp_activation_fn: gelu
91
+ add_estimator: false
92
+ add_qkvbias: false
93
+ norm_eps: 1e-6
94
+ hidden_size: 1024
95
+ encoder:
96
+ layers: 8
97
+ decoder:
98
+ layers: 2
99
+ heads: 8
100
+ transformer_ff: 4096
101
+ embeddings:
102
+ word_vec_size: 1024
103
+ position_encoding_type: "SinusoidalInterleaved"
104
+
README.md CHANGED
@@ -1,3 +1,97 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - de
5
+ tags:
6
+ - translation
7
+ license: cc-by-4.0
8
+ datasets:
9
+ - quickmt/quickmt-train.de-en
10
+ model-index:
11
+ - name: quickmt-de-en
12
+ results:
13
+ - task:
14
+ name: Translation deu-eng
15
+ type: translation
16
+ args: deu-eng
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: deu_Latn eng_Latn devtest
21
+ metrics:
22
+ - name: CHRF
23
+ type: chrf
24
+ value: 68.83
25
+ - name: BLEU
26
+ type: bleu
27
+ value: 44.20
28
+ - name: COMET
29
+ type: comet
30
+ value: 88.88
31
+ ---
32
+
33
+
34
+ # `quickmt-de-en` Neural Machine Translation Model
35
+
36
+ `quickmt-de-en` is a reasonably fast and reasonably accurate neural machine translation model for translation from `de` into `en`.
37
+
38
+
39
+ ## Model Information
40
+
41
+ * Trained using [`eole`](https://github.com/eole-nlp/eole)
42
+ * 185M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
43
+ * 20k separate source/target Sentencepiece vocabulary
44
+ * Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
45
+ * Training data: https://huggingface.co/datasets/quickmt/quickmt-train.de-en/tree/main
46
+
47
+ See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
48
+
49
+ ## Usage with `quickmt`
50
+
51
+ You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
52
+
53
+ Next, install the `quickmt` python library and download the model:
54
+
55
+ ```bash
56
+ git clone https://github.com/quickmt/quickmt.git
57
+ pip install ./quickmt/
58
+
59
+ quickmt-model-download quickmt/quickmt-de-en ./quickmt-de-en
60
+ ```
61
+
62
+ Finally use the model in python:
63
+
64
+ ```python
65
+ from quickmt import Translator
66
+
67
+ # Auto-detects GPU, set to "cpu" to force CPU inference
68
+ t = Translator("./quickmt-de-en/", device="auto")
69
+
70
+ # Translate - set beam size to 5 for higher quality (but slower speed)
71
+ sample_text = 'Dr. Ehud Ur, Professor für Medizin an der Dalhousie University in Halifax, Nova Scotia, und Vorsitzender der Abteilung für Klinik und Wissenschaft des Kanadischen Diabetesverbands gab zu bedenken, dass die Forschungsarbeit noch in den Kinderschuhen stecke.'
72
+ t(sample_text, beam_size=5)
73
+
74
+ > 'Dr. Ehud Ur, a professor of medicine at Dalhousie University in Halifax, Nova Scotia, and chair of the Department of Clinic and Science of the Canadian Diabetes Association, said the research is still in its infancy.'
75
+
76
+ # Get alternative translations by sampling
77
+ # You can pass any cTranslate2 `translate_batch` arguments, e.g.
78
+ t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.99)
79
+ ```
80
+
81
+ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`.
82
+
83
+
84
+ ## Metrics
85
+
86
+ `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("deu_Latn"->"eng_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate (using `ctranslate2`) the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible using a large batch size).
87
+
88
+ | | bleu | chrf2 | comet22 | Time (s) |
89
+ |:---------------------------------|-------:|--------:|----------:|-----------:|
90
+ | quickmt/quickmt-de-en | 44.21 | 68.83 | 88.89 | 1.03 |
91
+ | Helsink-NLP/opus-mt-de-en | 40.04 | 66.16 | 87.68 | 3.47 |
92
+ | facebook/nllb-200-distilled-600M | 42.46 | 67.07 | 88.14 | 21.36 |
93
+ | facebook/nllb-200-distilled-1.3B | 44.44 | 68.75 | 89.08 | 37.58 |
94
+ | facebook/m2m100_418M | 34.27 | 61.86 | 84.52 | 17.89 |
95
+ | facebook/m2m100_1.2B | 40.34 | 65.99 | 87.67 | 35.27 |
96
+
97
+ `quickmt-de-en` is the fastest and is higher quality than `opus-mt-de-en`, `m2m100_418m`, `m2m100_1.2B` and `nllb-200-distilled-600M`.
