Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from datetime import datetime | |
| model_id = "BSC-LT/salamandraTA-7b-instruct" | |
| # Load tokenizer and model | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| device_map="auto", | |
| torch_dtype=torch.bfloat16 | |
| ) | |
| languages = sorted([ 'Aragonese', 'Asturian', 'Basque', 'Bulgarian', 'Catalan', 'Catalan_Valencian', 'Croatian', 'Czech', 'Danish', 'Dutch', 'English', 'Estonian', | |
| 'Finnish', 'French', 'Galician', 'German', 'Greek', 'Hungarian', 'Irish', 'Italian', 'Latvian', 'Lithuanian', 'Maltese', 'Norwegian Bokmål', | |
| 'Norwegian Nynorsk', 'Occitan', 'Aranese', 'Polish', 'Portuguese', 'Romanian', 'Russian', 'Serbian_Cyrillic', 'Slovak', 'Slovenian', 'Spanish', 'Swedish', | |
| 'Ukrainian', 'Welsh' ]) | |
| def generate_output(task, source, target, input_text, mt_text=None): | |
| date_string = datetime.today().strftime('%Y-%m-%d') | |
| sentences = input_text.split('\n') | |
| #sentences = [s for s in sentences if len(s.strip()) > 0] | |
| generated_text = [] | |
| for sentence in sentences: | |
| sentence = sentence.strip() | |
| if len(sentence) == 0: | |
| # Preserve empty lines | |
| generated_text.append('') | |
| continue | |
| if task == "Translation": | |
| prompt = f"Translate the following text from {source} into {target}.\n{source}: {sentence.strip()} \n{target}:" | |
| elif task == "Post-editing": | |
| if not mt_text: | |
| return "Please provide machine translation (MT) for post-editing.", "" | |
| prompt = f"Please fix any mistakes in the following {source}-{target} machine translation or keep it unedited if it's correct.\nSource: {sentence.strip()} \nMT: {mt_text.strip()} \nCorrected:" | |
| elif task == "Grammar checker": | |
| prompt = f"Please fix any mistakes in the following {source} sentence or keep it unedited if it's correct.\nSentence: {sentence.strip()} \nCorrected:" | |
| messages = [{"role": "user", "content": prompt}] | |
| final_prompt = tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=False, | |
| add_generation_prompt=True, | |
| date_string=date_string | |
| ) | |
| inputs = tokenizer(final_prompt, return_tensors="pt", add_special_tokens=False).to(model.device) | |
| input_length = inputs.input_ids.shape[1] | |
| output = model.generate( | |
| input_ids=inputs.input_ids, | |
| max_new_tokens=4000, | |
| early_stopping=True, | |
| num_beams=1 | |
| ) | |
| decoded = tokenizer.decode(output[0, input_length:], skip_special_tokens=True).strip() | |
| generated_text.append(decoded) | |
| return '\n'.join(generated_text), "" | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# 🦎 SalamandraTA 7B - Multitask Demo") | |
| with gr.Row(): | |
| task_selector = gr.Radio(["Translation", "Post-editing", "Grammar checker"], value="Translation", label="Select Task") | |
| with gr.Row(): | |
| source_lang = gr.Dropdown(choices=languages, value="Catalan", label="Source Language") | |
| target_lang = gr.Dropdown(choices=languages, value="English", label="Target Language") | |
| if source_lang == 'Catalan_Valencian': | |
| source_lang = 'Valencian' | |
| if target_lang == 'Catalan_Valencian': | |
| target_lang = 'Valencian' | |
| input_textbox = gr.Textbox(lines=6, placeholder="Enter source text or token list here", label="Input Text") | |
| mt_textbox = gr.Textbox(lines=4, placeholder="(Only for Post-editing) Enter machine translation", label="Machine Translation (optional)") | |
| output_textbox = gr.Textbox(lines=6, label="Output") | |
| info_label = gr.HTML("") | |
| translate_btn = gr.Button("Generate") | |
| translate_btn.click(generate_output, inputs=[task_selector, source_lang, target_lang, input_textbox, mt_textbox], outputs=[output_textbox, info_label]) | |
| gr.Examples( | |
| examples=[ | |
| ["Translation", "Catalan", "Galician", "Als antics egipcis del període de l'Imperi Nou els fascinaven els monuments dels seus predecessors, que llavors tenien més de mil anys.", ""], | |
| ["Post-editing", "Catalan", "English", "Rafael Nadal i Maria Magdalena van inspirar a una generació sencera.", "Rafael Christmas and Maria the Muffin inspired an entire generation each in their own way."], | |
| ["Grammar checker", "Catalan", "Catalan", "Entonses, el meu jefe m’ha dit que he de treballar els fins de setmana.", ""], | |
| ], | |
| inputs=[task_selector, source_lang, target_lang, input_textbox, mt_textbox] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |