radinplaid commited on
Commit
73edce4
·
verified ·
1 Parent(s): e0e83e8

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - th
5
+ tags:
6
+ - translation
7
+ license: cc-by-4.0
8
+ datasets:
9
+ - quickmt/quickmt-train.th-en
10
+ model-index:
11
+ - name: quickmt-th-en
12
+ results:
13
+ - task:
14
+ name: Translation tha-eng
15
+ type: translation
16
+ args: tha-eng
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: tha_Thai eng_Latn devtest
21
+ metrics:
22
+ - name: BLEU
23
+ type: bleu
24
+ value: 29.32
25
+ - name: CHRF
26
+ type: chrf
27
+ value: 58.4
28
+ - name: COMET
29
+ type: comet
30
+ value: 87.15
31
+ ---
32
+
33
+
34
+ # `quickmt-th-en` Neural Machine Translation Model
35
+
36
+ `quickmt-th-en` is a reasonably fast and reasonably accurate neural machine translation model for translation from `th` into `en`.
37
+
38
+
39
+ ## Try it on our Huggingface Space
40
+
41
+ Give it a try before downloading here: https://huggingface.co/spaces/quickmt/QuickMT-Demo
42
+
43
+
44
+ ## Model Information
45
+
46
+ * Trained using [`eole`](https://github.com/eole-nlp/eole)
47
+ * 195M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
48
+ * 20k separate Sentencepiece vocabs
49
+ * Expested for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
50
+ * Training data: https://huggingface.co/datasets/quickmt/quickmt-train.th-en/tree/main
51
+
52
+ See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
53
+
54
+
55
+ ## Usage with `quickmt`
56
+
57
+ You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
58
+
59
+ Next, install the `quickmt` python library and download the model:
60
+
61
+ ```bash
62
+ git clone https://github.com/quickmt/quickmt.git
63
+ pip install ./quickmt/
64
+
65
+ quickmt-model-download quickmt/quickmt-th-en ./quickmt-th-en
66
+ ```
67
+
68
+ Finally use the model in python:
69
+
70
+ ```python
71
+ from quickmt impest Translator
72
+
73
+ # Auto-detects GPU, set to "cpu" to force CPU inference
74
+ t = Translator("./quickmt-th-en/", device="auto")
75
+
76
+ # Translate - set beam size to 1 for faster speed (but lower quality)
77
+ sample_text = 'ดร.เอฮุด อูร์ ศาสตราจารย์แพทยศาสตร์แห่งมหาวิทยาลัยดัลเฮาซีในแฮลิแฟกซ์ รัฐโนวาสโกเชีย และประธานแผนกคลินิกและวิทยาศาสตร์แห่งสมาคมโรคเบาหวานแคนาดาได้กล่าวเตือนว่าการวิจัยนี้ยังอยู่ในระยะแรกเริ่มเท่านั้น'
78
+
79
+ t(sample_text, beam_size=5)
80
+ ```
81
+
82
+ > 'Dr. Ehud Ur, Professor of Medicine at the University of Dalhousie in Halifax, Nova Scotia, and Chairman of the Clinical and Science Department of the Canadian Diabetes Association, warned that the research is only in the early stages.'
83
+
84
+ ```python
85
+ # Get alternative translations by sampling
86
+ # You can pass any cTranslate2 `translate_batch` arguments
87
+ t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
88
+ ```
89
+
90
+ > 'Dr Ehud Ur, medical professor of the University of Dalhousi in Halifax, Nova Scotia and president of the Clinical and Scientific Department of the Canadian Diabetic Association, warned that the research is in its early stages.'
91
+
92
+ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`.
93
+
94
+
95
+ ## Metrics
96
+
97
+ `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("tha_Thai"->"eng_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible using a larger batch size).
