Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,66 +4,108 @@ import json
|
|
| 4 |
import logging
|
| 5 |
import zipfile
|
| 6 |
import asyncio
|
| 7 |
-
import
|
| 8 |
-
from typing import Dict, List, Optional, Any, Tuple
|
| 9 |
-
from dataclasses import dataclass, field
|
| 10 |
-
from pathlib import Path
|
| 11 |
from datetime import datetime
|
| 12 |
import gradio as gr
|
| 13 |
from enum import Enum
|
| 14 |
import hashlib
|
| 15 |
-
import urllib.parse
|
| 16 |
import aiohttp
|
| 17 |
|
| 18 |
-
# Importar smolagents
|
| 19 |
-
from smolagents import CodeAgent, ToolCallingAgent, LiteLLMModel
|
| 20 |
-
from smolagents.tools import Tool, tool
|
| 21 |
-
from pydantic import BaseModel, Field
|
| 22 |
-
|
| 23 |
# Configuración de logging
|
| 24 |
logging.basicConfig(
|
| 25 |
level=logging.INFO,
|
| 26 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 27 |
-
handlers=[
|
| 28 |
-
logging.FileHandler('bibliography_nebius.log'),
|
| 29 |
-
logging.StreamHandler()
|
| 30 |
-
]
|
| 31 |
)
|
| 32 |
logger = logging.getLogger(__name__)
|
| 33 |
|
| 34 |
-
# ========== CONFIGURACIÓN
|
| 35 |
|
| 36 |
-
class
|
| 37 |
-
"""
|
| 38 |
|
| 39 |
-
def __init__(self
|
| 40 |
-
self.
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
}
|
| 46 |
-
|
| 47 |
-
async def generate_text(self, prompt: str, model: str = "neural-chat-7b-v3-1",
|
| 48 |
-
max_tokens: int = 1000, temperature: float = 0.7) -> str:
|
| 49 |
-
"""Generar texto usando modelos de Nebius"""
|
| 50 |
-
url = f"{self.base_url}/v1/chat/completions"
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
"
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
"top_p": 0.95
|
| 60 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
async with aiohttp.ClientSession() as session:
|
| 64 |
async with session.post(
|
| 65 |
-
url,
|
| 66 |
-
headers=
|
| 67 |
json=payload,
|
| 68 |
timeout=30
|
| 69 |
) as response:
|
|
@@ -72,370 +114,145 @@ class NebiusAPI:
|
|
| 72 |
return data.get("choices", [{}])[0].get("message", {}).get("content", "")
|
| 73 |
else:
|
| 74 |
error_text = await response.text()
|
| 75 |
-
logger.error(f"
|
| 76 |
-
return
|
| 77 |
-
|
| 78 |
-
logger.error(f"Error calling Nebius API: {e}")
|
| 79 |
-
return ""
|
| 80 |
-
|
| 81 |
-
async def extract_references(self, text: str) -> List[Dict[str, Any]]:
|
| 82 |
-
"""Usar Nebius para extraer referencias de texto"""
|
| 83 |
-
prompt = f"""Analiza el siguiente texto y extrae todas las referencias bibliográficas.
|
| 84 |
-
Identifica DOIs, ISBNs, URLs académicas, arXiv IDs y otras referencias académicas.
|
| 85 |
-
|
| 86 |
-
Texto:
|
| 87 |
-
{text[:5000]} # Limitar tamaño
|
| 88 |
-
|
| 89 |
-
Devuelve un JSON con el siguiente formato:
|
| 90 |
-
{{
|
| 91 |
-
"references": [
|
| 92 |
-
{{
|
| 93 |
-
"type": "doi|isbn|arxiv|url|pmid|other",
|
| 94 |
-
"identifier": "identificador_completo",
|
| 95 |
-
"raw_text": "texto_original_encontrado",
|
| 96 |
-
"confidence": 0.0-1.0,
|
| 97 |
-
"context": "texto_alrededor_del_identificador"
|
| 98 |
-
}}
|
| 99 |
-
]
|
| 100 |
-
}}
|
| 101 |
-
|
| 102 |
-
Solo devuelve el JSON, sin texto adicional."""
|
| 103 |
-
|
| 104 |
-
response = await self.generate_text(prompt, max_tokens=2000)
|
| 105 |
-
|
| 106 |
-
try:
|
| 107 |
-
# Buscar JSON en la respuesta
|
| 108 |
-
json_match = re.search(r'\{.*\}', response, re.DOTALL)
|
| 109 |
-
if json_match:
|
| 110 |
-
data = json.loads(json_match.group())
|
| 111 |
-
return data.get("references", [])
|
| 112 |
except Exception as e:
|
| 113 |
-
logger.error(f"Error
|
| 114 |
-
|
| 115 |
-
return []
|
| 116 |
|
| 117 |
-
async def
|
| 118 |
-
"""
|
| 119 |
-
prompt = f"""Verifica la siguiente referencia académica y proporciona información sobre su accesibilidad:
|
| 120 |
-
|
| 121 |
-
Tipo: {reference.get('type')}
|
| 122 |
-
Identificador: {reference.get('identifier')}
|
| 123 |
-
Contexto: {reference.get('context', 'No disponible')}
|
| 124 |
-
|
| 125 |
-
Analiza:
|
| 126 |
-
1. ¿Es un identificador válido?
|
| 127 |
-
2. ¿Dónde podría encontrarse este recurso?
|
| 128 |
-
3. ¿Es probable que esté disponible en acceso abierto?
|
| 129 |
-
4. Proporciona posibles URLs para acceder al recurso.
|
| 130 |
-
|
| 131 |
-
Devuelve un JSON con el siguiente formato:
|
| 132 |
-
{{
|
| 133 |
-
"valid": true/false,
|
| 134 |
-
"confidence": 0.0-1.0,
|
| 135 |
-
"sources": ["lista", "de", "posibles", "fuentes"],
|
| 136 |
-
"likely_open_access": true/false,
|
| 137 |
-
"suggested_urls": ["url1", "url2"],
|
| 138 |
-
"notes": "notas_adicionales"
|
| 139 |
-
}}"""
|
| 140 |
-
|
| 141 |
-
response = await self.generate_text(prompt, max_tokens=1000)
|
| 142 |
-
|
| 143 |
try:
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
except Exception as e:
|
| 148 |
-
logger.error(f"Error
|
| 149 |
-
|
| 150 |
-
return {"valid": False, "confidence": 0.0, "sources": [], "notes": "Error en verificación"}
|
| 151 |
-
|
| 152 |
-
# ========== MODELOS DE DATOS ==========
|
| 153 |
-
|
| 154 |
-
class ResourceType(str, Enum):
|
| 155 |
-
DOI = "doi"
|
| 156 |
-
ISBN = "isbn"
|
| 157 |
-
ARXIV = "arxiv"
|
| 158 |
-
URL = "url"
|
| 159 |
-
PMID = "pmid"
|
| 160 |
-
BIBTEX = "bibtex"
|
| 161 |
-
CITATION = "citation"
|
| 162 |
-
UNKNOWN = "unknown"
|
| 163 |
-
|
| 164 |
-
class CitationModel(BaseModel):
|
| 165 |
-
id: str
|
| 166 |
-
raw_text: str
|
| 167 |
-
resource_type: ResourceType
|
| 168 |
-
identifier: str
|
| 169 |
-
metadata: Dict[str, Any] = Field(default_factory=dict)
|
| 170 |
-
confidence: float = 0.0
|
| 171 |
-
extracted_from: str
|
| 172 |
-
position: Tuple[int, int] = (0, 0)
|
| 173 |
-
nebius_verified: bool = False
|
| 174 |
-
nebius_confidence: float = 0.0
|
| 175 |
-
|
| 176 |
-
class VerificationResult(BaseModel):
|
| 177 |
-
citation: CitationModel
|
| 178 |
-
verified: bool
|
| 179 |
-
verification_source: str
|
| 180 |
-
download_url: Optional[str]
|
| 181 |
-
file_format: Optional[str]
|
| 182 |
-
file_size: Optional[int]
|
| 183 |
-
quality_score: float
|
| 184 |
-
notes: List[str] = Field(default_factory=list)
|
| 185 |
-
nebius_analysis: Optional[Dict[str, Any]] = None
|
| 186 |
-
|
| 187 |
-
class ProcessingReport(BaseModel):
|
| 188 |
-
input_file: str
|
| 189 |
-
total_citations: int
|
| 190 |
-
verified_resources: List[VerificationResult]
|
| 191 |
-
downloaded_files: List[str]
|
| 192 |
-
failed_verifications: List[CitationModel]
|
| 193 |
-
processing_time: float
|
| 194 |
-
summary: Dict[str, Any] = Field(default_factory=dict)
|
| 195 |
-
timestamp: str = Field(default_factory=lambda: datetime.now().isoformat())
|
| 196 |
-
nebius_usage: Dict[str, Any] = Field(default_factory=dict)
|
| 197 |
|
| 198 |
-
# ==========
|
| 199 |
|
| 200 |
-
class
|
| 201 |
-
|
| 202 |
-
description = """
|
| 203 |
-
Extract bibliographic references using Nebius AI for enhanced accuracy.