config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_source_bos": false,
3
+ "add_source_eos": false,
4
+ "bos_token": "<s>",
5
+ "decoder_start_token": "<s>",
6
+ "eos_token": "</s>",
7
+ "layer_norm_epsilon": 1e-06,
8
+ "multi_query_attention": false,
9
+ "unk_token": "<unk>"
10
+ }
eole-config.yaml ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## IO
2
+ save_data: de-en/data
3
+ overwrite: True
4
+ seed: 1234
5
+ report_every: 100
6
+ valid_metrics: ["BLEU"]
7
+ tensorboard: true
8
+ tensorboard_log_dir: tensorboard
9
+
10
+ ### Vocab
11
+ src_vocab: de.eole.vocab
12
+ tgt_vocab: en.eole.vocab
13
+ src_vocab_size: 20000
14
+ tgt_vocab_size: 20000
15
+ vocab_size_multiple: 8
16
+ share_vocab: false
17
+ n_sample: 0
18
+
19
+ data:
20
+ corpus_1:
21
+ path_src: hf://quickmt/quickmt-train.de-en/de
22
+ path_tgt: hf://quickmt/quickmt-train.de-en/en
23
+ path_sco: hf://quickmt/quickmt-train.de-en/sco
24
+ # path_src: en-ko/train.cleaned.src
25
+ # path_tgt: en-ko/train.cleaned.tgt
26
+ valid:
27
+ path_src: dev.de
28
+ path_tgt: dev.en
29
+
30
+ transforms: [sentencepiece, filtertoolong]
31
+ transforms_configs:
32
+ sentencepiece:
33
+ src_subword_model: "de.spm.model"
34
+ tgt_subword_model: "en.spm.model"
35
+ filtertoolong:
36
+ src_seq_length: 256
37
+ tgt_seq_length: 256
38
+
39
+ training:
40
+ # Run configuration
41
+ model_path: model
42
+ train_from: model
43
+ keep_checkpoint: 4
44
+ save_checkpoint_steps: 1000
45
+ train_steps: 200000
46
+ valid_steps: 1000
47
+
48
+ # Train on a single GPU
49
+ world_size: 1
50
+ gpu_ranks: [0]
51
+
52
+ # Batching
53
+ batch_type: "tokens"
54
+ batch_size: 8192
55
+ valid_batch_size: 8192
56
+ batch_size_multiple: 8
57
+ accum_count: [16]
58
+ accum_steps: [0]
59
+
60
+ # Optimizer & Compute
61
+ compute_dtype: "fp16"
62
+ #use_amp: true
63
+ optim: "pagedadamw8bit"
64
+ learning_rate: 2.0
65
+ warmup_steps: 5000
66
+ decay_method: "noam"
67
+ adam_beta2: 0.998
68
+
69
+ # Data loading
70
+ bucket_size: 128000
71
+ num_workers: 4
72
+ prefetch_factor: 32
73
+
74
+ # Hyperparams
75
+ dropout_steps: [0]
76
+ dropout: [0.1]
77
+ attention_dropout: [0]
78
+ max_grad_norm: 2
79
+ label_smoothing: 0.1
80
+ average_decay: 0.0001
81
+ param_init_method: xavier_uniform
82
+ normalization: "tokens"
83
+
84
+ model:
85
+ architecture: "transformer"
86
+ layer_norm: standard
87
+ share_embeddings: false
88
+ share_decoder_embeddings: true
89
+ add_ffnbias: true
90
+ mlp_activation_fn: gelu
91
+ add_estimator: false
92
+ add_qkvbias: false
93
+ norm_eps: 1e-6
94
+ hidden_size: 1024
95
+ encoder:
96
+ layers: 8
97
+ decoder:
98
+ layers: 2
99
+ heads: 8
100
+ transformer_ff: 4096
101
+ embeddings:
102
+ word_vec_size: 1024
103
+ position_encoding_type: "SinusoidalInterleaved"
104
+
eole-model/config.json ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "report_every": 100,
3
+ "tensorboard": true,
4
+ "tgt_vocab_size": 20000,
5
+ "tensorboard_log_dir": "tensorboard",
6
+ "tensorboard_log_dir_dated": "tensorboard/Mar-16_23-09-35",
7
+ "tgt_vocab": "en.eole.vocab",
8
+ "valid_metrics": [
9
+ "BLEU"
10
+ ],
11
+ "vocab_size_multiple": 8,
12
+ "src_vocab": "de.eole.vocab",
13
+ "src_vocab_size": 20000,
14
+ "transforms": [
15
+ "sentencepiece",
16
+ "filtertoolong"
17
+ ],
18
+ "save_data": "de-en/data",
19
+ "share_vocab": false,
20
+ "n_sample": 0,
21
+ "overwrite": true,
22
+ "seed": 1234,
23
+ "training": {
24
+ "num_workers": 0,
25
+ "normalization": "tokens",
26
+ "learning_rate": 2.0,
27
+ "bucket_size": 128000,
28
+ "train_steps": 200000,
29
+ "world_size": 1,
30
+ "accum_count": [
31
+ 16
32
+ ],
33
+ "param_init_method": "xavier_uniform",
34
+ "max_grad_norm": 2.0,
35
+ "optim": "pagedadamw8bit",
36
+ "decay_method": "noam",
37
+ "batch_size_multiple": 8,
38
+ "gpu_ranks": [
39
+ 0