98
+
99
+ | | bleu | chrf2 | comet22 | Time (s) |
100
+ |:---------------------------------|-------:|--------:|----------:|-----------:|
101
+ | quickmt/quickmt-th-en | 29.32 | 58.4 | 87.15 | 1.34 |
102
+ | Helsinki-NLP/opus-mt-th-en | 19.76 | 48.86 | 81.59 | 3.84 |
103
+ | facebook/nllb-200-distilled-600M | 26.54 | 54.97 | 85.26 | 22.27 |
104
+ | facebook/nllb-200-distilled-1.3B | 29.38 | 57 | 86.59 | 39.43 |
105
+ | facebook/m2m100_418M | 16.57 | 47.88 | 77.69 | 20.1 |
106
+ | facebook/m2m100_1.2B | 21.71 | 52.63 | 82.51 | 37.8 |
.ipynb_checkpoints/eole-config-checkpoint.yaml ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## IO
2
+ save_data: data
3
+ overwrite: True
4
+ seed: 1234
5
+ report_every: 100
6
+ valid_metrics: ["BLEU"]
7
+ tensorboard: true
8
+ tensorboard_log_dir: tensorboard
9
+
10
+ ### Vocab
11
+ src_vocab: th.eole.vocab
12
+ tgt_vocab: en.eole.vocab
13
+ src_vocab_size: 20000
14
+ tgt_vocab_size: 20000
15
+ vocab_size_multiple: 8
16
+ share_vocab: false
17
+ n_sample: 0
18
+
19
+ data:
20
+ corpus_1:
21
+ path_src: hf://quickmt/quickmt-train.th-en/th
22
+ path_tgt: hf://quickmt/quickmt-train.th-en/en
23
+ path_sco: hf://quickmt/quickmt-train.th-en/sco
24
+
25
+ valid:
26
+ path_src: valid.th
27
+ path_tgt: valid.en
28
+
29
+ transforms: [sentencepiece, filtertoolong]
30
+ transforms_configs:
31
+ sentencepiece:
32
+ src_subword_model: "th.spm.model"
33
+ tgt_subword_model: "en.spm.model"
34
+ filtertoolong:
35
+ src_seq_length: 256
36
+ tgt_seq_length: 256
37
+
38
+ training:
39
+ # Run configuration
40
+ model_path: quickmt-th-en-eole-model
41
+ #train_from: model
42
+ keep_checkpoint: 4
43
+ train_steps: 85000
44
+ save_checkpoint_steps: 5000
45
+ valid_steps: 5000
46
+
47
+ # Train on a single GPU
48
+ world_size: 1
49
+ gpu_ranks: [0]
50
+
51
+ # Batching 10240
52
+ batch_type: "tokens"
53
+ batch_size: 8000
54
+ valid_batch_size: 4096
55
+ batch_size_multiple: 8
56
+ accum_count: [10]
57
+ accum_steps: [0]
58
+
59
+ # Optimizer & Compute
60
+ compute_dtype: "fp16"
61
+ optim: "adamw"
62
+ #use_amp: False
63
+ learning_rate: 2.0
64
+ warmup_steps: 4000
65
+ decay_method: "noam"
66
+ adam_beta2: 0.998
67
+
68
+ # Data loading
69
+ bucket_size: 128000
70
+ num_workers: 4
71
+ prefetch_factor: 32
72
+
73
+ # Hyperparams
74
+ dropout_steps: [0]
75
+ dropout: [0.1]
76
+ attention_dropout: [0.1]
77
+ max_grad_norm: 0
78
+ label_smoothing: 0.1
79
+ average_decay: 0.0001
80
+ param_init_method: xavier_uniform
81
+ normalization: "tokens"
82
+
83
+ model:
84
+ architecture: "transformer"
85
+ share_embeddings: false
86
+ share_decoder_embeddings: false
87
+ hidden_size: 1024
88
+ encoder:
89
+ layers: 8
90
+ decoder:
91
+ layers: 2
92
+ heads: 8
93
+ transformer_ff: 4096
94
+ embeddings:
95
+ word_vec_size: 1024
96
+ position_encoding_type: "SinusoidalInterleaved"
97
+
README.md CHANGED
@@ -1,3 +1,106 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - th
5
+ tags:
6
+ - translation
7
+ license: cc-by-4.0
8
+ datasets:
9
+ - quickmt/quickmt-train.th-en
10
+ model-index:
11
+ - name: quickmt-th-en
12
+ results:
13
+ - task:
14
+ name: Translation tha-eng
15
+ type: translation
16
+ args: tha-eng
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: tha_Thai eng_Latn devtest
21
+ metrics:
22
+ - name: BLEU
23
+ type: bleu
24
+ value: 29.32
25
+ - name: CHRF
26
+ type: chrf
27
+ value: 58.4
28
+ - name: COMET
29
+ type: comet
30
+ value: 87.15
31
+ ---
32
+
33
+
34
+ # `quickmt-th-en` Neural Machine Translation Model
35
+
36
+ `quickmt-th-en` is a reasonably fast and reasonably accurate neural machine translation model for translation from `th` into `en`.
37
+
38
+
39
+ ## Try it on our Huggingface Space
40
+
41
+ Give it a try before downloading here: https://huggingface.co/spaces/quickmt/QuickMT-Demo
42
+
43
+
44
+ ## Model Information
45
+
46
+ * Trained using [`eole`](https://github.com/eole-nlp/eole)
47
+ * 195M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
48
+ * 20k separate Sentencepiece vocabs
49
+ * Expested for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
50
+ * Training data: https://huggingface.co/datasets/quickmt/quickmt-train.th-en/tree/main
51
+
52
+ See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
53
+
54
+
55
+ ## Usage with `quickmt`
56
+
57
+ You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
58
+
59
+ Next, install the `quickmt` python library and download the model:
60
+
61
+ ```bash
62
+ git clone https://github.com/quickmt/quickmt.git
63
+ pip install ./quickmt/
64
+
65
+ quickmt-model-download quickmt/quickmt-th-en ./quickmt-th-en
66
+ ```
67
+
68
+ Finally use the model in python:
69
+
70
+ ```python
71
+ from quickmt impest Translator
72
+
73
+ # Auto-detects GPU, set to "cpu" to force CPU inference
74
+ t = Translator("./quickmt-th-en/", device="auto")
75
+
76
+ # Translate - set beam size to 1 for faster speed (but lower quality)
77
+ sample_text = 'ดร.เอฮุด อูร์ ศาสตราจารย์แพทยศาสตร์แห่งมหาวิทยาลัยดัลเฮาซีในแฮลิแฟกซ์ รัฐโนวาสโกเชีย และประธานแผนกคลินิกและวิทยาศาสตร์แห่งสมาคมโรคเบาหวานแคนาดาได้กล่าวเตือนว่าการวิจัยนี้ยังอยู่ในระยะแรกเริ่มเท่านั้น'
78
+
79
+ t(sample_text, beam_size=5)
80
+ ```
81
+
82
+ > 'Dr. Ehud Ur, Professor of Medicine at the University of Dalhousie in Halifax, Nova Scotia, and Chairman of the Clinical and Science Department of the Canadian Diabetes Association, warned that the research is only in the early stages.'
83
+
84
+ ```python
85
+ # Get alternative translations by sampling
86
+ # You can pass any cTranslate2 `translate_batch` arguments
87
+ t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
88
+ ```
89
+
90
+ > 'Dr Ehud Ur, medical professor of the University of Dalhousi in Halifax, Nova Scotia and president of the Clinical and Scientific Department of the Canadian Diabetic Association, warned that the research is in its early stages.'
91
+
92
+ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`.
93
+
94
+
95
+ ## Metrics
96
+
97
+ `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("tha_Thai"->"eng_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible using a larger batch size).
98
+
99
+ | | bleu | chrf2 | comet22 | Time (s) |
100
+ |:---------------------------------|-------:|--------:|----------:|-----------:|
101
+ | quickmt/quickmt-th-en | 29.32 | 58.4 | 87.15 | 1.34 |
102
+ | Helsinki-NLP/opus-mt-th-en | 19.76 | 48.86 | 81.59 | 3.84 |
103
+ | facebook/nllb-200-distilled-600M | 26.54 | 54.97 | 85.26 | 22.27 |
104
+ | facebook/nllb-200-distilled-1.3B | 29.38 | 57 | 86.59 | 39.43 |
105
+ | facebook/m2m100_418M | 16.57 | 47.88 | 77.69 | 20.1 |
106
+ | facebook/m2m100_1.2B | 21.71 | 52.63 | 82.51 | 37.8 |
config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_source_bos": false,
3
+ "add_source_eos": false,
4
+ "bos_token": "<s>",
5
+ "decoder_start_token": "<s>",
6
+ "eos_token": "</s>",
7
+ "layer_norm_epsilon": 1e-06,
8
+ "multi_query_attention": false,