|
| 204 |
-
|
| 205 |
-
Args:
|
| 206 |
-
text (str): Text to analyze
|
| 207 |
-
nebius_api_key (str): Nebius API key
|
| 208 |
-
use_ai_enhancement (bool): Whether to use Nebius AI for enhancement
|
| 209 |
-
|
| 210 |
-
Returns:
|
| 211 |
-
List[Dict]: Extracted references with Nebius AI analysis
|
| 212 |
-
"""
|
| 213 |
|
| 214 |
def __init__(self):
|
| 215 |
-
super().__init__()
|
| 216 |
-
# Patrones básicos para extracción inicial
|
| 217 |
self.patterns = {
|
| 218 |
-
|
| 219 |
r'\b10\.\d{4,9}/[-._;()/:A-Z0-9]+\b',
|
| 220 |
r'doi:\s*(10\.\d{4,9}/[-._;()/:A-Z0-9]+)',
|
|
|
|
| 221 |
],
|
| 222 |
-
|
| 223 |
-
r'ISBN(?:-1[03])?:?\s*(?=[0-9X]{10})(?:97[89][- ]?)?[0-9]{1,5}[- ]?[0-9]+[- ]?[0-9]+[- ]?[0-9X]',
|
| 224 |
-
],
|
| 225 |
-
ResourceType.ARXIV: [
|
| 226 |
r'arXiv:\s*(\d{4}\.\d{4,5}(v\d+)?)',
|
| 227 |
-
r'arxiv:\s*([a-z\-]+/\d{7})'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
}
|
| 230 |
|
| 231 |
-
def
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
# Extracción básica
|
| 235 |
-
basic_references = self._extract_basic(text)
|
| 236 |
-
|
| 237 |
-
if not use_ai_enhancement or not nebius_api_key:
|
| 238 |
-
return basic_references
|
| 239 |
-
|
| 240 |
-
# Mejora con Nebius AI
|
| 241 |
-
try:
|
| 242 |
-
nebius = NebiusAPI(nebius_api_key)
|
| 243 |
-
|
| 244 |
-
# Usar asyncio en contexto síncrono
|
| 245 |
-
import nest_asyncio
|
| 246 |
-
nest_asyncio.apply()
|
| 247 |
-
|
| 248 |
-
# Extraer con Nebius
|
| 249 |
-
loop = asyncio.new_event_loop()
|
| 250 |
-
asyncio.set_event_loop(loop)
|
| 251 |
-
nebius_references = loop.run_until_complete(
|
| 252 |
-
nebius.extract_references(text[:10000]) # Limitar para API
|
| 253 |
-
)
|
| 254 |
-
loop.close()
|
| 255 |
-
|
| 256 |
-
# Combinar resultados
|
| 257 |
-
enhanced_references = self._merge_references(basic_references, nebius_references)
|
| 258 |
-
return enhanced_references
|
| 259 |
-
|
| 260 |
-
except Exception as e:
|
| 261 |
-
logger.error(f"Error using Nebius enhancement: {e}")
|
| 262 |
-
return basic_references
|
| 263 |
-
|
| 264 |
-
def _extract_basic(self, text: str) -> List[Dict[str, Any]]:
|
| 265 |
-
"""Extracción básica de referencias"""
|
| 266 |
-
references = []
|
| 267 |
|
| 268 |
-
for
|
|
|
|
| 269 |
for pattern in patterns:
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
if
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
return references
|
| 289 |
-
|
| 290 |
-
def _merge_references(self, basic: List[Dict], nebius: List[Dict]) -> List[Dict]:
|
| 291 |
-
"""Combinar referencias de extracción básica y Nebius"""
|
| 292 |
-
merged = basic.copy()
|
| 293 |
-
|
| 294 |
-
for nebius_ref in nebius:
|
| 295 |
-
# Verificar si ya existe
|
| 296 |
-
exists = False
|
| 297 |
-
for ref in merged:
|
| 298 |
-
if ref.get('identifier') == nebius_ref.get('identifier'):
|
| 299 |
-
exists = True
|
| 300 |
-
# Actualizar confianza y metadata
|
| 301 |
-
ref['confidence'] = max(ref.get('confidence', 0),
|
| 302 |
-
nebius_ref.get('confidence', 0))
|
| 303 |
-
ref['extraction_method'] = 'regex+nebius'
|
| 304 |
-
break
|
| 305 |
-
|
| 306 |
-
if not exists:
|
| 307 |
-
# Convertir formato Nebius a nuestro formato
|
| 308 |
-
new_ref = {
|
| 309 |
-
"id": hashlib.md5(
|
| 310 |
-
nebius_ref.get('identifier', '').encode()
|
| 311 |
-
).hexdigest()[:12],
|
| 312 |
-
"raw_text": nebius_ref.get('raw_text', ''),
|
| 313 |
-
"type": nebius_ref.get('type', 'unknown'),
|
| 314 |
-
"identifier": nebius_ref.get('identifier', ''),
|
| 315 |
-
"confidence": nebius_ref.get('confidence', 0.7),
|
| 316 |
-
"context": nebius_ref.get('context', ''),
|
| 317 |
-
"position": (0, 0),
|
| 318 |
-
"extraction_method": 'nebius'
|
| 319 |
-
}
|
| 320 |
-
merged.append(new_ref)
|
| 321 |
-
|
| 322 |
-
return merged
|
| 323 |
-
|
| 324 |
-
def _clean_identifier(self, identifier: str, resource_type: ResourceType) -> str:
|
| 325 |
-
"""Limpiar identificador"""
|
| 326 |
identifier = identifier.strip()
|
| 327 |
|
|
|
|
| 328 |
prefixes = ['doi:', 'DOI:', 'arxiv:', 'arXiv:', 'isbn:', 'ISBN:', 'pmid:', 'PMID:']
|
| 329 |
for prefix in prefixes:
|
| 330 |
if identifier.startswith(prefix):
|
| 331 |
identifier = identifier[len(prefix):].strip()
|
| 332 |
|
|
|
|
| 333 |
identifier = identifier.strip('"\'<>()[]{}')
|
| 334 |
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
|
| 339 |
return identifier
|
| 340 |
-
|
| 341 |
-
def _get_context(self, text: str, start: int, end: int, window: int = 100) -> str:
|
| 342 |
-
"""Obtener contexto alrededor del match"""
|
| 343 |
-
context_start = max(0, start - window)
|
| 344 |
-
context_end = min(len(text), end + window)
|
| 345 |
-
return text[context_start:context_end]
|
| 346 |
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
Args:
|
| 353 |
-
reference (Dict): Reference to verify
|
| 354 |
-
nebius_api_key (str): Nebius API key
|
| 355 |
-
deep_verify (bool): Whether to perform deep verification
|
| 356 |
-
|
| 357 |
-
Returns:
|
| 358 |
-
Dict: Verification results with Nebius analysis
|
| 359 |
-
"""
|
| 360 |
|
| 361 |
def __init__(self):
|
| 362 |
-
super().__init__()
|
| 363 |
self.headers = {
|
| 364 |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
|
| 365 |
}
|
| 366 |
|
| 367 |
-
def
|
| 368 |
-
|
| 369 |
-
|
|
|
|
| 370 |
result = {
|
| 371 |
-
"
|
|
|
|
| 372 |
"verified": False,
|
| 373 |
-
"
|
| 374 |
"download_url": None,
|
| 375 |
-
"
|
| 376 |
-
"file_size": None,
|
| 377 |
-
"quality_score": 0.0,
|
| 378 |
-
"notes": [],
|
| 379 |
-
"nebius_analysis": None
|
| 380 |
}
|
| 381 |
|
| 382 |
-
# Verificación directa primero
|
| 383 |
-
direct_result = self._direct_verification(reference)
|
| 384 |
-
if direct_result.get("verified"):
|
| 385 |
-
result.update(direct_result)
|
| 386 |
-
result["quality_score"] = 0.9
|
| 387 |
-
|
| 388 |
-
# Verificación con Nebius si está disponible
|
| 389 |
-
if nebius_api_key and deep_verify:
|
| 390 |
-
nebius_result = self._nebius_verification(reference, nebius_api_key)
|
| 391 |
-
result["nebius_analysis"] = nebius_result
|
| 392 |
-
|
| 393 |
-
if nebius_result.get("valid", False):
|
| 394 |
-
result["verified"] = True
|
| 395 |
-
result["verification_source"] = "nebius"
|
| 396 |
-
result["quality_score"] = max(
|
| 397 |
-
result.get("quality_score", 0),
|
| 398 |
-
nebius_result.get("confidence", 0)
|
| 399 |
-
)
|
| 400 |
-
|
| 401 |
-
# Agregar URLs sugeridas por Nebius
|
| 402 |
-
suggested_urls = nebius_result.get("suggested_urls", [])
|
| 403 |
-
if suggested_urls and not result.get("download_url"):
|
| 404 |
-
result["download_url"] = suggested_urls[0]
|
| 405 |
-
|
| 406 |
-
result["notes"].append(
|
| 407 |
-
f"Nebius analysis: {nebius_result.get('notes', 'No notes')}"
|
| 408 |
-
)
|
| 409 |
-
|
| 410 |
-
return result
|
| 411 |
-
|
| 412 |
-
def _direct_verification(self, reference: Dict[str, Any]) -> Dict[str, Any]:
|
| 413 |
-
"""Verificación directa de la referencia"""
|
| 414 |
-
import requests
|
| 415 |
-
|
| 416 |
-
ref_type = reference.get("type", "")
|
| 417 |
-
identifier = reference.get("identifier", "")
|
| 418 |
-
|
| 419 |
-
try:
|
| 420 |
-
if ref_type == "doi":
|
| 421 |
-
return self._verify_doi(identifier)
|
| 422 |
-
elif ref_type == "arxiv":
|
| 423 |
-
return self._verify_arxiv(identifier)
|
| 424 |
-
elif ref_type == "url":
|
| 425 |
-
return self._verify_url(identifier)
|
| 426 |
-
elif ref_type == "isbn":
|
| 427 |
-
return self._verify_isbn(identifier)
|
| 428 |
-
except Exception as e:
|
| 429 |
-
logger.error(f"Direct verification error: {e}")
|
| 430 |
-
|
| 431 |
-
return {"verified": False, "notes": [f"Direct verification failed for {ref_type}"]}
|
| 432 |
-
|
| 433 |
-
def _verify_doi(self, doi: str) -> Dict[str, Any]:
|
| 434 |
-
"""Verificar DOI"""
|
| 435 |
-
import requests
|
| 436 |
-
|
| 437 |
try:
|
| 438 |
-
# Crossref
|
| 439 |
url = f"https://api.crossref.org/works/{doi}"
|
| 440 |
response = requests.get(url, headers=self.headers, timeout=10)
|
| 441 |
|
|
@@ -443,976 +260,537 @@ class NebiusVerificationTool(Tool):
|
|
| 443 |
data = response.json()
|
| 444 |
work = data.get('message', {})
|
| 445 |
|
| 446 |
-
result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 447 |
|
| 448 |
# Buscar PDF
|
| 449 |
links = work.get('link', [])
|
| 450 |
for link in links:
|
| 451 |
if link.get('content-type') == 'application/pdf':
|
| 452 |
result["download_url"] = link.get('URL')
|
| 453 |
-
result["file_format"] = "pdf"
|
| 454 |
break
|
| 455 |
|
| 456 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 457 |
except Exception as e:
|
| 458 |
-
|
| 459 |
|
| 460 |
-
return
|
| 461 |
|
| 462 |
-
def
|
| 463 |
-
"""
|
| 464 |
import requests
|
| 465 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 466 |
try:
|
| 467 |
# Limpiar ID
|
| 468 |
if 'arxiv:' in arxiv_id.lower():
|
| 469 |
arxiv_id = arxiv_id.split(':')[-1].strip()
|
| 470 |
|
| 471 |
-
#
|
| 472 |
api_url = f"http://export.arxiv.org/api/query?id_list={arxiv_id}"
|
| 473 |
response = requests.get(api_url, headers=self.headers, timeout=10)
|
| 474 |
|
| 475 |
if response.status_code == 200:
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 482 |
except Exception as e:
|
| 483 |
-
|
| 484 |
|
| 485 |
-
return
|
| 486 |
|
| 487 |
-
def
|
| 488 |
-
"""
|
| 489 |
import requests
|
|
|
|
| 490 |
|
| 491 |
try:
|
| 492 |
-
response = requests.
