Spaces:
Sleeping
Sleeping
File size: 55,111 Bytes
a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 a14a3e4 106a4e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 |
import os
import re
import json
import logging
import zipfile
import asyncio
import tempfile
from typing import Dict, List, Optional, Any, Tuple
from dataclasses import dataclass, field
from pathlib import Path
from datetime import datetime
import gradio as gr
from enum import Enum
import hashlib
import urllib.parse
# Importar smolagents
from smolagents import CodeAgent, ToolCallingAgent, LiteLLMModel
from smolagents.tools import Tool, tool
from pydantic import BaseModel, Field
# Configuración de logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('bibliography_system.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# ========== MODELOS DE DATOS ==========
class ResourceType(str, Enum):
DOI = "doi"
ISBN = "isbn"
ARXIV = "arxiv"
URL = "url"
PMID = "pmid"
BIBTEX = "bibtex"
CITATION = "citation"
UNKNOWN = "unknown"
class CitationModel(BaseModel):
id: str
raw_text: str
resource_type: ResourceType
identifier: str
metadata: Dict[str, Any] = Field(default_factory=dict)
confidence: float = 0.0
extracted_from: str
position: Tuple[int, int] = (0, 0)
class VerificationResult(BaseModel):
citation: CitationModel
verified: bool
verification_source: str
download_url: Optional[str]
file_format: Optional[str]
file_size: Optional[int]
quality_score: float
notes: List[str] = Field(default_factory=list)
class ProcessingReport(BaseModel):
input_file: str
total_citations: int
verified_resources: List[VerificationResult]
downloaded_files: List[str]
failed_verifications: List[CitationModel]
processing_time: float
summary: Dict[str, Any] = Field(default_factory=dict)
timestamp: str = Field(default_factory=lambda: datetime.now().isoformat())
# ========== HERRAMIENTAS PARA AGENTES ==========
class BibliographyExtractionTool(Tool):
name = "extract_bibliography"
description = """
Extract bibliographic references from text. Identifies DOIs, ISBNs, arXiv IDs, URLs,
and other academic identifiers from unstructured text.
Args:
text (str): The text to analyze
source_name (str): Name of the source document
Returns:
List[CitationModel]: List of extracted citations
"""
def __init__(self):
super().__init__()
# Patrones para diferentes tipos de recursos
self.patterns = {
ResourceType.DOI: [
r'\b10\.\d{4,9}/[-._;()/:A-Z0-9]+\b',
r'doi:\s*(10\.\d{4,9}/[-._;()/:A-Z0-9]+)',
r'DOI:\s*(10\.\d{4,9}/[-._;()/:A-Z0-9]+)'
],
ResourceType.ISBN: [
r'ISBN(?:-1[03])?:?\s*(?=[0-9X]{10}|(?=(?:[0-9]+[- ]){3})[- 0-9X]{13}|97[89][0-9]{10}|(?=(?:[0-9]+[- ]){4})[- 0-9]{17})(?:97[89][- ]?)?[0-9]{1,5}[- ]?[0-9]+[- ]?[0-9]+[- ]?[0-9X]'
],
ResourceType.ARXIV: [
r'arXiv:\s*(\d{4}\.\d{4,5}(v\d+)?)',
r'arxiv:\s*([a-z\-]+/\d{7})'
],
ResourceType.PMID: [
r'PMID:\s*(\d+)',
r'PubMed ID:\s*(\d+)'
]
}
def forward(self, text: str, source_name: str = "unknown") -> List[Dict[str, Any]]:
"""Extract citations from text"""
citations = []
text_lower = text.lower()
# Buscar por tipo de recurso
for resource_type, patterns in self.patterns.items():
for pattern in patterns:
matches = re.finditer(pattern, text, re.IGNORECASE)
for match in matches:
identifier = match.group(1) if match.groups() else match.group(0)
# Limpiar identificador
identifier = self._clean_identifier(identifier, resource_type)
if identifier:
# Calcular confianza basada en el contexto
confidence = self._calculate_confidence(
identifier, resource_type, text_lower, match.start()
)
citation = CitationModel(
id=hashlib.md5(
f"{identifier}_{source_name}".encode()
).hexdigest()[:12],
raw_text=match.group(0),
resource_type=resource_type,
identifier=identifier,
metadata={
"found_at": match.start(),
"context": self._get_context(text, match.start(), match.end())
},
confidence=confidence,
extracted_from=source_name,
position=(match.start(), match.end())
)
citations.append(citation.dict())
# Extraer URLs generales (solo si parecen académicas)
url_pattern = r'https?://[^\s<>"]+|www\.[^\s<>"]+'
url_matches = re.finditer(url_pattern, text)
for match in url_matches:
url = match.group(0)
if self._is_academic_url(url):
citation = CitationModel(
id=hashlib.md5(f"{url}_{source_name}".encode()).hexdigest()[:12],
raw_text=url,
resource_type=ResourceType.URL,
identifier=url,
metadata={
"found_at": match.start(),
"context": self._get_context(text, match.start(), match.end())
},
confidence=0.6,
extracted_from=source_name,
position=(match.start(), match.end())
)
citations.append(citation.dict())
return citations
def _clean_identifier(self, identifier: str, resource_type: ResourceType) -> str:
"""Clean identifier"""
identifier = identifier.strip()
# Eliminar prefijos
prefixes = ['doi:', 'DOI:', 'arxiv:', 'arXiv:', 'isbn:', 'ISBN:', 'pmid:', 'PMID:']
for prefix in prefixes:
if identifier.startswith(prefix):
identifier = identifier[len(prefix):].strip()
# Limpiar caracteres no deseados
identifier = identifier.strip('"\'<>()[]{}')
return identifier