40
+ ],
41
+ "label_smoothing": 0.1,
42
+ "warmup_steps": 5000,
43
+ "adam_beta2": 0.998,
44
+ "batch_type": "tokens",
45
+ "dropout": [
46
+ 0.1
47
+ ],
48
+ "accum_steps": [
49
+ 0
50
+ ],
51
+ "prefetch_factor": 32,
52
+ "batch_size": 8192,
53
+ "average_decay": 0.0001,
54
+ "save_checkpoint_steps": 1000,
55
+ "valid_batch_size": 8192,
56
+ "model_path": "model",
57
+ "valid_steps": 1000,
58
+ "train_from": "model",
59
+ "attention_dropout": [
60
+ 0.0
61
+ ],
62
+ "dropout_steps": [
63
+ 0
64
+ ],
65
+ "keep_checkpoint": 4,
66
+ "compute_dtype": "torch.float16"
67
+ },
68
+ "model": {
69
+ "add_estimator": false,
70
+ "mlp_activation_fn": "gelu",
71
+ "share_embeddings": false,
72
+ "norm_eps": 1e-06,
73
+ "transformer_ff": 4096,
74
+ "heads": 8,
75
+ "share_decoder_embeddings": true,
76
+ "layer_norm": "standard",
77
+ "add_qkvbias": false,
78
+ "hidden_size": 1024,
79
+ "add_ffnbias": true,
80
+ "architecture": "transformer",
81
+ "position_encoding_type": "SinusoidalInterleaved",
82
+ "embeddings": {
83
+ "word_vec_size": 1024,
84
+ "tgt_word_vec_size": 1024,
85
+ "position_encoding_type": "SinusoidalInterleaved",
86
+ "src_word_vec_size": 1024
87
+ },
88
+ "encoder": {
89
+ "encoder_type": "transformer",
90
+ "heads": 8,
91
+ "layer_norm": "standard",
92
+ "hidden_size": 1024,
93
+ "add_qkvbias": false,
94
+ "mlp_activation_fn": "gelu",
95
+ "add_ffnbias": true,
96
+ "n_positions": null,
97
+ "norm_eps": 1e-06,
98
+ "layers": 8,
99
+ "src_word_vec_size": 1024,
100
+ "transformer_ff": 4096,
101
+ "position_encoding_type": "SinusoidalInterleaved"
102
+ },
103
+ "decoder": {
104
+ "layer_norm": "standard",
105
+ "heads": 8,
106
+ "add_qkvbias": false,
107
+ "hidden_size": 1024,
108
+ "decoder_type": "transformer",
109
+ "mlp_activation_fn": "gelu",
110
+ "tgt_word_vec_size": 1024,
111
+ "add_ffnbias": true,
112
+ "n_positions": null,
113
+ "norm_eps": 1e-06,
114
+ "layers": 2,
115
+ "transformer_ff": 4096,
116
+ "position_encoding_type": "SinusoidalInterleaved"
117
+ }
118
+ },
119
+ "transforms_configs": {
120
+ "sentencepiece": {
121
+ "src_subword_model": "${MODEL_PATH}/de.spm.model",
122
+ "tgt_subword_model": "${MODEL_PATH}/en.spm.model"
123
+ },
124
+ "filtertoolong": {
125
+ "src_seq_length": 256,
126
+ "tgt_seq_length": 256
127
+ }
128
+ },
129
+ "data": {
130
+ "corpus_1": {
131
+ "transforms": [
132
+ "sentencepiece",
133
+ "filtertoolong"
134
+ ],
135
+ "path_tgt": "hf://quickmt/quickmt-train.de-en/en",
136
+ "path_src": "hf://quickmt/quickmt-train.de-en/de",
137
+ "path_sco": "hf://quickmt/quickmt-train.de-en/sco",
138
+ "path_align": null
139
+ },
140
+ "valid": {
141
+ "transforms": [
142
+ "sentencepiece",
143
+ "filtertoolong"
144
+ ],
145
+ "path_src": "dev.de",
146
+ "path_tgt": "dev.en",
147
+ "path_align": null
148
+ }
149
+ }
150
+ }
eole-model/de.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a4a9e3dd26d6562764eb2678f95766afbab48354ddb5b7d63cb7cf7a02cf56a
3
+ size 595491
eole-model/en.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eaf7051931aaca182561ba5a63c5674424971d0d6001ab57facb194fe6c941bf
3
+ size 586141
eole-model/model.00.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:704125ca03fb0d665827bfed8205b284555834b37dd85993b761880d6204c51d
3
+ size 742170000
eole-model/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50b1a9c0d09d49b71242750ccb8b68d312d976302b7989157b07f7df1ef8dcf3
3
+ size 360843109
source_vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
src.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a4a9e3dd26d6562764eb2678f95766afbab48354ddb5b7d63cb7cf7a02cf56a
3
+ size 595491
target_vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
tgt.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eaf7051931aaca182561ba5a63c5674424971d0d6001ab57facb194fe6c941bf
3
+ size 586141