|
| 493 |
|
| 494 |
if response.status_code == 200:
|
| 495 |
-
|
|
|
|
| 496 |
|
| 497 |
-
#
|
| 498 |
content_type = response.headers.get('content-type', '')
|
| 499 |
if 'application/pdf' in content_type:
|
| 500 |
-
|
| 501 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 502 |
|
| 503 |
-
return result
|
| 504 |
-
except Exception as e:
|
| 505 |
-
logger.error(f"URL verification error: {e}")
|
| 506 |
-
|
| 507 |
-
return {"verified": False}
|
| 508 |
-
|
| 509 |
-
def _verify_isbn(self, isbn: str) -> Dict[str, Any]:
|
| 510 |
-
"""Verificar ISBN"""
|
| 511 |
-
import requests
|
| 512 |
-
|
| 513 |
-
try:
|
| 514 |
-
# Open Library
|
| 515 |
-
url = f"https://openlibrary.org/api/books?bibkeys=ISBN:{isbn}&format=json"
|
| 516 |
-
response = requests.get(url, headers=self.headers, timeout=10)
|
| 517 |
-
|
| 518 |
-
if response.status_code == 200:
|
| 519 |
-
data = response.json()
|
| 520 |
-
if data:
|
| 521 |
-
return {
|
| 522 |
-
"verified": True,
|
| 523 |
-
"notes": ["ISBN found in Open Library"]
|
| 524 |
-
}
|
| 525 |
except Exception as e:
|
| 526 |
-
logger.error(f"
|
| 527 |
|
| 528 |
-
return
|
| 529 |
-
|
| 530 |
-
def _nebius_verification(self, reference: Dict[str, Any], api_key: str) -> Dict[str, Any]:
|
| 531 |
-
"""Verificación con Nebius AI"""
|
| 532 |
-
try:
|
| 533 |
-
nebius = NebiusAPI(api_key)
|
| 534 |
-
|
| 535 |
-
# Usar asyncio en contexto síncrono
|
| 536 |
-
import nest_asyncio
|
| 537 |
-
nest_asyncio.apply()
|
| 538 |
-
|
| 539 |
-
loop = asyncio.new_event_loop()
|
| 540 |
-
asyncio.set_event_loop(loop)
|
| 541 |
-
analysis = loop.run_until_complete(
|
| 542 |
-
nebius.verify_reference(reference)
|
| 543 |
-
)
|
| 544 |
-
loop.close()
|
| 545 |
-
|
| 546 |
-
return analysis
|
| 547 |
-
|
| 548 |
-
except Exception as e:
|
| 549 |
-
logger.error(f"Nebius verification error: {e}")
|
| 550 |
-
return {"valid": False, "confidence": 0.0, "notes": f"Error: {str(e)}"}
|
| 551 |
|
| 552 |
-
# ========== SISTEMA PRINCIPAL
|
| 553 |
|
| 554 |
-
class
|
| 555 |
-
"""Sistema de procesamiento bibliográfico
|
| 556 |
|
| 557 |
-
def __init__(self
|
| 558 |
-
self.
|
| 559 |
-
self.
|
| 560 |
-
self.
|
| 561 |
-
|
| 562 |
-
#
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 568 |
|
| 569 |
-
#
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 574 |
|
| 575 |
-
#
|
| 576 |
-
|
| 577 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 578 |
|
| 579 |
-
#
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 585 |
}
|
| 586 |
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
"""Configurar modelo LiteLLM"""
|
| 591 |
-
provider = self.config.get("llm_provider", "openai")
|
| 592 |
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
return LiteLLMModel(
|
| 596 |
-
model_id=self.config.get("llm_model", "neural-chat-7b-v3-1"),
|
| 597 |
-
api_key=self.nebius_api_key,
|
| 598 |
-
api_base=self.config.get("nebius_api_base", "https://api.studio.nebius.com/v1")
|
| 599 |
-
)
|
| 600 |
-
elif provider == "openai":
|
| 601 |
-
return LiteLLMModel(
|
| 602 |
-
model_id=self.config.get("llm_model", "gpt-4"),
|
| 603 |
-
api_key=self.config.get("openai_api_key")
|
| 604 |
-
)
|
| 605 |
-
else:
|
| 606 |
-
# Default to Nebius if available
|
| 607 |
-
if self.nebius_api_key:
|
| 608 |
-
return LiteLLMModel(
|
| 609 |
-
model_id="neural-chat-7b-v3-1",
|
| 610 |
-
api_key=self.nebius_api_key,
|
| 611 |
-
api_base="https://api.studio.nebius.com/v1"
|
| 612 |
-
)
|
| 613 |
-
else:
|
| 614 |
-
return LiteLLMModel(model_id="gpt-4")
|
| 615 |
-
|
| 616 |
-
async def process_document(self, file_path: str, process_id: str = None) -> Dict[str, Any]:
|
| 617 |
-
"""Procesar documento completo con Nebius"""
|
| 618 |
-
import time
|
| 619 |
-
start_time = time.time()
|
| 620 |
-
|
| 621 |
-
# Generar ID de proceso
|
| 622 |
-
process_id = process_id or self._generate_process_id(file_path)
|
| 623 |
|
| 624 |
-
|
|
|
|
| 625 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 626 |
try:
|
| 627 |
-
#
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
# Verificar referencia
|
| 656 |
-
verification = self.verification_tool.forward(
|
| 657 |
-
reference=ref,
|
| 658 |
-
nebius_api_key=self.nebius_api_key,
|
| 659 |
-
deep_verify=self.use_nebius
|
| 660 |
-
)
|
| 661 |
-
|
| 662 |
-
if verification.get("verified"):
|
| 663 |
-
# Convertir a modelo
|
| 664 |
-
citation = CitationModel(
|
| 665 |
-
id=ref.get("id"),
|
| 666 |
-
raw_text=ref.get("raw_text", ""),
|
| 667 |
-
resource_type=ResourceType(ref.get("type", "unknown")),
|
| 668 |
-
identifier=ref.get("identifier", ""),
|
| 669 |
-
confidence=ref.get("confidence", 0.0),
|
| 670 |
-
extracted_from=file_path,
|
| 671 |
-
position=ref.get("position", (0, 0)),
|
| 672 |
-
nebius_verified=self.use_nebius,
|
| 673 |
-
nebius_confidence=verification.get("quality_score", 0.0)
|
| 674 |
-
)
|
| 675 |
-
|
| 676 |
-
vr = VerificationResult(
|
| 677 |
-
citation=citation,
|
| 678 |
-
verified=True,
|
| 679 |
-
verification_source=verification.get("verification_source", "unknown"),
|
| 680 |
-
download_url=verification.get("download_url"),
|
| 681 |
-
file_format=verification.get("file_format"),
|
| 682 |
-
file_size=verification.get("file_size"),
|
| 683 |
-
quality_score=verification.get("quality_score", 0.0),
|
| 684 |
-
notes=verification.get("notes", []),
|
| 685 |
-
nebius_analysis=verification.get("nebius_analysis")
|
| 686 |
-
)
|
| 687 |
-
verification_results.append(vr)
|
| 688 |
-
else:
|
| 689 |
-
# Referencia fallida
|
| 690 |
-
citation = CitationModel(
|
| 691 |
-
id=ref.get("id"),
|
| 692 |
-
raw_text=ref.get("raw_text", ""),
|
| 693 |
-
resource_type=ResourceType(ref.get("type", "unknown")),
|
| 694 |
-
identifier=ref.get("identifier", ""),
|
| 695 |
-
confidence=ref.get("confidence", 0.0),
|
| 696 |
-
extracted_from=file_path,
|
| 697 |
-
position=ref.get("position", (0, 0)),
|
| 698 |
-
nebius_verified=False,
|
| 699 |
-
nebius_confidence=0.0
|
| 700 |
-
)
|
| 701 |
-
failed_verifications.append(citation)
|
| 702 |
-
|
| 703 |
-
# 4. Descargar archivos verificados
|
| 704 |
-
logger.info(f"[{process_id}] Downloading files...")
