Spaces:
Sleeping
Sleeping
Update space
Browse files- README.md +128 -14
- app.py +103 -51
- requirements.txt +80 -0
README.md
CHANGED
|
@@ -1,14 +1,128 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 📚 Content-Based Book Recommendation System 📖
|
| 2 |
+
|
| 3 |
+
This is a content-based book recommendation system that recommends books 📕📗 similar to an input book title based on the similarity of book summaries. The system uses **TF-IDF (📊 Term Frequency-Inverse Document Frequency)** and **Cosine Similarity 🧮** to compare books and find the most relevant recommendations. It provides a user-friendly interface built with **Gradio 💻**, where users can enter a book title and get recommendations.
|
| 4 |
+
|
| 5 |
+
## 📂 Project Structure
|
| 6 |
+
|
| 7 |
+
```
|
| 8 |
+
.
|
| 9 |
+
├── app.py # 🚀 Main script that runs the app
|
| 10 |
+
├── utils.py # 🛠️ Helper functions (data loading, model loading)
|
| 11 |
+
├── data/
|
| 12 |
+
│ ├── books_summary.csv # 📑 Actual dataset
|
| 13 |
+
│ ├── cleaned_books_summary.csv # 🧹 Preprocessed dataset
|
| 14 |
+
├── model/
|
| 15 |
+
│ ├── tfidf_vectorizer.pkl # 🤖 Pre-trained TF-IDF vectorizer
|
| 16 |
+
│ ├── tfidf_matrix.pkl # 🗂️ Pre-calculated TF-IDF matrix
|
| 17 |
+
├── src/ # 📦 Source code folder
|
| 18 |
+
│ ├── data_loader.py # 📥 Module to load and preprocess data
|
| 19 |
+
│ ├── feature_engineering.py # 🧬 Module to create TF-IDF/embedding vectors
|
| 20 |
+
│ ├── similarity_calculator.py # 🧮 Module to calculate similarity matrix
|
| 21 |
+
│ ├── recommender.py # 📚 Main logic to generate recommendations
|
| 22 |
+
│ ├── utils.py # ⚙️ Utility functions (e.g., cleaning text)
|
| 23 |
+
├── requirements.txt # 📜 List of Python dependencies
|
| 24 |
+
└── README.md # 📝 Project overview and setup instructions
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
## 🌟 Features
|
| 28 |
+
|
| 29 |
+
- **📚 Book Recommendation:** Enter a book title, and the system will recommend the top 5 similar books based on their summaries.
|
| 30 |
+
- **🏷️ Categorization:** Each recommended book displays its categories as clickable buttons for better user experience.
|
| 31 |
+
- **💻 Interactive UI:** Simple and clean interface using Gradio.
|
| 32 |
+
- **🔧 Modular Code:** Functions for data loading, preprocessing, model training, and similarity calculation are separated into different files.
|
| 33 |
+
|
| 34 |
+
## 💻 Technologies Used
|
| 35 |
+
|
| 36 |
+
- **🐍 Python:** Core language used to build the system.
|
| 37 |
+
- **💻 Gradio:** For creating a web-based user interface.
|
| 38 |
+
- **📊 Scikit-learn:** For TF-IDF Vectorization and Cosine Similarity calculation.
|
| 39 |
+
- **🗂️ Pandas:** For data manipulation and preprocessing.
|
| 40 |
+
- **🔢 NumPy:** For numerical operations.
|
| 41 |
+
|
| 42 |
+
## ⚙️ Setup Instructions
|
| 43 |
+
|
| 44 |
+
### 1. 🧬 Clone the Repository
|
| 45 |
+
|
| 46 |
+
```bash
|
| 47 |
+
git clone https://github.com/ajayansaroj17/book_title_recommender.git
|
| 48 |
+
cd book_title_recommender
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
### 2. 📦 Install Dependencies
|
| 52 |
+
|
| 53 |
+
Make sure you have Python 3.7+ installed. Then, create a virtual environment and install the required libraries:
|
| 54 |
+
|
| 55 |
+
```bash
|
| 56 |
+
python -m venv venv
|
| 57 |
+
source venv/bin/activate # On Windows, use `venv\Scripts\activate`
|
| 58 |
+
pip install -r requirements.txt
|
| 59 |
+
```
|
| 60 |
+
|
| 61 |
+
### 3. 📚 Download or Prepare the Dataset
|
| 62 |
+
|
| 63 |
+
The dataset should contain columns for `book_name`, `summaries`, and `categories`. Store the preprocessed dataset as `cleaned_books_summary.csv` in the `data/` folder.
|
| 64 |
+
|
| 65 |
+
### 4. 🏋️♂️ Pre-train the Model
|
| 66 |
+
|
| 67 |
+
Run the following script to train the TF-IDF model and create the TF-IDF matrix:
|
| 68 |
+
|
| 69 |
+
```bash
|
| 70 |
+
python train_tfidf_model.py
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
This will:
|
| 74 |
+
|
| 75 |
+
- 🧠 Train the TF-IDF vectorizer on the summaries column.
|
| 76 |
+
- 🗂️ Create the TF-IDF matrix for all books.
|
| 77 |
+
- 💾 Save the trained model and matrix as `model/tfidf_vectorizer.pkl` and `model/tfidf_matrix.pkl`.
|
| 78 |
+
|
| 79 |
+
### 5. 🚀 Run the Application
|
| 80 |
+
|
| 81 |
+
Launch the Gradio-based web interface by running:
|
| 82 |
+
|
| 83 |
+
```bash
|
| 84 |
+
python app.py
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
The application will open in your browser, allowing you to enter a book title and receive recommendations.
|
| 88 |
+
|
| 89 |
+
## 🤔 How the System Works
|
| 90 |
+
|
| 91 |
+
1. **👤 User Input:** The user enters a book title in the input field.
|
| 92 |
+
2. **🔍 Recommendation Logic:**
|
| 93 |
+
- The system searches for the input book in the dataset.
|
| 94 |
+
- It calculates the TF-IDF vector of the input book's summary and compares it with the summaries of all other books using cosine similarity.
|
| 95 |
+
- The top 5 books with the highest similarity scores are returned.
|
| 96 |
+
3. **📊 Output:** Recommendations are displayed, including book titles, summaries, and categories as clickable buttons.
|
| 97 |
+
|
| 98 |
+
## 📄 File Descriptions
|
| 99 |
+
|
| 100 |
+
- **app.py:** 🚀 Main script launching the Gradio UI and handling book recommendations.
|
| 101 |
+
- **utils.py:** 🛠�� Helper functions for loading models, data preprocessing, and utilities.
|
| 102 |
+
- **feature_engineering.py:** 🧬 Trains the TF-IDF model and creates the TF-IDF matrix.
|
| 103 |
+
- **data/cleaned_books_summary.csv:** 📚 Cleaned dataset used for training.
|
| 104 |
+
- **model/tfidf_vectorizer.pkl** and **model/tfidf_matrix.pkl:** 🤖 Pre-trained TF-IDF model and matrix.
|
| 105 |
+
|
| 106 |
+
## 📦 Dependencies
|
| 107 |
+
|
| 108 |
+
Install the following Python packages using:
|
| 109 |
+
|
| 110 |
+
```bash
|
| 111 |
+
pip install -r requirements.txt
|
| 112 |
+
```
|
| 113 |
+
|
| 114 |
+
- **💻 gradio:** For the web interface.
|
| 115 |
+
- **📊 sklearn:** For TF-IDF and cosine similarity calculations.
|
| 116 |
+
- **🗂️ pandas:** For data manipulation.
|
| 117 |
+
- **🔢 numpy:** For numerical operations.
|
| 118 |
+
|
| 119 |
+
## 🚀 Potential Extensions and Improvements
|
| 120 |
+
|
| 121 |
+
- **🏷️ Category-Based Filtering:** Filter recommendations by specific categories.