9
+ "unk_token": "<unk>"
10
+ }
eole-config.yaml ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## IO
2
+ save_data: data
3
+ overwrite: True
4
+ seed: 1234
5
+ report_every: 100
6
+ valid_metrics: ["BLEU"]
7
+ tensorboard: true
8
+ tensorboard_log_dir: tensorboard
9
+
10
+ ### Vocab
11
+ src_vocab: th.eole.vocab
12
+ tgt_vocab: en.eole.vocab
13
+ src_vocab_size: 20000
14
+ tgt_vocab_size: 20000
15
+ vocab_size_multiple: 8
16
+ share_vocab: false
17
+ n_sample: 0
18
+
19
+ data:
20
+ corpus_1:
21
+ path_src: hf://quickmt/quickmt-train.th-en/th
22
+ path_tgt: hf://quickmt/quickmt-train.th-en/en
23
+ path_sco: hf://quickmt/quickmt-train.th-en/sco
24
+
25
+ valid:
26
+ path_src: valid.th
27
+ path_tgt: valid.en
28
+
29
+ transforms: [sentencepiece, filtertoolong]
30
+ transforms_configs:
31
+ sentencepiece:
32
+ src_subword_model: "th.spm.model"
33
+ tgt_subword_model: "en.spm.model"
34
+ filtertoolong:
35
+ src_seq_length: 256
36
+ tgt_seq_length: 256
37
+
38
+ training:
39
+ # Run configuration
40
+ model_path: quickmt-th-en-eole-model
41
+ #train_from: model
42
+ keep_checkpoint: 4
43
+ train_steps: 85000
44
+ save_checkpoint_steps: 5000
45
+ valid_steps: 5000
46
+
47
+ # Train on a single GPU
48
+ world_size: 1
49
+ gpu_ranks: [0]
50
+
51
+ # Batching 10240
52
+ batch_type: "tokens"
53
+ batch_size: 8000
54
+ valid_batch_size: 4096
55
+ batch_size_multiple: 8
56
+ accum_count: [10]
57
+ accum_steps: [0]
58
+
59
+ # Optimizer & Compute
60
+ compute_dtype: "fp16"
61
+ optim: "adamw"
62
+ #use_amp: False
63
+ learning_rate: 2.0
64
+ warmup_steps: 4000
65
+ decay_method: "noam"
66
+ adam_beta2: 0.998
67
+
68
+ # Data loading
69
+ bucket_size: 128000
70
+ num_workers: 4
71
+ prefetch_factor: 32
72
+
73
+ # Hyperparams
74
+ dropout_steps: [0]
75
+ dropout: [0.1]
76
+ attention_dropout: [0.1]
77
+ max_grad_norm: 0
78
+ label_smoothing: 0.1
79
+ average_decay: 0.0001
80
+ param_init_method: xavier_uniform
81
+ normalization: "tokens"
82
+
83
+ model:
84
+ architecture: "transformer"
85
+ share_embeddings: false
86
+ share_decoder_embeddings: false
87
+ hidden_size: 1024
88
+ encoder:
89
+ layers: 8
90
+ decoder:
91
+ layers: 2
92
+ heads: 8
93
+ transformer_ff: 4096
94
+ embeddings:
95
+ word_vec_size: 1024
96
+ position_encoding_type: "SinusoidalInterleaved"
97
+
eole-model/config.json ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "tensorboard_log_dir_dated": "tensorboard/Aug-30_22-14-07",
3
+ "src_vocab_size": 20000,
4
+ "tensorboard_log_dir": "tensorboard",
5
+ "share_vocab": false,
6
+ "tensorboard": true,
7
+ "report_every": 100,
8
+ "transforms": [
9
+ "sentencepiece",
10
+ "filtertoolong"
11
+ ],
12
+ "valid_metrics": [
13
+ "BLEU"
14
+ ],
15
+ "tgt_vocab": "en.eole.vocab",
16
+ "save_data": "data",
17
+ "tgt_vocab_size": 20000,
18
+ "seed": 1234,
19
+ "n_sample": 0,
20
+ "src_vocab": "th.eole.vocab",
21
+ "overwrite": true,
22
+ "vocab_size_multiple": 8,
23
+ "training": {
24
+ "keep_checkpoint": 4,
25
+ "attention_dropout": [
26
+ 0.1
27
+ ],
28
+ "valid_batch_size": 4096,
29
+ "model_path": "quickmt-th-en-eole-model",
30
+ "gpu_ranks": [
31
+ 0
32
+ ],
33
+ "world_size": 1,
34
+ "optim": "adamw",
35
+ "num_workers": 0,
36
+ "normalization": "tokens",
37
+ "batch_size_multiple": 8,
38