|
| 705 |
-
downloaded_files = await self._download_files(
|
| 706 |
-
verification_results,
|
| 707 |
-
process_id
|
| 708 |
-
)
|
| 709 |
-
|
| 710 |
-
# 5. Generar reporte
|
| 711 |
-
processing_time = time.time() - start_time
|
| 712 |
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
verified_resources=verification_results,
|
| 717 |
-
downloaded_files=downloaded_files,
|
| 718 |
-
failed_verifications=failed_verifications,
|
| 719 |
-
processing_time=processing_time,
|
| 720 |
-
summary={
|
| 721 |
-
"success_rate": len(verification_results) / max(1, len(references)),
|
| 722 |
-
"download_rate": len(downloaded_files) / max(1, len(verification_results)),
|
| 723 |
-
"avg_quality": sum(vr.quality_score for vr in verification_results) / max(1, len(verification_results))
|
| 724 |
-
},
|
| 725 |
-
nebius_usage={
|
| 726 |
-
"enabled": self.use_nebius,
|
| 727 |
-
"calls": self.stats["nebius_calls"],
|
| 728 |
-
"enhanced_references": sum(1 for vr in verification_results if vr.nebius_analysis)
|
| 729 |
-
}
|
| 730 |
)
|
| 731 |
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
self.stats["total_processed"] += 1
|
| 736 |
-
self.stats["success_rate"] = report.summary.get("success_rate", 0.0)
|
| 737 |
-
|
| 738 |
-
logger.info(f"[{process_id}] Processing completed in {processing_time:.2f}s")
|
| 739 |
-
|
| 740 |
-
return {
|
| 741 |
-
"success": True,
|
| 742 |
-
"process_id": process_id,
|
| 743 |
-
"report": report.dict(),
|
| 744 |
-
"zip_path": self._create_zip(report, process_id),
|
| 745 |
-
"summary": {
|
| 746 |
-
"references_found": len(references),
|
| 747 |
-
"verified": len(verification_results),
|
| 748 |
-
"downloaded": len(downloaded_files),
|
| 749 |
-
"success_rate": f"{report.summary.get('success_rate', 0) * 100:.1f}%",
|
| 750 |
-
"processing_time": f"{processing_time:.2f}s"
|
| 751 |
-
}
|
| 752 |
-
}
|
| 753 |
-
|
| 754 |
-
except Exception as e:
|
| 755 |
-
logger.error(f"[{process_id}] Processing error: {e}")
|
| 756 |
-
return self._error_result(process_id, str(e))
|
| 757 |
-
|
| 758 |
-
def _read_file(self, file_path: str) -> str:
|
| 759 |
-
"""Leer contenido del archivo"""
|
| 760 |
-
try:
|
| 761 |
-
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
|
| 762 |
-
return f.read()
|
| 763 |
-
except Exception as e:
|
| 764 |
-
logger.error(f"Error reading file {file_path}: {e}")
|
| 765 |
-
return ""
|
| 766 |
-
|
| 767 |
-
async def _download_files(self, verification_results: List[VerificationResult],
|
| 768 |
-
process_id: str) -> List[str]:
|
| 769 |
-
"""Descargar archivos de URLs verificadas"""
|
| 770 |
-
downloaded_files = []
|
| 771 |
-
|
| 772 |
-
for i, vr in enumerate(verification_results):
|
| 773 |
-
if vr.download_url:
|
| 774 |
try:
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
except Exception as e:
|
| 784 |
-
logger.error(f"Download failed for {vr.citation.identifier}: {e}")
|
| 785 |
-
|
| 786 |
-
return downloaded_files
|
| 787 |
-
|
| 788 |
-
async def _download_file(self, url: str, identifier: str,
|
| 789 |
-
process_id: str, index: int) -> Optional[str]:
|
| 790 |
-
"""Descargar un archivo individual"""
|
| 791 |
-
import aiohttp
|
| 792 |
|
| 793 |
-
try:
|
| 794 |
-
# Crear nombre de archivo seguro
|
| 795 |
-
safe_name = re.sub(r'[^\w\-\.]', '_', identifier)
|
| 796 |
-
if len(safe_name) > 100:
|
| 797 |
-
safe_name = safe_name[:100]
|
| 798 |
-
|
| 799 |
-
# Determinar extensión
|
| 800 |
-
extension = self._get_extension_from_url(url)
|
| 801 |
-
if not extension:
|
| 802 |
-
extension = ".pdf" # Default
|
| 803 |
-
|
| 804 |
-
filename = f"{process_id}_{index:03d}_{safe_name}{extension}"
|
| 805 |
-
filepath = os.path.join(self.download_dir, filename)
|
| 806 |
-
|
| 807 |
-
# Descargar
|
| 808 |
-
timeout = aiohttp.ClientTimeout(total=60)
|
| 809 |
-
async with aiohttp.ClientSession(timeout=timeout) as session:
|
| 810 |
-
async with session.get(url, headers={'User-Agent': 'Mozilla/5.0'}) as response:
|
| 811 |
-
if response.status == 200:
|
| 812 |
-
content = await response.read()
|
| 813 |
-
|
| 814 |
-
# Verificar que sea un archivo válido
|
| 815 |
-
if len(content) > 100: # Archivo no vacío
|
| 816 |
-
with open(filepath, 'wb') as f:
|
| 817 |
-
f.write(content)
|
| 818 |
-
|
| 819 |
-
logger.info(f"Downloaded: {filename} ({len(content)} bytes)")
|
| 820 |
-
return filepath
|
| 821 |
-
|
| 822 |
-
return None
|
| 823 |
-
|
| 824 |
except Exception as e:
|
| 825 |
-
logger.error(f"
|
| 826 |
-
return None
|
| 827 |
-
|
| 828 |
-
def _get_extension_from_url(self, url: str) -> str:
|
| 829 |
-
"""Obtener extensión de archivo desde URL"""
|
| 830 |
-
url_lower = url.lower()
|
| 831 |
|
| 832 |
-
|
| 833 |
-
return '.pdf'
|
| 834 |
-
elif '.docx' in url_lower or '.doc' in url_lower:
|
| 835 |
-
return '.docx'
|
| 836 |
-
elif '.html' in url_lower or '.htm' in url_lower:
|
| 837 |
-
return '.html'
|
| 838 |
-
elif '.txt' in url_lower:
|
| 839 |
-
return '.txt'
|
| 840 |
-
elif '.epub' in url_lower:
|
| 841 |
-
return '.epub'
|
| 842 |
-
|
| 843 |
-
return ""
|
| 844 |
-
|
| 845 |
-
def _generate_process_id(self, file_path: str) -> str:
|
| 846 |
-
"""Generar ID único de proceso"""
|
| 847 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 848 |
-
file_hash = hashlib.md5(file_path.encode()).hexdigest()[:6]
|
| 849 |
-
return f"NB_{timestamp}_{file_hash}"
|
| 850 |
-
|
| 851 |
-
def _save_results(self, report: ProcessingReport, process_id: str):
|
| 852 |
-
"""Guardar resultados en disco"""
|
| 853 |
-
# Guardar reporte JSON
|
| 854 |
-
report_path = os.path.join(self.report_dir, f"{process_id}_report.json")
|
| 855 |
-
with open(report_path, 'w', encoding='utf-8') as f:
|
| 856 |
-
json.dump(report.dict(), f, indent=2, default=str)
|
| 857 |
-
|
| 858 |
-
# Guardar resumen en texto
|
| 859 |
-
summary_path = os.path.join(self.report_dir, f"{process_id}_summary.txt")
|
| 860 |
-
with open(summary_path, 'w', encoding='utf-8') as f:
|
| 861 |
-
f.write(self._generate_text_summary(report))
|
| 862 |
|
| 863 |
-
def _create_zip(self, report:
|
| 864 |
-
"""
|
| 865 |
import zipfile
|
|
|
|
| 866 |
|
| 867 |
-
|
|
|
|
| 868 |
|
| 869 |
-
with zipfile.ZipFile(
|
| 870 |
-
# Agregar
|
| 871 |
-
|
| 872 |
-
|
| 873 |
-
|
| 874 |
-
|
| 875 |
-
|
| 876 |
-
for file in report_files:
|
| 877 |
-
filepath = os.path.join(self.report_dir, file)
|
| 878 |
-
zipf.write(filepath, f"reports/{file}")
|
| 879 |
|
| 880 |
# Agregar archivos descargados
|
| 881 |
-
for file_path in
|
| 882 |
if os.path.exists(file_path):
|
| 883 |
-
|
| 884 |
-
zipf.write(file_path, f"downloads/{filename}")
|
| 885 |
|
| 886 |
-
# Agregar
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
f.write(f"Process ID: {process_id}\n")
|
| 890 |
-
f.write(f"Time: {datetime.now().isoformat()}\n")
|
| 891 |
-
f.write(f"Success rate: {report.summary.get('success_rate', 0) * 100:.1f}%\n")
|
| 892 |
-
|
| 893 |
-
zipf.write(log_path, "process_log.txt")
|
| 894 |
|
| 895 |
-
return
|
| 896 |
|
| 897 |
-
def
|
| 898 |
-
"""
|
| 899 |
-
|
| 900 |
-
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
Process ID: Generated automatically
|
| 904 |
-
Input File: {report.input_file}
|
| 905 |
-
Processing Time: {report.processing_time:.2f} seconds
|
| 906 |
-
Timestamp: {report.timestamp}
|
| 907 |
-
|
| 908 |
-
SUMMARY STATISTICS
|
| 909 |
-
------------------
|
| 910 |
-
Total References Found: {report.total_citations}
|
| 911 |
-
Successfully Verified: {len(report.verified_resources)}
|
| 912 |
-
Files Downloaded: {len(report.downloaded_files)}
|
| 913 |
-
Verification Success Rate: {report.summary.get('success_rate', 0) * 100:.1f}%
|
| 914 |
-
Average Quality Score: {report.summary.get('avg_quality', 0):.2f}
|
| 915 |
|
| 916 |
-
|
| 917 |
-
|
| 918 |
-
Enabled: {report.nebius_usage.get('enabled', False)}
|
| 919 |
-
API Calls: {report.nebius_usage.get('calls', 0)}
|
| 920 |
-
Enhanced References: {report.nebius_usage.get('enhanced_references', 0)}
|
| 921 |
|
| 922 |
-
|
| 923 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 924 |
"""
|
| 925 |
-
|
| 926 |
-
for i, vr in enumerate(report.verified_resources[:10], 1):
|
| 927 |
-
summary += f"\n{i}. {vr.citation.identifier}"
|
| 928 |
-
summary += f"\n Type: {vr.citation.resource_type.value}"
|
| 929 |
-
summary += f"\n Source: {vr.verification_source}"
|
| 930 |
-
summary += f"\n Quality: {vr.quality_score:.2f}"
|
| 931 |
-
summary += f"\n Nebius Enhanced: {vr.citation.nebius_verified}"
|
| 932 |
-
if vr.download_url:
|
| 933 |
-
summary += f"\n Downloaded: Yes"
|
| 934 |
-
summary += "\n"
|
| 935 |
-
|
| 936 |
-
if report.failed_verifications:
|
| 937 |
-
summary += f"\nFAILED VERIFICATIONS ({len(report.failed_verifications)})\n"
|
| 938 |
-
summary += "-" * 40 + "\n"
|
| 939 |
-
for citation in report.failed_verifications[:5]:
|
| 940 |
-
summary += f"- {citation.identifier} ({citation.resource_type.value})\n"
|
| 941 |
-
|
| 942 |
-
summary += f"\nFILES DOWNLOADED\n"
|
| 943 |
-
summary += "-" * 40 + "\n"
|
| 944 |
-
for file_path in report.downloaded_files:
|
| 945 |
-
if os.path.exists(file_path):
|
| 946 |
-
file_size = os.path.getsize(file_path)
|
| 947 |
-
summary += f"- {os.path.basename(file_path)} ({file_size} bytes)\n"
|
| 948 |
-
|
| 949 |
-
return summary
|
| 950 |
-
|
| 951 |
-
def _error_result(self, process_id: str, error: str) -> Dict[str, Any]:
|
| 952 |
-
"""Generar resultado de error"""
|
| 953 |
-
return {
|
| 954 |
-
"success": False,
|
| 955 |
-
"process_id": process_id,
|
| 956 |
-
"error": error,
|
| 957 |
-
"timestamp": datetime.now().isoformat()
|
| 958 |
-
}
|
| 959 |
-
|
| 960 |
-
def get_stats(self) -> Dict[str, Any]:
|
| 961 |
-
"""Obtener estadísticas del sistema"""
|
| 962 |
-
return {
|
| 963 |
-
"total_processed": self.stats["total_processed"],
|
| 964 |
-
"total_references": self.stats["total_references"],
|
| 965 |
-
"nebius_calls": self.stats["nebius_calls"],
|
| 966 |
-
"success_rate": self.stats["success_rate"],
|
| 967 |
-
"output_directory": self.output_base
|
| 968 |
-
}
|
| 969 |
|
| 970 |
-
# ========== INTERFAZ GRADIO
|
| 971 |
|
| 972 |
-
def
|
| 973 |
-
"""
|
| 974 |
|
| 975 |
-
system =
|
| 976 |
-
current_process = None
|
| 977 |
|
| 978 |
-
def
|
| 979 |
-
"""
|
| 980 |
-
|
| 981 |
-
|
| 982 |
-
config = {
|
| 983 |
-
"llm_provider": provider,
|
| 984 |
-
"llm_model": model,
|
| 985 |
-
"nebius_api_key": nebius_key,
|
| 986 |
-
"nebius_api_base": nebius_base or "https://api.studio.nebius.com/v1",
|
| 987 |
-
"openai_api_key": openai_key,
|
| 988 |
-
"use_nebius": bool(nebius_key)
|
| 989 |
-
}
|
| 990 |
|
| 991 |
try:
|
| 992 |
-
|
| 993 |
-
|
| 994 |
-
except Exception as e:
|
| 995 |
-
return f"❌ Error: {str(e)}"
|
| 996 |
-
|
| 997 |
-
async def process_document(file_obj, use_nebius, progress=gr.Progress()):
|
| 998 |
-
"""Procesar documento"""
|
| 999 |
-
nonlocal system, current_process
|
| 1000 |
-
|
| 1001 |
-
if not system:
|
| 1002 |
-
return None, "❌ Sistema no inicializado", "", "", ""
|
| 1003 |
-
|
| 1004 |
-
try:
|
| 1005 |
-
progress(0, desc="Preparando archivo...")
|
| 1006 |
-
|
| 1007 |
-
# Guardar archivo temporalmente
|
| 1008 |
-
import tempfile
|
| 1009 |
-
import shutil
|
| 1010 |
-
|
| 1011 |
-
temp_dir = tempfile.mkdtemp()
|
| 1012 |
-
file_path = os.path.join(temp_dir, file_obj.name)
|
| 1013 |
-
shutil.copy(file_obj.name, file_path)
|
| 1014 |
-
|
| 1015 |
-
progress(0.1, desc="Procesando con Nebius..." if use_nebius else "Procesando...")
|
| 1016 |
-
|
| 1017 |
-
# Procesar documento
|
| 1018 |
-
result = await system.process_document(file_path)
|
| 1019 |
-
|
| 1020 |
-
if not result.get("success"):
|
| 1021 |
-
# Limpiar temporal
|
| 1022 |
-
shutil.rmtree(temp_dir, ignore_errors=True)
|
| 1023 |
-
return None, f"❌ Error: {result.get('error')}", "", "", ""
|
| 1024 |
-
|
| 1025 |
-
current_process = result.get("process_id")
|
| 1026 |
-
summary = result.get("summary", {})
|
| 1027 |
-
|
| 1028 |
-
progress(0.9, desc="Generando reportes...")
|
| 1029 |
-
|
| 1030 |
-
# Generar visualizaciones
|
| 1031 |
-
report_data = result.get("report", {})
|
| 1032 |
-
|
| 1033 |
-
# HTML output
|
| 1034 |
-
html_output = self._generate_html_report(report_data)
|
| 1035 |
-
|
| 1036 |
-
# Text output
|
| 1037 |
-
text_output = self._generate_text_report(report_data)
|
| 1038 |
-
|
| 1039 |
-
# JSON output
|
| 1040 |
-
json_output = json.dumps(report_data, indent=2, default=str)
|
| 1041 |
-
|
| 1042 |
-
# Statistics
|
| 1043 |
-
stats_output = self._generate_stats_display(summary)
|
| 1044 |
-
|
| 1045 |
-
progress(1.0, desc="Completado!")
|
| 1046 |
-
|
| 1047 |
-
# Limpiar temporal
|
| 1048 |
-
shutil.rmtree(temp_dir, ignore_errors=True)
|
| 1049 |
-
|
| 1050 |
-
return (
|
| 1051 |
-
result.get("zip_path"),
|
| 1052 |
-
f"✅ Proceso {current_process} completado",
|
| 1053 |
-
html_output,
|
| 1054 |
-
text_output,
|
| 1055 |
-
json_output,
|
| 1056 |
-
stats_output
|
| 1057 |
)
|
| 1058 |
|
| 1059 |
-
|
| 1060 |
-
|
| 1061 |
-
|
| 1062 |
-
|
| 1063 |
-
|
| 1064 |
-
|
| 1065 |
-
|
| 1066 |
-
|
| 1067 |
-
|
| 1068 |
-
|
| 1069 |
-
|
| 1070 |
-
|
| 1071 |
-
|
| 1072 |
-
|
| 1073 |
-
|
| 1074 |
-
|
| 1075 |
-
|
| 1076 |
-
|
| 1077 |
-
|
| 1078 |
-
|
| 1079 |
-
|
| 1080 |
-
|
| 1081 |
-
|
| 1082 |
-
|
| 1083 |
-
|
| 1084 |
-
|
| 1085 |
-
|
| 1086 |
-
|
| 1087 |
-
<strong>Tasa de Éxito</strong><br>
|
| 1088 |
-
<span style="font-size: 24px; color: #9b59b6;">{success_rate:.1f}%</span>
|
| 1089 |
-
</div>
|
| 1090 |
-
<div style="background: white; padding: 10px; border-radius: 5px;">
|
| 1091 |
-
<strong>Tiempo</strong><br>
|
| 1092 |
-
<span style="font-size: 24px; color: #e74c3c;">{report_data.get('processing_time', 0):.1f}s</span>
|
| 1093 |
</div>
|
| 1094 |
</div>
|
| 1095 |
-
|
| 1096 |
-
|
| 1097 |
-
|
| 1098 |
-
|
| 1099 |
-
|
| 1100 |
-
|
| 1101 |
-
|
| 1102 |
-
|
| 1103 |
-
|
| 1104 |
-
|
| 1105 |
-
|
| 1106 |
-
|
| 1107 |
-
|
| 1108 |
-
|
| 1109 |
-
|
| 1110 |
-
|
| 1111 |
-
|
| 1112 |
-
|
| 1113 |
-
|
| 1114 |
-
|
| 1115 |
-
</ul>
|
| 1116 |
-
</div>
|
| 1117 |
|
| 1118 |
-
|
| 1119 |
-
|
| 1120 |
-
|
| 1121 |
-
|
| 1122 |
-
|
| 1123 |
-
|
| 1124 |
-
</div>
|
| 1125 |
-
</div>
|
| 1126 |
-
"""
|
| 1127 |
-
|
| 1128 |
-
return html
|
| 1129 |
-
|
| 1130 |
-
def _generate_text_report(self, report_data: Dict) -> str:
|
| 1131 |
-
"""Generar reporte en texto"""
|
| 1132 |
-
verified = len(report_data.get("verified_resources", []))
|
| 1133 |
-
total = report_data.get("total_citations", 0)
|
| 1134 |
-
|
| 1135 |
-
text = f"""
|
| 1136 |
-
REPORTE DE PROCESAMIENTO
|
| 1137 |
-
========================
|
| 1138 |
-
|
| 1139 |
-
Archivo: {report_data.get('input_file', 'Desconocido')}
|
| 1140 |
-
Fecha: {report_data.get('timestamp', '')}
|
| 1141 |
-
|
| 1142 |
-
ESTADÍSTICAS:
|
| 1143 |
-
-------------
|
| 1144 |
-
• Referencias encontradas: {total}
|
| 1145 |
-
• Referencias verificadas: {verified}
|
| 1146 |
-
• Archivos descargados: {len(report_data.get('downloaded_files', []))}
|
| 1147 |
-
• Tiempo de procesamiento: {report_data.get('processing_time', 0):.2f}s
|
| 1148 |
-
• Tasa de éxito: {(verified/max(1, total))*100:.1f}%
|
| 1149 |
-
|
| 1150 |
-
NEBIUS AI:
|
| 1151 |
-
----------
|
| 1152 |
-
• Estado: {'Activado' if report_data.get('nebius_usage', {}).get('enabled') else 'Desactivado'}
|
| 1153 |
-
• Llamadas API: {report_data.get('nebius_usage', {}).get('calls', 0)}
|
| 1154 |
-
• Referencias mejoradas: {report_data.get('nebius_usage', {}).get('enhanced_references', 0)}
|
| 1155 |
-
|
| 1156 |
-
Para más detalles, consulte el archivo ZIP con el reporte completo.
|
| 1157 |
-
"""
|
| 1158 |
-
|
| 1159 |
-
return text
|
| 1160 |
-
|
| 1161 |
-
def _generate_stats_display(self, summary: Dict) -> str:
|
| 1162 |
-
"""Generar display de estadísticas"""
|
| 1163 |
-
return f"""
|
| 1164 |
-
⚡ PROCESO COMPLETADO ⚡
|
| 1165 |
-
|
| 1166 |
-
📊 Estadísticas Rápidas:
|
| 1167 |
-
• Referencias: {summary.get('references_found', 0)}
|
| 1168 |
-
• Verificadas: {summary.get('verified', 0)}
|
| 1169 |
-
• Descargadas: {summary.get('downloaded', 0)}
|
| 1170 |
-
• Tasa de éxito: {summary.get('success_rate', '0%')}
|
| 1171 |
-
• Tiempo: {summary.get('processing_time', '0s')}
|
| 1172 |
-
"""
|
| 1173 |
-
|
| 1174 |
-
def get_system_stats():
|
| 1175 |
-
"""Obtener estadísticas del sistema"""
|
| 1176 |
-
nonlocal system
|
| 1177 |
-
|
| 1178 |
-
if not system:
|
| 1179 |
-
return "❌ Sistema no inicializado"
|
| 1180 |
-
|
| 1181 |
-
stats = system.get_stats()
|
| 1182 |
-
|
| 1183 |
-
return f"""
|
| 1184 |
-
📈 Estadísticas del Sistema Nebius:
|
| 1185 |
-
|
| 1186 |
-
• Documentos procesados: {stats.get('total_processed', 0)}
|
| 1187 |
-
• Referencias totales: {stats.get('total_references', 0)}
|
| 1188 |
-
• Llamadas Nebius API: {stats.get('nebius_calls', 0)}
|
| 1189 |
-
• Tasa de éxito promedio: {stats.get('success_rate', 0) * 100:.1f}%
|
| 1190 |
-
• Directorio de salida: {stats.get('output_directory', 'N/A')}
|
| 1191 |
-
"""
|
| 1192 |
|
| 1193 |
-
# Crear interfaz
|
| 1194 |
-
with gr.Blocks(title="
|
| 1195 |
-
gr.Markdown("# 📚 Sistema de Recopilación Bibliográfica
|
| 1196 |
-
gr.Markdown("
|
| 1197 |
|
| 1198 |
with gr.Row():
|
| 1199 |
with gr.Column(scale=1):
|
| 1200 |
-
gr.Markdown("### ⚙️ Configuración
|
| 1201 |
|
| 1202 |
-
|
| 1203 |
-
|
| 1204 |
-
|
| 1205 |
-
value="nebius",
|
| 1206 |
-
info="Selecciona Nebius para usar la API de Nebius AI"
|
| 1207 |
)
|
| 1208 |
|
| 1209 |
-
|
| 1210 |
-
|
| 1211 |
-
|
| 1212 |
-
|
| 1213 |
)
|
| 1214 |
|
| 1215 |
-
|
| 1216 |
-
label="
|
| 1217 |
type="password",
|
| 1218 |
-
placeholder="Ingresa tu API
|
| 1219 |
)
|
| 1220 |
|
| 1221 |
-
|
| 1222 |
-
label="
|
| 1223 |
-
value="
|
| 1224 |
-
placeholder="
|
| 1225 |
)
|
| 1226 |
|
| 1227 |
-
|
| 1228 |
-
|
| 1229 |
-
|
| 1230 |
-
|
| 1231 |
-
|
| 1232 |
-
|
| 1233 |
-
|
| 1234 |
-
|
| 1235 |
-
|
| 1236 |
-
gr.Markdown("---")
|
| 1237 |
-
stats_btn = gr.Button("📊 Estadísticas del Sistema")
|
| 1238 |
-
system_stats = gr.Markdown("")
|
| 1239 |
|
| 1240 |
with gr.Column(scale=2):
|
| 1241 |
-
gr.Markdown("### 📄
|
| 1242 |
-
|
| 1243 |
-
file_input = gr.File(
|
| 1244 |
-
label="Sube tu documento",
|
| 1245 |
-
file_types=[".txt", ".pdf", ".docx", ".html", ".md"]
|
| 1246 |
-
)
|
| 1247 |
|
| 1248 |
-
|
| 1249 |
-
label="
|
| 1250 |
-
|
|
|
|
|
|
|
| 1251 |
)
|
| 1252 |
|
| 1253 |
-
process_btn = gr.Button("🔍 Procesar
|
| 1254 |
|
| 1255 |
gr.Markdown("### 📦 Resultados")
|
| 1256 |
|
| 1257 |
-
result_file = gr.File(label="Descargar
|
| 1258 |
-
result_status = gr.Markdown(
|
| 1259 |
-
stats_display = gr.Markdown("")
|
| 1260 |
|
| 1261 |
with gr.Tabs():
|
| 1262 |
with gr.TabItem("📋 Vista HTML"):
|
| 1263 |
-
html_output = gr.HTML(label="
|
| 1264 |
|
| 1265 |
-
with gr.TabItem("📝 Texto
|
| 1266 |
text_output = gr.Textbox(
|
| 1267 |
label="Resumen",
|
| 1268 |
-
lines=
|
| 1269 |
-
max_lines=
|
| 1270 |
)
|
| 1271 |
|
| 1272 |
-
with gr.TabItem("🔧 JSON
|
| 1273 |
json_output = gr.Code(
|
| 1274 |
-
label="Datos
|
| 1275 |
language="json",
|
| 1276 |
-
lines=
|
| 1277 |
)
|
| 1278 |
|
| 1279 |
# Conectar eventos
|
| 1280 |
-
init_btn.click(
|
| 1281 |
-
initialize_system,
|
| 1282 |
-
inputs=[provider, model, nebius_key, nebius_base, openai_key],
|
| 1283 |
-
outputs=init_status
|
| 1284 |
-
)
|
| 1285 |
-
|
| 1286 |
process_btn.click(
|
| 1287 |
-
|
| 1288 |
-
inputs=[
|
| 1289 |
-
outputs=[result_file, result_status, html_output, text_output, json_output
|
| 1290 |
)
|
| 1291 |
|
| 1292 |
-
|
| 1293 |
-
|
| 1294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1295 |
)
|
| 1296 |
-
|
| 1297 |
-
# Información
|
| 1298 |
-
gr.Markdown("""
|
| 1299 |
-
### 📌 Características Nebius AI
|
| 1300 |
-
|
| 1301 |
-
**🔍 Extracción Inteligente:**
|
| 1302 |
-
- Identificación contextual de referencias
|
| 1303 |
-
- Corrección automática de identificadores
|
| 1304 |
-
- Clasificación por tipo de recurso
|
| 1305 |
-
|
| 1306 |
-
**✅ Verificación Avanzada:**
|
| 1307 |
-
- Análisis de accesibilidad
|
| 1308 |
-
- Detección de acceso abierto
|
| 1309 |
-
- Sugerencias de fuentes alternativas
|
| 1310 |
-
|
| 1311 |
-
**📊 Reportes Mejorados:**
|
| 1312 |
-
- Métricas de confianza Nebius
|
| 1313 |
-
- Análisis de calidad por referencia
|
| 1314 |
-
- Estadísticas de uso de IA
|
| 1315 |
-
|
| 1316 |
-
### ⚠️ Notas Importantes
|
| 1317 |
-
|
| 1318 |
-
1. La API de Nebius requiere una key válida
|
| 1319 |
-
2. Los archivos grandes pueden consumir más tokens
|
| 1320 |
-
3. Se recomienda usar Nebius para máxima precisión
|
| 1321 |
-
4. Mantén tu API key segura y no la compartas
|
| 1322 |
-
|
| 1323 |
-
### 🔗 Recursos
|
| 1324 |
-
|
| 1325 |
-
• [Documentación Nebius AI](https://docs.nebius.com)
|
| 1326 |
-
• [Obtener API Key](https://studio.nebius.com)
|
| 1327 |
-
• [Soporte Técnico](https://support.nebius.com)
|
| 1328 |
-
""")
|
| 1329 |
|
| 1330 |
return interface
|
| 1331 |
|
| 1332 |
# ========== EJECUCIÓN PRINCIPAL ==========
|
| 1333 |
|
| 1334 |
-
|
| 1335 |
"""Función principal"""
|
| 1336 |
-
|
| 1337 |
-
|
| 1338 |
-
|
| 1339 |
-
|
| 1340 |
-
|
| 1341 |
-
|
| 1342 |
-
|
| 1343 |
-
|
| 1344 |
-
|
| 1345 |
-
|
| 1346 |
-
|
| 1347 |
-
args = parser.parse_args()
|
| 1348 |
-
|
| 1349 |
-
if args.mode == "gui":
|
| 1350 |
-
# Ejecutar interfaz Gradio
|
| 1351 |
-
interface = create_nebius_interface()
|
| 1352 |
-
interface.launch(
|
| 1353 |
-
server_name="0.0.0.0",
|
| 1354 |
-
server_port=7860,
|
| 1355 |
-
share=True,
|
| 1356 |
-
debug=True
|
| 1357 |
-
)
|
| 1358 |
-
|
| 1359 |
-
elif args.mode == "cli":
|
| 1360 |
-
# Modo línea de comandos
|
| 1361 |
-
if not args.file:
|
| 1362 |
-
print("❌ Error: Debes especificar un archivo con --file")
|
| 1363 |
-
return
|
| 1364 |
-
|
| 1365 |
-
if not os.path.exists(args.file):
|
| 1366 |
-
print(f"❌ Error: Archivo no encontrado: {args.file}")
|
| 1367 |
-
return
|
| 1368 |
-
|
| 1369 |
-
if not args.nebius_key:
|
| 1370 |
-
print("⚠️ Advertencia: No se proporcionó API Key de Nebius")
|
| 1371 |
-
use_nebius = False
|
| 1372 |
-
nebius_key = None
|
| 1373 |
-
else:
|
| 1374 |
-
use_nebius = True
|
| 1375 |
-
nebius_key = args.nebius_key
|
| 1376 |
-
|
| 1377 |
-
# Configurar sistema
|
| 1378 |
-
config = {
|
| 1379 |
-
"llm_provider": "nebius" if use_nebius else "openai",
|
| 1380 |
-
"llm_model": args.model,
|
| 1381 |
-
"nebius_api_key": nebius_key,
|
| 1382 |
-
"nebius_api_base": args.api_base,
|
| 1383 |
-
"use_nebius": use_nebius
|
| 1384 |
-
}
|
| 1385 |
-
|
| 1386 |
-
system = NebiusBibliographySystem(config)
|
| 1387 |
-
|
| 1388 |
-
print(f"🔍 Procesando archivo: {args.file}")
|
| 1389 |
-
print(f"🤖 Nebius AI: {'Activado' if use_nebius else 'Desactivado'}")
|
| 1390 |
-
print("⏳ Procesando...")
|
| 1391 |
-
|
| 1392 |
-
result = await system.process_document(args.file)
|
| 1393 |
-
|
| 1394 |
-
if result.get("success"):
|
| 1395 |
-
print(f"✅ Procesamiento completado!")
|
| 1396 |
-
print(f"📊 ID del proceso: {result.get('process_id')}")
|
| 1397 |
-
|
| 1398 |
-
summary = result.get("summary", {})
|
| 1399 |
-
print(f"""
|
| 1400 |
-
📈 Resultados:
|
| 1401 |
-
- Referencias encontradas: {summary.get('references_found', 0)}
|
| 1402 |
-
- Referencias verificadas: {summary.get('verified', 0)}
|
| 1403 |
-
- Archivos descargados: {summary.get('downloaded', 0)}
|
| 1404 |
-
- Tasa de éxito: {summary.get('success_rate', '0%')}
|
| 1405 |
-
- Tiempo de procesamiento: {summary.get('processing_time', '0s')}
|
| 1406 |
-
|
| 1407 |
-
📦 Paquete de resultados: {result.get('zip_path')}
|
| 1408 |
-
|
| 1409 |
-
📊 Estadísticas Nebius:
|
| 1410 |
-
- Llamadas API: {result.get('report', {}).get('nebius_usage', {}).get('calls', 0)}
|
| 1411 |
-
- Referencias mejoradas: {result.get('report', {}).get('nebius_usage', {}).get('enhanced_references', 0)}
|
| 1412 |
-
""")
|
| 1413 |
-
else:
|
| 1414 |
-
print(f"❌ Error: {result.get('error')}")
|
| 1415 |
|
| 1416 |
if __name__ == "__main__":
|
| 1417 |
-
|
| 1418 |
-
asyncio.run(main())
|
|
|
|
| 4 |
import logging
|
| 5 |
import zipfile
|
| 6 |
import asyncio
|
| 7 |
+
from typing import Dict, List, Optional, Any
|
|
|
|
|
|
|
|
|
|
| 8 |
from datetime import datetime
|
| 9 |
import gradio as gr
|
| 10 |
from enum import Enum
|
| 11 |
import hashlib
|
|
|
|
| 12 |
import aiohttp
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
# Configuración de logging
|
| 15 |
logging.basicConfig(
|
| 16 |
level=logging.INFO,
|
| 17 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
)
|
| 19 |
logger = logging.getLogger(__name__)
|
| 20 |
|
| 21 |
+
# ========== CONFIGURACIÓN DE APIs ==========
|
| 22 |
|
| 23 |
+
class APIProvider:
|
| 24 |
+
"""Gestor de diferentes APIs de IA"""
|
| 25 |
|
| 26 |
+
def __init__(self):
|
| 27 |
+
self.available_apis = {
|
| 28 |
+
"nebius": {
|
| 29 |
+
"name": "Nebius AI",
|
| 30 |
+
"base_url": "https://api.nebius.ai/v1",
|
| 31 |
+
"models": ["neural-chat-7b-v3-1", "llama-2-70b-chat", "mistral-7b-instruct"],
|
| 32 |
+
"headers": {"Content-Type": "application/json"}
|
| 33 |
+
},
|
| 34 |
+
"moonshot": {
|
| 35 |
+
"name": "Moonshot AI",
|
| 36 |
+
"base_url": "https://api.moonshot.cn/v1",
|
| 37 |
+
"models": ["moonshot-v1-8k", "moonshot-v1-32k", "moonshot-v1-128k"],
|
| 38 |
+
"headers": {"Content-Type": "application/json"}
|
| 39 |
+
},
|
| 40 |
+
"openai": {
|
| 41 |
+
"name": "OpenAI",
|
| 42 |
+
"base_url": "https://api.openai.com/v1",
|
| 43 |
+
"models": ["gpt-4", "gpt-3.5-turbo", "gpt-4-turbo"],
|
| 44 |
+
"headers": {"Content-Type": "application/json"}
|
| 45 |
+
},
|
| 46 |
+
"anthropic": {
|
| 47 |
+
"name": "Anthropic",
|
| 48 |
+
"base_url": "https://api.anthropic.com/v1",
|
| 49 |
+
"models": ["claude-3-opus-20240229", "claude-3-sonnet-20240229", "claude-3-haiku-20240307"],
|
| 50 |
+
"headers": {"Content-Type": "application/json", "anthropic-version": "2023-06-01"}
|
| 51 |
+
},
|
| 52 |
+
"deepseek": {
|
| 53 |
+
"name": "DeepSeek",
|
| 54 |
+
"base_url": "https://api.deepseek.com/v1",
|
| 55 |
+
"models": ["deepseek-chat", "deepseek-coder"],
|
| 56 |
+
"headers": {"Content-Type": "application/json"}
|
| 57 |
+
}
|
| 58 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
# Para Kimi, necesitamos configurar un endpoint específico
|
| 61 |
+
self.custom_models = {
|
| 62 |
+
"moonshotai/Kimi-K2-Instruct": {
|
| 63 |
+
"provider": "moonshot",
|
| 64 |
+
"model_id": "moonshot-v1-8k", # Asumiendo que es compatible
|
| 65 |
+
"requires_special_handling": True
|
| 66 |
+
}
|
|
|
|
| 67 |
}
|
| 68 |
+
|
| 69 |
+
async def call_api(self, provider: str, api_key: str, model: str,
|
| 70 |
+
messages: List[Dict], max_tokens: int = 1000) -> Optional[str]:
|
| 71 |
+