def _calculate_confidence(self, identifier: str, resource_type: ResourceType,
text: str, position: int) -> float:
"""Calculate confidence score for extracted citation"""
confidence = 0.7 # Base confidence
# Verificar formato DOI
if resource_type == ResourceType.DOI:
if re.match(r'^10\.\d{4,9}/.+', identifier):
confidence += 0.2
# Verificar contexto
context_words = ['paper', 'article', 'journal', 'conference', 'published',
'reference', 'bibliography', 'cite', 'doi', 'url']
context = text[max(0, position-100):min(len(text), position+100)]
for word in context_words:
if word in context.lower():
confidence += 0.05
return min(confidence, 1.0)
def _is_academic_url(self, url: str) -> bool:
"""Check if URL looks academic"""
academic_domains = [
'arxiv.org', 'doi.org', 'springer.com', 'ieee.org', 'acm.org',
'sciencedirect.com', 'wiley.com', 'tandfonline.com', 'nature.com',
'science.org', 'pnas.org', 'plos.org', 'bmc.com', 'frontiersin.org',
'mdpi.com', 'researchgate.net', 'semanticscholar.org'
]
url_lower = url.lower()
return any(domain in url_lower for domain in academic_domains)
def _get_context(self, text: str, start: int, end: int, window: int = 50) -> str:
"""Get context around match"""
context_start = max(0, start - window)
context_end = min(len(text), end + window)
return text[context_start:context_end]
class ResourceVerificationTool(Tool):
name = "verify_resource"
description = """
Verify the existence and accessibility of academic resources.
Args:
citation (Dict[str, Any]): Citation to verify
timeout (int): Timeout in seconds
Returns:
VerificationResult: Verification result with metadata
"""
def __init__(self):
super().__init__()
self.headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
}
def forward(self, citation: Dict[str, Any], timeout: int = 10) -> Dict[str, Any]:
"""Verify a citation"""
citation_obj = CitationModel(**citation)
# Preparar resultado
result = {
"citation": citation_obj.dict(),
"verified": False,
"verification_source": "none",
"download_url": None,
"file_format": None,
"file_size": None,
"quality_score": 0.0,
"notes": []
}
try:
if citation_obj.resource_type == ResourceType.DOI:
return self._verify_doi(citation_obj, timeout)
elif citation_obj.resource_type == ResourceType.ARXIV:
return self._verify_arxiv(citation_obj, timeout)
elif citation_obj.resource_type == ResourceType.URL:
return self._verify_url(citation_obj, timeout)
elif citation_obj.resource_type == ResourceType.ISBN:
return self._verify_isbn(citation_obj, timeout)
elif citation_obj.resource_type == ResourceType.PMID:
return self._verify_pmid(citation_obj, timeout)
else:
result["notes"].append(f"Unsupported resource type: {citation_obj.resource_type}")
except Exception as e:
result["notes"].append(f"Verification error: {str(e)}")
return result
def _verify_doi(self, citation: CitationModel, timeout: int) -> Dict[str, Any]:
"""Verify DOI"""
import requests
result = {
"citation": citation.dict(),
"verified": False,
"verification_source": "crossref",
"download_url": None,
"file_format": None,
"file_size": None,
"quality_score": 0.0,
"notes": []
}
try:
# Try Crossref API
url = f"https://api.crossref.org/works/{citation.identifier}"
response = requests.get(url, headers=self.headers, timeout=timeout)
if response.status_code == 200:
data = response.json()
work = data.get('message', {})
result["verified"] = True
result["quality_score"] = 0.9
# Check for open access
if work.get('license'):
result["notes"].append("Open access available")
result["quality_score"] += 0.1
# Try to find PDF URL
links = work.get('link', [])
for link in links:
if link.get('content-type') == 'application/pdf':
result["download_url"] = link.get('URL')
result["file_format"] = "pdf"
break
# Try Unpaywall
if not result["download_url"]:
unpaywall_url = f"https://api.unpaywall.org/v2/{citation.identifier}[email protected]"
unpaywall_response = requests.get(unpaywall_url, timeout=timeout)
if unpaywall_response.status_code == 200:
unpaywall_data = unpaywall_response.json()
if unpaywall_data.get('is_oa'):
result["download_url"] = unpaywall_data.get('best_oa_location', {}).get('url')
result["verification_source"] = "unpaywall"
else:
result["notes"].append(f"Crossref API returned {response.status_code}")
except Exception as e:
result["notes"].append(f"DOI verification error: {str(e)}")
return result
def _verify_arxiv(self, citation: CitationModel, timeout: int) -> Dict[str, Any]:
"""Verify arXiv ID"""
import requests
result = {
"citation": citation.dict(),
"verified": False,
"verification_source": "arxiv",
"download_url": None,
"file_format": None,
"file_size": None,
"quality_score": 0.0,
"notes": []
}
try:
# Clean arXiv ID
arxiv_id = citation.identifier
if 'arxiv:' in arxiv_id.lower():
arxiv_id = arxiv_id.split(':')[-1].strip()
# Check arXiv API
api_url = f"http://export.arxiv.org/api/query?id_list={arxiv_id}"
response = requests.get(api_url, headers=self.headers, timeout=timeout)
if response.status_code == 200:
result["verified"] = True