|
| 122 |
+
- **🤖 Advanced NLP Techniques:** Use embeddings like Word2Vec, GloVe, or transformer-based models like BERT.
|
| 123 |
+
- **👥 Personalization:** Implement a user profiling system for personalized recommendations.
|
| 124 |
+
- **⚡ Scalability:** Use Approximate Nearest Neighbors (ANN) for faster similarity calculation on large datasets.
|
| 125 |
+
|
| 126 |
+
## 🏁 Conclusion
|
| 127 |
+
|
| 128 |
+
This project demonstrates building a content-based book recommendation system using TF-IDF and cosine similarity. The modular design ensures easy maintenance and extension, while Gradio simplifies deployment and user interaction!🚀
|
app.py
CHANGED
|
@@ -1,64 +1,116 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
|
| 4 |
-
""
|
| 5 |
-
|
| 6 |
-
""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
message,
|
| 12 |
-
history: list[tuple[str, str]],
|
| 13 |
-
system_message,
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
|
| 26 |
-
|
|
|
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
response = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
response += token
|
| 40 |
-
yield response
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
"""
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
"""
|
| 46 |
-
demo = gr.ChatInterface(
|
| 47 |
-
respond,
|
| 48 |
-
additional_inputs=[
|
| 49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
-
gr.Slider(
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
-
],
|
| 60 |
)
|
| 61 |
|
| 62 |
|
| 63 |
if __name__ == "__main__":
|
| 64 |
-
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 3 |
import gradio as gr
|
| 4 |
+
from src.utils import load_from_pickle, validate_input
|
| 5 |
|
| 6 |
+
VECTOR_PATH = "model/tfidf_vectorizer.pkl"
|
| 7 |
+
MATRIX_PATH = "model/tfidf_matrix.pkl"
|
| 8 |
+
DATA_PATH = "data/books_summary.csv"
|
|
|
|
| 9 |
|
| 10 |
+
# 1. Load the pre-trained models and data
|
| 11 |
+
print("Loading models and data...")
|
| 12 |
+
tfidf_vectorizer = load_from_pickle(VECTOR_PATH)
|
| 13 |
+
tfidf_matrix = load_from_pickle(MATRIX_PATH)
|
| 14 |
+
books_df = pd.read_csv(DATA_PATH)
|
| 15 |
+
print(f"Original dataset shape: {books_df.shape}")
|
| 16 |
|
| 17 |
+
# Group by 'book_name' and 'summaries', and aggregate 'categories' into a single cell
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
books_df = books_df.groupby(["book_name", "summaries"], as_index=False).agg(
|
| 20 |
+
{"categories": lambda tags: ", ".join(set(tags.dropna()))}
|
| 21 |
+
) # Remove duplicates within tags
|
| 22 |
+
print(f"After aggregating categories: {books_df.shape}")
|
|
|
|
| 23 |
|
| 24 |
+
# Drop duplicates (just to be extra cautious)
|
| 25 |
+
books_df = books_df.drop_duplicates(subset=["book_name", "summaries"], keep="first")
|
| 26 |
|
| 27 |
+
book_titles = books_df["book_name"].tolist()
|
| 28 |
+
print("Models and data loaded successfully!")
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
# 2. Recommendation Function
|
| 32 |
+
def recommend_books(input_book_title):
|
| 33 |
+
"""
|
| 34 |
+
Recommends top 5 similar books based on the input book title.
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
input_book_title (str): The title of the book input by the user.
|
| 38 |
+
|
| 39 |
+
Returns:
|
| 40 |
+
List of recommended books with their summaries and tags.
|
| 41 |
+
"""
|
| 42 |
+
# Validate input
|
| 43 |
+
if not validate_input(input_book_title, book_titles):
|
| 44 |
+
return "Book title not found in the dataset. Please try another title."