+ "accum_count": [
39
+ 10
40
+ ],
41
+ "train_steps": 100000,
42
+ "average_decay": 0.0001,
43
+ "param_init_method": "xavier_uniform",
44
+ "batch_size": 8000,
45
+ "dropout_steps": [
46
+ 0
47
+ ],
48
+ "accum_steps": [
49
+ 0
50
+ ],
51
+ "prefetch_factor": 32,
52
+ "bucket_size": 128000,
53
+ "warmup_steps": 4000,
54
+ "adam_beta2": 0.998,
55
+ "batch_type": "tokens",
56
+ "compute_dtype": "torch.float16",
57
+ "max_grad_norm": 0.0,
58
+ "decay_method": "noam",
59
+ "dropout": [
60
+ 0.1
61
+ ],
62
+ "save_checkpoint_steps": 5000,
63
+ "label_smoothing": 0.1,
64
+ "valid_steps": 5000,
65
+ "learning_rate": 2.0
66
+ },
67
+ "data": {
68
+ "corpus_1": {
69
+ "path_align": null,
70
+ "path_tgt": "train.en",
71
+ "transforms": [
72
+ "sentencepiece",
73
+ "filtertoolong"
74
+ ],
75
+ "path_src": "train.th"
76
+ },
77
+ "valid": {
78
+ "path_align": null,
79
+ "path_tgt": "valid.en",
80
+ "transforms": [
81
+ "sentencepiece",
82
+ "filtertoolong"
83
+ ],
84
+ "path_src": "valid.th"
85
+ }
86
+ },
87
+ "model": {
88
+ "share_embeddings": false,
89
+ "position_encoding_type": "SinusoidalInterleaved",
90
+ "heads": 8,
91
+ "share_decoder_embeddings": false,
92
+ "transformer_ff": 4096,
93
+ "hidden_size": 1024,
94
+ "architecture": "transformer",
95
+ "encoder": {
96
+ "n_positions": null,
97
+ "position_encoding_type": "SinusoidalInterleaved",
98
+ "encoder_type": "transformer",
99
+ "src_word_vec_size": 1024,
100
+ "heads": 8,
101
+ "transformer_ff": 4096,
102
+ "hidden_size": 1024,
103
+ "layers": 8
104
+ },
105
+ "embeddings": {
106
+ "tgt_word_vec_size": 1024,
107
+ "position_encoding_type": "SinusoidalInterleaved",
108
+ "word_vec_size": 1024,
109
+ "src_word_vec_size": 1024
110
+ },
111
+ "decoder": {
112
+ "n_positions": null,
113
+ "tgt_word_vec_size": 1024,
114
+ "position_encoding_type": "SinusoidalInterleaved",
115
+ "heads": 8,
116
+ "decoder_type": "transformer",
117
+ "transformer_ff": 4096,
118
+ "hidden_size": 1024,
119
+ "layers": 2
120
+ }
121
+ },
122
+ "transforms_configs": {
123
+ "filtertoolong": {
124
+ "tgt_seq_length": 256,
125
+ "src_seq_length": 256
126
+ },
127
+ "sentencepiece": {
128
+ "tgt_subword_model": "${MODEL_PATH}/en.spm.model",
129
+ "src_subword_model": "${MODEL_PATH}/th.spm.model"
130
+ }
131
+ }
132
+ }
eole-model/en.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac6f53a2306e1279f472715b1086aea108cb9d577b3c96c3da2469b27f0a74c2
3
+ size 584368
eole-model/model.00.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d828cdf88c3d697895e1a07d560aedf76e42d49503150690d265ca9f242decca
3
+ size 823882912
eole-model/th.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f701b1084de69de262f2f8e1d9c17d6e020b7d68089595f05c406fd0d51137e
3
+ size 797411
eole-model/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1538b0cc84ef3c3b8195fb44b12c2ae845bbcd1d6dbdad3c56713fc76641af53
3
+ size 401699775
source_vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
src.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f701b1084de69de262f2f8e1d9c17d6e020b7d68089595f05c406fd0d51137e
3
+ size 797411
target_vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
tgt.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac6f53a2306e1279f472715b1086aea108cb9d577b3c96c3da2469b27f0a74c2
3
+ size 584368