result["quality_score"] = 0.95
result["download_url"] = f"https://arxiv.org/pdf/{arxiv_id}.pdf"
result["file_format"] = "pdf"
result["notes"].append("arXiv paper available")
except Exception as e:
result["notes"].append(f"arXiv verification error: {str(e)}")
return result
def _verify_url(self, citation: CitationModel, timeout: int) -> Dict[str, Any]:
"""Verify URL"""
import requests
result = {
"citation": citation.dict(),
"verified": False,
"verification_source": "direct",
"download_url": None,
"file_format": None,
"file_size": None,
"quality_score": 0.0,
"notes": []
}
try:
response = requests.head(
citation.identifier,
headers=self.headers,
timeout=timeout,
allow_redirects=True
)
if response.status_code == 200:
content_type = response.headers.get('content-type', '')
result["verified"] = True
result["quality_score"] = 0.7
result["download_url"] = citation.identifier
# Check if it's a PDF
if 'application/pdf' in content_type:
result["file_format"] = "pdf"
result["quality_score"] += 0.2
# Try to get file size
content_length = response.headers.get('content-length')
if content_length:
result["file_size"] = int(content_length)
result["notes"].append(f"Content-Type: {content_type}")
except Exception as e:
result["notes"].append(f"URL verification error: {str(e)}")
return result
def _verify_isbn(self, citation: CitationModel, timeout: int) -> Dict[str, Any]:
"""Verify ISBN"""
import requests
result = {
"citation": citation.dict(),
"verified": False,
"verification_source": "openlibrary",
"download_url": None,
"file_format": None,
"file_size": None,
"quality_score": 0.0,
"notes": []
}
try:
# Try Open Library API
url = f"https://openlibrary.org/api/books?bibkeys=ISBN:{citation.identifier}&format=json"
response = requests.get(url, headers=self.headers, timeout=timeout)
if response.status_code == 200:
data = response.json()
if data:
result["verified"] = True
result["quality_score"] = 0.8
result["notes"].append("ISBN found in Open Library")
except Exception as e:
result["notes"].append(f"ISBN verification error: {str(e)}")
return result
def _verify_pmid(self, citation: CitationModel, timeout: int) -> Dict[str, Any]:
"""Verify PMID"""
import requests
result = {
"citation": citation.dict(),
"verified": False,
"verification_source": "pubmed",
"download_url": None,
"file_format": None,
"file_size": None,
"quality_score": 0.0,
"notes": []
}
try:
# Try PubMed API
url = f"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=pubmed&id={citation.identifier}&retmode=json"
response = requests.get(url, headers=self.headers, timeout=timeout)
if response.status_code == 200:
data = response.json()
if data.get('result', {}).get(citation.identifier):
result["verified"] = True
result["quality_score"] = 0.85
result["notes"].append("PMID found in PubMed")
except Exception as e:
result["notes"].append(f"PMID verification error: {str(e)}")
return result
class PaperDownloadTool(Tool):
name = "download_paper"
description = """
Download academic paper from verified source.
Args:
verification_result (Dict[str, Any]): Verified resource to download
output_dir (str): Directory to save downloaded file
Returns:
Dict[str, Any]: Download result with file path and metadata
"""
def __init__(self):
super().__init__()
self.headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
}
def forward(self, verification_result: Dict[str, Any],
output_dir: str = "downloads") -> Dict[str, Any]:
"""Download paper"""
import requests
import os
result = {
"success": False,
"file_path": None,
"file_size": 0,
"download_time": 0,
"error": None,
"metadata": verification_result
}
try:
# Create output directory
os.makedirs(output_dir, exist_ok=True)
download_url = verification_result.get("download_url")
if not download_url:
result["error"] = "No download URL available"
return result
# Generate filename
citation = verification_result.get("citation", {})
identifier = citation.get("identifier", "unknown")
file_ext = verification_result.get("file_format", "pdf")
# Clean filename
filename = re.sub(r'[^\w\-\.]', '_', identifier)
if not filename.endswith(f'.{file_ext}'):
filename = f"{filename}.{file_ext}"
file_path = os.path.join(output_dir, filename)
# Download file
start_time = datetime.now()
response = requests.get(
download_url,
headers=self.headers,
stream=True,
timeout=30
)
if response.status_code == 200:
with open(file_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
download_time = (datetime.now() - start_time).total_seconds()
file_size = os.path.getsize(file_path)
result["success"] = True
result["file_path"] = file_path
result["file_size"] = file_size
result["download_time"] = download_time
logger.info(f"Downloaded {filename} ({file_size} bytes)")
else:
result["error"] = f"HTTP {response.status_code}"
except Exception as e:
result["error"] = str(e)
logger.error(f"Download error: {e}")
return result
class FileProcessingTool(Tool):
name = "process_file"
description = """
Process different file types to extract text for bibliography extraction.
Args:
file_path (str): Path to the file
file_type (str): Type of file (auto-detected if None)
Returns:
Dict[str, Any]: Extracted text and metadata
"""
def __init__(self):
super().__init__()
def forward(self, file_path: str, file_type: str = None) -> Dict[str, Any]:
"""Process file and extract text"""
import os
result = {
"success": False,
"text": "",
"file_type": file_type,
"file_size": 0,
"error": None,
"metadata": {}
}
try:
if not os.path.exists(file_path):
result["error"] = "File not found"
return result
file_size = os.path.getsize(file_path)
result["file_size"] = file_size
# Determine file type
if not file_type:
file_type = self._detect_file_type(file_path)
result["file_type"] = file_type
# Process based on file type
if file_type == "txt":
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
result["text"] = f.read()
result["success"] = True
elif file_type == "pdf":
result["text"] = self._extract_from_pdf(file_path)
result["success"] = True
elif file_type == "docx":
result["text"] = self._extract_from_docx(file_path)
result["success"] = True
elif file_type == "html":
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
html_content = f.read()
result["text"] = self._extract_from_html(html_content)
result["success"] = True
else:
# Try as text file
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
result["text"] = f.read()
result["success"] = True
except:
result["error"] = f"Unsupported file type: {file_type}"
except Exception as e:
result["error"] = str(e)
return result
def _detect_file_type(self, file_path: str) -> str:
"""Detect file type from extension"""
ext = os.path.splitext(file_path)[1].lower()
type_mapping = {
'.txt': 'txt',
'.pdf': 'pdf',
'.docx': 'docx',
'.doc': 'doc',
'.html': 'html',
'.htm': 'html',
'.md': 'markdown',
'.rtf': 'rtf'
}
return type_mapping.get(ext, 'unknown')
def _extract_from_pdf(self, file_path: str) -> str:
"""Extract text from PDF"""
try:
# Try PyPDF2
import PyPDF2
text = ""
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
for page in pdf_reader.pages:
text += page.extract_text()
return text
except ImportError:
logger.warning("PyPDF2 not installed, using fallback")
# Fallback: use pdftotext command if available
import subprocess
try:
result = subprocess.run(
['pdftotext', file_path, '-'],
capture_output=True,
text=True
)
if result.returncode == 0:
return result.stdout
except:
pass
return ""
def _extract_from_docx(self, file_path: str) -> str:
"""Extract text from DOCX"""
try:
from docx import Document
doc = Document(file_path)
return "\n".join([paragraph.text for paragraph in doc.paragraphs])
except ImportError:
logger.warning("python-docx not installed")
return ""
except Exception as e:
logger.error(f"Error reading DOCX: {e}")
return ""
def _extract_from_html(self, html_content: str) -> str:
"""Extract text from HTML"""
try:
from bs4 import BeautifulSoup
soup = BeautifulSoup(html_content, 'html.parser')
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
return soup.get_text()
except ImportError:
# Simple regex-based extraction
import re
text = re.sub(r'<[^>]+>', ' ', html_content)
text = re.sub(r'\s+', ' ', text)
return text
# ========== AGENTES PRINCIPALES ==========
class BibliographyProcessingSystem:
"""Sistema principal de procesamiento bibliográfico usando smolagents"""
def __init__(self, model_config: Dict[str, Any] = None):
self.model_config = model_config or {
"model_id": "gpt-4",
"api_key": os.getenv("OPENAI_API_KEY", ""),
"provider": "openai"
}
# Inicializar herramientas
self.extraction_tool = BibliographyExtractionTool()
self.verification_tool = ResourceVerificationTool()
self.download_tool = PaperDownloadTool()
self.file_tool = FileProcessingTool()
# Crear agentes
self.extraction_agent = self._create_extraction_agent()
self.verification_agent = self._create_verification_agent()
self.download_agent = self._create_download_agent()
# Directorios
self.output_dir = "bibliography_output"
self.download_dir = os.path.join(self.output_dir, "downloads")
self.report_dir = os.path.join(self.output_dir, "reports")
# Crear directorios
os.makedirs(self.output_dir, exist_ok=True)
os.makedirs(self.download_dir, exist_ok=True)
os.makedirs(self.report_dir, exist_ok=True)
# Estado
self.current_process_id = None
self.processing_results = {}
def _create_extraction_agent(self) -> ToolCallingAgent:
"""Crear agente de extracción"""
model = self._create_model()
agent = ToolCallingAgent(
tools=[self.extraction_tool, self.file_tool],
model=model,
name="ExtractionAgent",
description="Extract bibliographic references from documents",
max_steps=10
)
return agent
def _create_verification_agent(self) -> ToolCallingAgent:
"""Crear agente de verificación"""
model = self._create_model()
agent = ToolCallingAgent(
tools=[self.verification_tool],
model=model,
name="VerificationAgent",
description="Verify the existence and accessibility of academic resources",
max_steps=15
)
return agent
def _create_download_agent(self) -> ToolCallingAgent:
"""Crear agente de descarga"""
model = self._create_model()
agent = ToolCallingAgent(
tools=[self.download_tool],
model=model,
name="DownloadAgent",
description="Download academic papers from verified sources",
max_steps=20
)
return agent
def _create_model(self):
"""Crear modelo según configuración"""
provider = self.model_config.get("provider", "openai")
if provider == "openai":
return LiteLLMModel(
model_id=self.model_config.get("model_id", "gpt-4"),
api_key=self.model_config.get("api_key")
)
elif provider == "anthropic":
return LiteLLMModel(
model_id="claude-3-opus-20240229",
api_key=self.model_config.get("api_key")
)
elif provider == "huggingface":
from smolagents import InferenceClientModel
return InferenceClientModel(
model_id=self.model_config.get("model_id", "mistralai/Mixtral-8x7B-Instruct-v0.1")
)
else:
# Default to OpenAI
return LiteLLMModel(model_id="gpt-4")
async def process_document(self, file_path: str, process_id: str = None) -> Dict[str, Any]:
"""Procesar documento completo"""
import time
start_time = time.time()
# Generar ID de proceso
self.current_process_id = process_id or hashlib.md5(
f"{file_path}_{datetime.now().isoformat()}".encode()
).hexdigest()[:8]
logger.info(f"Starting process {self.current_process_id} for {file_path}")
# 1. Extraer texto del archivo
extraction_prompt = f"""
Process the file at {file_path} to extract all text content.
Focus on extracting any bibliographic references, citations, or academic resources.
Steps:
1. Use process_file tool to extract text
2. Return the extracted text for further analysis
"""
try:
# Ejecutar agente de extracción de archivos
file_result = await self.extraction_agent.run_async(extraction_prompt)
if not file_result or "text" not in str(file_result):
return {
"success": False,
"error": "Failed to extract text from file",
"process_id": self.current_process_id
}
# 2. Extraer referencias bibliográficas
text_content = str(file_result)
extraction_prompt2 = f"""
Analyze the following text and extract all bibliographic references:
{text_content[:5000]}... # Limitar tamaño para el prompt
Extract:
1. DOIs (Digital Object Identifiers)
2. ISBNs
3. arXiv IDs
4. PubMed IDs (PMID)
5. Academic URLs
6. Any other academic references
Return a comprehensive list of all found references.
"""
extraction_result = await self.extraction_agent.run_async(extraction_prompt2)
# Parsear resultado (asumiendo que el agente devuelve texto JSON-like)
citations = []
try:
# Intentar extraer JSON del resultado
import json
result_str = str(extraction_result)
# Buscar patrón JSON
json_match = re.search(r'\{.*\}', result_str, re.DOTALL)
if json_match:
citations_data = json.loads(json_match.group())
if isinstance(citations_data, list):
citations = [CitationModel(**c) for c in citations_data]
except:
# Fallback: usar la herramienta directamente
citations_data = self.extraction_tool.forward(text_content, os.path.basename(file_path))
citations = [CitationModel(**c) for c in citations_data]
logger.info(f"Found {len(citations)} citations")
# 3. Verificar recursos
verified_resources = []
failed_verifications = []
for citation in citations:
verification_prompt = f"""
Verify the following academic resource:
Type: {citation.resource_type}
Identifier: {citation.identifier}
Source: {citation.extracted_from}
Check if this resource exists and is accessible.
"""
try:
verification_result = await self.verification_agent.run_async(verification_prompt)
# Parsear resultado
if verification_result:
verification_dict = self.verification_tool.forward(citation.dict())
verified_resource = VerificationResult(**verification_dict)
if verified_resource.verified:
verified_resources.append(verified_resource)
else:
failed_verifications.append(citation)
except Exception as e:
logger.error(f"Verification error for {citation.identifier}: {e}")
failed_verifications.append(citation)
# 4. Descargar recursos verificados
downloaded_files = []
for verified_resource in verified_resources:
if verified_resource.download_url:
download_prompt = f"""
Download the academic paper from:
URL: {verified_resource.download_url}
Format: {verified_resource.file_format}
Save it to: {self.download_dir}
"""
try:
download_result = await self.download_agent.run_async(download_prompt)
if download_result:
download_dict = self.download_tool.forward(
verified_resource.dict(),
self.download_dir
)
if download_dict.get("success"):
downloaded_files.append(download_dict.get("file_path"))
except Exception as e:
logger.error(f"Download error: {e}")
# 5. Generar reporte
processing_time = time.time() - start_time
report = ProcessingReport(
input_file=file_path,
total_citations=len(citations),
verified_resources=verified_resources,
downloaded_files=downloaded_files,
failed_verifications=failed_verifications,
processing_time=processing_time,
summary={
"success_rate": len(verified_resources) / max(1, len(citations)),
"download_rate": len(downloaded_files) / max(1, len(verified_resources)),
"file_count": len(downloaded_files)
}
)
# Guardar reporte
report_path = os.path.join(
self.report_dir,
f"report_{self.current_process_id}.json"
)
with open(report_path, 'w', encoding='utf-8') as f:
json.dump(report.dict(), f, indent=2, default=str)
# 6. Crear archivo ZIP con resultados
zip_path = self._create_results_zip(report)
# Guardar resultados en estado
self.processing_results[self.current_process_id] = {
"report": report.dict(),
"zip_path": zip_path,
"timestamp": datetime.now().isoformat()
}
logger.info(f"Process {self.current_process_id} completed in {processing_time:.2f}s")
return {
"success": True,
"process_id": self.current_process_id,
"report": report.dict(),
"zip_path": zip_path,
"summary": {
"citations_found": len(citations),
"resources_verified": len(verified_resources),
"files_downloaded": len(downloaded_files),
"processing_time": processing_time
}
}
except Exception as e:
logger.error(f"Processing error: {e}")
return {
"success": False,
"error": str(e),
"process_id": self.current_process_id
}
def _create_results_zip(self, report: ProcessingReport) -> str:
"""Crear archivo ZIP con resultados"""
import zipfile
from datetime import datetime
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
zip_filename = f"bibliography_results_{timestamp}.zip"
zip_path = os.path.join(self.output_dir, zip_filename)
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
# Agregar reporte
report_path = os.path.join(
self.report_dir,
f"report_{self.current_process_id}.json"
)
if os.path.exists(report_path):
zipf.write(report_path, "report.json")
# Agregar archivos descargados
for file_path in report.downloaded_files:
if os.path.exists(file_path):
arcname = os.path.join("downloads", os.path.basename(file_path))
zipf.write(file_path, arcname)
# Agregar resumen en texto
summary_content = self._generate_summary_text(report)
zipf.writestr("summary.txt", summary_content)
return zip_path
def _generate_summary_text(self, report: ProcessingReport) -> str:
"""Generar resumen en texto"""
summary = f"""
BIBLIOGRAPHY PROCESSING REPORT
==============================
Process ID: {self.current_process_id}
Input File: {report.input_file}
Processing Time: {report.processing_time:.2f} seconds
Timestamp: {report.timestamp}
STATISTICS
----------
Total Citations Found: {report.total_citations}
Resources Verified: {len(report.verified_resources)}
Files Downloaded: {len(report.downloaded_files)}
Failed Verifications: {len(report.failed_verifications)}
Success Rate: {(len(report.verified_resources) / max(1, report.total_citations)) * 100:.1f}%
Download Rate: {(len(report.downloaded_files) / max(1, len(report.verified_resources))) * 100:.1f}%
VERIFIED RESOURCES
------------------
"""
for i, resource in enumerate(report.verified_resources, 1):
summary += f"\n{i}. {resource.citation.identifier}"
summary += f"\n Type: {resource.citation.resource_type}"
summary += f"\n Source: {resource.verification_source}"
summary += f"\n Quality: {resource.quality_score:.2f}"
if resource.download_url:
summary += f"\n Downloaded: Yes"
if resource.file_format:
summary += f" ({resource.file_format})"
summary += "\n"
if report.failed_verifications:
summary += f"\nFAILED VERIFICATIONS\n-------------------\n"
for citation in report.failed_verifications:
summary += f"- {citation.identifier} ({citation.resource_type})\n"
summary += f"\nFILES DOWNLOADED\n----------------\n"
for file_path in report.downloaded_files:
file_size = os.path.getsize(file_path) if os.path.exists(file_path) else 0
summary += f"- {os.path.basename(file_path)} ({file_size} bytes)\n"
return summary
def get_status(self, process_id: str = None) -> Dict[str, Any]:
"""Obtener estado del proceso"""
pid = process_id or self.current_process_id
if pid and pid in self.processing_results:
return self.processing_results[pid]
return {"error": "Process not found"}
def cleanup(self, process_id: str = None):
"""Limpiar archivos temporales"""
import shutil
if process_id:
# Limpiar proceso específico
if process_id in self.processing_results:
del self.processing_results[process_id]
else:
# Limpiar todo
self.processing_results.clear()
# Limpiar directorios (opcional, descomentar si se necesita)
# shutil.rmtree(self.download_dir, ignore_errors=True)
# shutil.rmtree(self.report_dir, ignore_errors=True)
# ========== INTERFAZ GRADIO ==========
def create_gradio_interface():
"""Crear interfaz Gradio para el sistema"""
system = None
def initialize_system(provider, model_id, api_key):
"""Inicializar sistema con configuración"""
nonlocal system
config = {
"provider": provider,
"model_id": model_id,
"api_key": api_key
}
try:
system = BibliographyProcessingSystem(config)
return "✅ Sistema inicializado correctamente"
except Exception as e:
return f"❌ Error: {str(e)}"
async def process_file(file_obj, progress=gr.Progress()):
"""Procesar archivo"""
if not system:
return None, "❌ Sistema no inicializado", "", ""
try:
progress(0, desc="Iniciando procesamiento...")
# Guardar archivo temporalmente
import tempfile
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file_obj.name)[1]) as tmp:
with open(file_obj.name, 'rb') as src:
tmp.write(src.read())
tmp_path = tmp.name
progress(0.2, desc="Extrayendo texto...")
# Procesar archivo
result = await system.process_document(tmp_path)
if not result.get("success"):
return None, f"❌ Error: {result.get('error')}", "", ""
# Obtener reporte
report_data = result.get("report", {})
summary = result.get("summary", {})
progress(0.8, desc="Generando resultados...")
# Preparar resultados para visualización
citations_found = summary.get("citations_found", 0)
verified = summary.get("resources_verified", 0)
downloaded = summary.get("files_downloaded", 0)
# Generar HTML para visualización
html_output = f"""
<div style="font-family: Arial, sans-serif; padding: 20px;">
<h2>📊 Resultados del Procesamiento</h2>
<div style="background: #f5f5f5; padding: 15px; border-radius: 10px; margin: 20px 0;">
<h3>📈 Estadísticas</h3>
<ul>
<li><strong>Referencias encontradas:</strong> {citations_found}</li>
<li><strong>Recursos verificados:</strong> {verified}</li>
<li><strong>Archivos descargados:</strong> {downloaded}</li>
<li><strong>Tasa de éxito:</strong> {(verified/max(1, citations_found))*100:.1f}%</li>
<li><strong>ID del proceso:</strong> {result.get('process_id')}</li>
</ul>
</div>
"""
# Lista de recursos verificados
if verified > 0:
html_output += """
<div style="background: #e8f5e9; padding: 15px; border-radius: 10px; margin: 20px 0;">
<h3>✅ Recursos Verificados</h3>
<ul>
"""
resources = report_data.get("verified_resources", [])
for i, resource in enumerate(resources[:10], 1): # Mostrar primeros 10
citation = resource.get("citation", {})
html_output += f"""
<li>
<strong>{citation.get('identifier', 'Unknown')}</strong><br>
<small>Tipo: {citation.get('resource_type', 'unknown')} |
Fuente: {resource.get('verification_source', 'unknown')} |
Calidad: {resource.get('quality_score', 0):.2f}</small>
</li>
"""
if verified > 10:
html_output += f"<li>... y {verified - 10} más</li>"
html_output += "</ul></div>"
# Lista de fallos
failed = len(report_data.get("failed_verifications", []))
if failed > 0:
html_output += f"""
<div style="background: #ffebee; padding: 15px; border-radius: 10px; margin: 20px 0;">
<h3>❌ Recursos No Verificados ({failed})</h3>
<p>Algunos recursos no pudieron ser verificados. Revisa el archivo ZIP para más detalles.</p>
</div>
"""
html_output += "</div>"
# Texto plano para exportación
text_output = f"""
Procesamiento Bibliográfico
===========================
Archivo: {file_obj.name}
Proceso ID: {result.get('process_id')}
Fecha: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
Resumen:
- Referencias encontradas: {citations_found}
- Recursos verificados: {verified}
- Archivos descargados: {downloaded}
- Tasa de éxito: {(verified/max(1, citations_found))*100:.1f}%
Para ver el reporte completo, descarga el archivo ZIP.
"""
progress(1.0, desc="Completado!")
# Devolver resultados
return (
result.get("zip_path"),
f"✅ Procesamiento completado. ID: {result.get('process_id')}",
html_output,
text_output
)
except Exception as e:
logger.error(f"Error en procesamiento: {e}")
return None, f"❌ Error: {str(e)}", "", ""
def get_status():
"""Obtener estado del sistema"""
if not system or not system.current_process_id:
return "⚠️ No hay procesos activos"
status = system.get_status()
if "error" in status:
return f"⚠️ {status['error']}"
return f"""
📊 Estado del Sistema
---------------------
Proceso activo: {system.current_process_id}
Total procesos: {len(system.processing_results)}
Último reporte: {status.get('timestamp', 'N/A')}
"""
# Crear interfaz
with gr.Blocks(title="Sistema de Recopilación Bibliográfica", theme=gr.themes.Soft()) as interface:
gr.Markdown("# 📚 Sistema de Recopilación Bibliográfica con IA")
gr.Markdown("Procesa documentos y extrae referencias bibliográficas automáticamente")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### ⚙️ Configuración")
provider = gr.Dropdown(
choices=["openai", "anthropic", "huggingface"],
label="Proveedor de IA",
value="openai"
)
model_id = gr.Textbox(
label="Model ID",
value="gpt-4",
placeholder="Ej: gpt-4, claude-3-opus-20240229, mistralai/Mixtral-8x7B-Instruct-v0.1"
)
api_key = gr.Textbox(
label="API Key",
type="password",
placeholder="Ingresa tu API key"
)
init_btn = gr.Button("🚀 Inicializar Sistema", variant="primary")
init_status = gr.Markdown("")
init_btn.click(
initialize_system,
inputs=[provider, model_id, api_key],
outputs=init_status
)
gr.Markdown("---")
status_btn = gr.Button("📊 Ver Estado")
system_status = gr.Markdown("")
status_btn.click(get_status, outputs=system_status)
with gr.Column(scale=2):
gr.Markdown("### 📄 Procesar Documento")
file_input = gr.File(
label="Sube tu documento",
file_types=[".txt", ".pdf", ".docx", ".html", ".md", ".rtf"]
)
process_btn = gr.Button("🔍 Procesar Documento", variant="primary")
gr.Markdown("### 📊 Resultados")
result_file = gr.File(label="Descargar Resultados (ZIP)")
result_status = gr.Markdown("")
with gr.Tabs():
with gr.TabItem("📋 Vista HTML"):
html_output = gr.HTML(label="Resultados Detallados")
with gr.TabItem("📝 Texto Plano"):
text_output = gr.Textbox(
label="Resumen",
lines=20,
max_lines=50
)
process_btn.click(
process_file,
inputs=[file_input],
outputs=[result_file, result_status, html_output, text_output]
)
# Ejemplos
gr.Markdown("### 📖 Ejemplos")
gr.Examples(
examples=[
["ejemplo_referencias.txt"],
["ejemplo_bibliografia.pdf"],
["paper_con_referencias.docx"]
],
inputs=[file_input],
label="Archivos de ejemplo (necesitan ser creados)"
)
# Información
gr.Markdown("""
### 📌 Información
- **Formatos soportados**: TXT, PDF, DOCX, HTML, MD, RTF
- **Recursos detectados**: DOI, ISBN, arXiv, PMID, URLs académicas
- **Salida**: Archivo ZIP con reportes y documentos descargados
### ⚠️ Notas
1. Necesitas una API key válida para el proveedor seleccionado
2. Los archivos grandes pueden tardar varios minutos
3. La precisión depende del modelo de IA utilizado
""")
return interface
# ========== EJECUCIÓN PRINCIPAL ==========
async def main():
"""Función principal"""
import argparse
parser = argparse.ArgumentParser(description="Sistema de Recopilación Bibliográfica")
parser.add_argument("--mode", choices=["gui", "cli"], default="gui",
help="Modo de ejecución")
parser.add_argument("--file", type=str, help="Archivo a procesar (modo CLI)")
parser.add_argument("--provider", default="openai", help="Proveedor de IA")
parser.add_argument("--model", default="gpt-4", help="Modelo de IA")
parser.add_argument("--api-key", help="API Key")
args = parser.parse_args()
if args.mode == "gui":
# Ejecutar interfaz Gradio
interface = create_gradio_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
debug=True
)
elif args.mode == "cli":
# Modo línea de comandos
if not args.file:
print("❌ Error: Debes especificar un archivo con --file")
return
if not os.path.exists(args.file):
print(f"❌ Error: Archivo no encontrado: {args.file}")
return
# Configurar sistema
config = {
"provider": args.provider,
"model_id": args.model,
"api_key": args.api_key or os.getenv(f"{args.provider.upper()}_API_KEY")
}
if not config["api_key"]:
print(f"❌ Error: Necesitas especificar una API key")
return
system = BibliographyProcessingSystem(config)
print(f"🔍 Procesando archivo: {args.file}")
print("⏳ Esto puede tardar varios minutos...")
result = await system.process_document(args.file)
if result.get("success"):
print(f"✅ Procesamiento completado!")
print(f"📊 ID del proceso: {result.get('process_id')}")
summary = result.get("summary", {})
print(f"""
📈 Resultados:
- Referencias encontradas: {summary.get('citations_found', 0)}
- Recursos verificados: {summary.get('resources_verified', 0)}
- Archivos descargados: {summary.get('files_downloaded', 0)}
- Tiempo de procesamiento: {summary.get('processing_time', 0):.2f}s
📦 Archivo ZIP con resultados: {result.get('zip_path')}
""")
else:
print(f"❌ Error: {result.get('error')}")
if __name__ == "__main__":
import asyncio
asyncio.run(main()) |