|
| 45 |
+
|
| 46 |
+
# Find index of the input book
|
| 47 |
+
book_index = books_df[books_df["book_name"] == input_book_title].index[0]
|
| 48 |
+
|
| 49 |
+
# Compute cosine similarity
|
| 50 |
+
cosine_similarities = cosine_similarity(
|
| 51 |
+
tfidf_matrix[book_index], tfidf_matrix
|
| 52 |
+
).flatten()
|
| 53 |
+
|
| 54 |
+
# Sort and get top 5 similar books (excluding the input book itself)
|
| 55 |
+
similar_indices = cosine_similarities.argsort()[-6:-1][::-1]
|
| 56 |
+
recommendations = books_df.iloc[similar_indices]
|
| 57 |
+
|
| 58 |
+
"""# Format the output
|
| 59 |
+
output = []
|
| 60 |
+
for _, row in recommendations.iterrows():
|
| 61 |
+
output.append(f"**Title:** {row['book_name']}\n**Summary:** {row['summaries']}\n**Tags:** {row['categories']}\n")
|
| 62 |
+
|
| 63 |
+
return "\n\n".join(output)"""
|
| 64 |
+
# Format the recommendations for the UI
|
| 65 |
+
formatted_books = []
|
| 66 |
+
for _, row in recommendations.iterrows():
|
| 67 |
+
formatted_books.append(
|
| 68 |
+
{
|
| 69 |
+
"title": row["book_name"],
|
| 70 |
+
"description": row["summaries"],
|
| 71 |
+
"categories": row["categories"].split(", "),
|
| 72 |
+
}
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
return formatted_books
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def display_recommendations(book_title):
|
| 79 |
+
"""
|
| 80 |
+
Wrapper function to display recommendations.
|
| 81 |
+
"""
|
| 82 |
+
result = recommend_books(book_title)
|
| 83 |
+
|
| 84 |
+
if isinstance(result, str): # If it's an error message
|
| 85 |
+
return result
|
| 86 |
+
|
| 87 |
+
# Construct formatted HTML response for book recommendations
|
| 88 |
response = ""
|
| 89 |
+
for book in result:
|
| 90 |
+
response += f"""
|
| 91 |
+
<div style='border:1px solid #ddd; border-radius:10px; padding:10px; margin:10px; box-shadow:2px 2px 8px #ccc;'>
|
| 92 |
+
<h2 style='color:#333;'>{book['title']}</h2>
|
| 93 |
+
<p style='color:#555;'>{book['description']}</p>
|
| 94 |
+
<div>
|
| 95 |
+
{" ".join([f"<button style='background-color:#007BFF; color:white; border:none; padding:5px 10px; margin:2px; border-radius:5px;'>{tag}</button>" for tag in book['categories']])}
|
| 96 |
+
</div>
|
| 97 |
+
</div>
|
| 98 |
+
"""
|
| 99 |
+
return response
|
| 100 |
+
|
| 101 |
|
| 102 |
+
# 3. Gradio Interface
|
| 103 |
+
# Gradio UI definition
|
| 104 |
+
interface = gr.Interface(
|
| 105 |
+
fn=display_recommendations,
|
| 106 |
+
inputs=gr.Textbox(label="Enter Book Title", placeholder="e.g., The Great Gatsby"),
|
| 107 |
+
outputs=gr.HTML(label="Top 5 Recommendations"),
|
| 108 |
+
title="📚 Book Recommendation System",
|
| 109 |
+
description="Enter the title of a book, and we'll recommend 5 similar books.",
|
| 110 |
+
theme="compact",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
)
|
| 112 |
|
| 113 |
|
| 114 |
if __name__ == "__main__":
|
| 115 |
+
# Run the Gradio interface when app.py is executed
|
| 116 |
+
interface.launch()
|
requirements.txt
CHANGED
|
@@ -1 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
huggingface_hub==0.25.2
|
|
|
|
| 1 |
+
aiofiles==23.2.1
|
| 2 |
+
annotated-types==0.7.0
|
| 3 |
+
anyio==4.7.0
|
| 4 |
+
black==24.10.0
|
| 5 |
+
certifi==2024.8.30
|
| 6 |
+
charset-normalizer==3.4.0
|
| 7 |
+
click==8.1.7
|
| 8 |
+
colorama==0.4.6
|
| 9 |
+
contourpy==1.3.0
|
| 10 |
+
cycler==0.12.1
|
| 11 |
+
exceptiongroup==1.2.2
|
| 12 |
+
fastapi==0.115.6
|
| 13 |
+
ffmpy==0.4.0
|
| 14 |
+
filelock==3.16.1
|
| 15 |
+
fonttools==4.55.3
|
| 16 |
+
fsspec==2024.10.0
|
| 17 |
+
gradio==4.44.1
|
| 18 |
+
gradio_client==1.3.0
|
| 19 |
+
h11==0.14.0
|
| 20 |
+
httpcore==1.0.7
|
| 21 |
+
httpx==0.28.1
|
| 22 |
+
huggingface-hub==0.26.5
|
| 23 |
+
idna==3.10
|
| 24 |
+
importlib_resources==6.4.5
|
| 25 |
+
Jinja2==3.1.4
|
| 26 |
+
joblib==1.4.2
|
| 27 |
+
kiwisolver==1.4.7
|
| 28 |
+
markdown-it-py==3.0.0
|
| 29 |
+
MarkupSafe==2.1.5
|
| 30 |
+
matplotlib==3.9.4
|
| 31 |
+
mdurl==0.1.2
|
| 32 |
+
mpmath==1.3.0
|
| 33 |
+
mypy-extensions==1.0.0
|
| 34 |
+
networkx==3.2.1
|
| 35 |
+
numpy==2.0.2
|
| 36 |
+
orjson==3.10.12
|
| 37 |
+
packaging==24.2
|
| 38 |
+
pandas==2.2.3
|
| 39 |
+
pathspec==0.12.1
|
| 40 |
+
pillow==10.4.0
|
| 41 |
+
platformdirs==4.3.6
|
| 42 |
+
plotly==5.24.1
|
| 43 |
+
pydantic==2.10.3
|
| 44 |
+
pydantic_core==2.27.1
|
| 45 |
+
pydub==0.25.1
|
| 46 |
+
Pygments==2.18.0
|
| 47 |
+
pyparsing==3.2.0
|
| 48 |
+
python-dateutil==2.9.0.post0
|
| 49 |
+
python-multipart==0.0.19
|
| 50 |
+
pytz==2024.2
|
| 51 |
+
PyYAML==6.0.2
|
| 52 |
+
regex==2024.11.6
|
| 53 |
+
requests==2.32.3
|
| 54 |
+
rich==13.9.4
|
| 55 |
+
ruff==0.8.3
|
| 56 |
+
safetensors==0.4.5
|
| 57 |
+
scikit-learn==1.6.0
|
| 58 |
+
scipy==1.13.1
|
| 59 |
+
semantic-version==2.10.0
|
| 60 |
+
sentence-transformers==3.3.1
|
| 61 |
+
shellingham==1.5.4
|
| 62 |
+
six==1.17.0
|
| 63 |
+
sniffio==1.3.1
|
| 64 |
+
starlette==0.41.3
|
| 65 |
+
sympy==1.13.1
|
| 66 |
+
tenacity==9.0.0
|
| 67 |
+
threadpoolctl==3.5.0
|
| 68 |
+
tokenizers==0.21.0
|
| 69 |
+
tomli==2.2.1
|
| 70 |
+
tomlkit==0.12.0
|
| 71 |
+
torch==2.5.1
|
| 72 |
+
tqdm==4.67.1
|
| 73 |
+
transformers==4.47.0
|
| 74 |
+
typer==0.15.1
|
| 75 |
+
typing_extensions==4.12.2
|
| 76 |
+
tzdata==2024.2
|
| 77 |
+
urllib3==2.2.3
|
| 78 |
+
uvicorn==0.33.0
|
| 79 |
+
websockets==12.0
|
| 80 |
+
zipp==3.21.0
|
| 81 |
huggingface_hub==0.25.2
|