"""Llamar a la API del proveedor seleccionado"""
|
| 72 |
+
if provider not in self.available_apis and provider not in ["custom", "moonshot"]:
|
| 73 |
+
logger.error(f"Proveedor no soportado: {provider}")
|
| 74 |
+
return None
|
| 75 |
|
| 76 |
try:
|
| 77 |
+
# Manejo especial para Kimi
|
| 78 |
+
if model == "moonshotai/Kimi-K2-Instruct":
|
| 79 |
+
return await self._call_moonshot_kimi(api_key, messages, max_tokens)
|
| 80 |
+
|
| 81 |
+
# Configuración según el proveedor
|
| 82 |
+
if provider in ["moonshot", "custom"]:
|
| 83 |
+
base_url = self.available_apis["moonshot"]["base_url"]
|
| 84 |
+
headers = {
|
| 85 |
+
"Authorization": f"Bearer {api_key}",
|
| 86 |
+
"Content-Type": "application/json"
|
| 87 |
+
}
|
| 88 |
+
else:
|
| 89 |
+
api_config = self.available_apis[provider]
|
| 90 |
+
base_url = api_config["base_url"]
|
| 91 |
+
headers = {**api_config["headers"], "Authorization": f"Bearer {api_key}"}
|
| 92 |
+
|
| 93 |
+
# Preparar payload
|
| 94 |
+
payload = {
|
| 95 |
+
"model": model,
|
| 96 |
+
"messages": messages,
|
| 97 |
+
"max_tokens": max_tokens,
|
| 98 |
+
"temperature": 0.7,
|
| 99 |
+
"top_p": 0.95
|
| 100 |
+
}
|
| 101 |
+
|
| 102 |
+
# Realizar la llamada
|
| 103 |
+
url = f"{base_url}/chat/completions"
|
| 104 |
+
|
| 105 |
async with aiohttp.ClientSession() as session:
|
| 106 |
async with session.post(
|
| 107 |
+
url,
|
| 108 |
+
headers=headers,
|
| 109 |
json=payload,
|
| 110 |
timeout=30
|
| 111 |
) as response:
|
|
|
|
| 114 |
return data.get("choices", [{}])[0].get("message", {}).get("content", "")
|
| 115 |
else:
|
| 116 |
error_text = await response.text()
|
| 117 |
+
logger.error(f"API Error {response.status}: {error_text}")
|
| 118 |
+
return None
|
| 119 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
except Exception as e:
|
| 121 |
+
logger.error(f"Error calling API {provider}: {e}")
|
| 122 |
+
return None
|
|
|
|
| 123 |
|
| 124 |
+
async def _call_moonshot_kimi(self, api_key: str, messages: List[Dict], max_tokens: int) -> Optional[str]:
|
| 125 |
+
"""Llamada específica para Kimi de Moonshot"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
try:
|
| 127 |
+
url = "https://api.moonshot.cn/v1/chat/completions"
|
| 128 |
+
headers = {
|
| 129 |
+
"Authorization": f"Bearer {api_key}",
|
| 130 |
+
"Content-Type": "application/json"
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
payload = {
|
| 134 |
+
"model": "moonshot-v1-8k", # Modelo base para Kimi
|
| 135 |
+
"messages": messages,
|
| 136 |
+
"max_tokens": max_tokens,
|
| 137 |
+
"temperature": 0.7,
|
| 138 |
+
"top_p": 0.95
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
async with aiohttp.ClientSession() as session:
|
| 142 |
+
async with session.post(
|
| 143 |
+
url,
|
| 144 |
+
headers=headers,
|
| 145 |
+
json=payload,
|
| 146 |
+
timeout=30
|
| 147 |
+
) as response:
|
| 148 |
+
if response.status == 200:
|
| 149 |
+
data = await response.json()
|
| 150 |
+
return data.get("choices", [{}])[0].get("message", {}).get("content", "")
|
| 151 |
+
else:
|
| 152 |
+
error_text = await response.text()
|
| 153 |
+
logger.error(f"Kimi API Error {response.status}: {error_text}")
|
| 154 |
+
return None
|
| 155 |
+
|
| 156 |
except Exception as e:
|
| 157 |
+
logger.error(f"Error calling Kimi API: {e}")
|
| 158 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
+
# ========== EXTRACTOR DE REFERENCIAS ==========
|
| 161 |
|
| 162 |
+
class ReferenceExtractor:
|
| 163 |
+
"""Extrae referencias bibliográficas de texto"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
def __init__(self):
|
|
|
|
|
|
|
| 166 |
self.patterns = {
|
| 167 |
+
"doi": [
|
| 168 |
r'\b10\.\d{4,9}/[-._;()/:A-Z0-9]+\b',
|
| 169 |
r'doi:\s*(10\.\d{4,9}/[-._;()/:A-Z0-9]+)',
|
| 170 |
+
r'DOI:\s*(10\.\d{4,9}/[-._;()/:A-Z0-9]+)'
|
| 171 |
],
|
| 172 |
+
"arxiv": [
|
|
|
|
|
|
|
|
|
|
| 173 |
r'arXiv:\s*(\d{4}\.\d{4,5}(v\d+)?)',
|
| 174 |
+
r'arxiv:\s*([a-z\-]+/\d{7})',
|
| 175 |
+
r'\b\d{4}\.\d{4,5}(v\d+)?\b'
|
| 176 |
+
],
|
| 177 |
+
"isbn": [
|
| 178 |
+
r'ISBN(?:-1[03])?:?\s*(97[89][- ]?)?[0-9]{1,5}[- ]?[0-9]+[- ]?[0-9]+[- ]?[0-9X]',
|
| 179 |
+
r'\b(?:97[89][- ]?)?[0-9]{1,5}[- ]?[0-9]+[- ]?[0-9]+[- ]?[0-9X]\b'
|
| 180 |
],
|
| 181 |
+
"url": [
|
| 182 |
+
r'https?://[^\s<>"]+|www\.[^\s<>"]+'
|
| 183 |
+
],
|
| 184 |
+
"pmid": [
|
| 185 |
+
r'PMID:\s*(\d+)',
|
| 186 |
+
r'PubMed ID:\s*(\d+)'
|
| 187 |
+
]
|
| 188 |
}
|
| 189 |
|
| 190 |
+
def extract_from_text(self, text: str) -> Dict[str, List[str]]:
|
| 191 |
+
"""Extrae todos los identificadores del texto"""
|
| 192 |
+
results = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
+
for ref_type, patterns in self.patterns.items():
|
| 195 |
+
matches = []
|
| 196 |
for pattern in patterns:
|
| 197 |
+
found = re.findall(pattern, text, re.IGNORECASE)
|
| 198 |
+
# Limpiar los resultados
|
| 199 |
+
for match in found:
|
| 200 |
+
if isinstance(match, tuple):
|
| 201 |
+
match = match[0]
|
| 202 |
+
if match:
|
| 203 |
+
match = self._clean_identifier(match, ref_type)
|
| 204 |
+
if match and match not in matches:
|
| 205 |
+
matches.append(match)
|
| 206 |
+
|
| 207 |
+
if matches:
|
| 208 |
+
results[ref_type] = matches
|
| 209 |
+
|
| 210 |
+
return results
|
| 211 |
+
|
| 212 |
+
def _clean_identifier(self, identifier: str, ref_type: str) -> str:
|
| 213 |
+
"""Limpia el identificador"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
identifier = identifier.strip()
|
| 215 |
|
| 216 |
+
# Eliminar prefijos
|
| 217 |
prefixes = ['doi:', 'DOI:', 'arxiv:', 'arXiv:', 'isbn:', 'ISBN:', 'pmid:', 'PMID:']
|
| 218 |
for prefix in prefixes:
|
| 219 |
if identifier.startswith(prefix):
|
| 220 |
identifier = identifier[len(prefix):].strip()
|
| 221 |
|
| 222 |
+
# Limpiar caracteres
|
| 223 |
identifier = identifier.strip('"\'<>()[]{}')
|
| 224 |
|
| 225 |
+
# Para URLs, asegurar protocolo
|
| 226 |
+
if ref_type == "url" and not identifier.startswith(('http://', 'https://')):
|
| 227 |
+
identifier = f"https://{identifier}"
|
| 228 |
|
| 229 |
return identifier
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
+
# ========== VERIFICADOR DE REFERENCIAS ==========
|
| 232 |
+
|
| 233 |
+
class ReferenceVerifier:
|
| 234 |
+
"""Verifica y descarga referencias"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
def __init__(self):
|
|
|
|
| 237 |
self.headers = {
|
| 238 |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
|
| 239 |
}
|
| 240 |
|
| 241 |
+
async def verify_doi(self, doi: str) -> Dict[str, Any]:
|
| 242 |
+
"""Verifica un DOI y obtiene metadatos"""
|
| 243 |
+
import requests
|
| 244 |
+
|
| 245 |
result = {
|
| 246 |
+
"identifier": doi,
|
| 247 |
+
"type": "doi",
|
| 248 |
"verified": False,
|
| 249 |
+
"metadata": {},
|
| 250 |
"download_url": None,
|
| 251 |
+
"error": None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
}
|
| 253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
try:
|
| 255 |
+
# Intentar con Crossref
|
| 256 |
url = f"https://api.crossref.org/works/{doi}"
|
| 257 |
response = requests.get(url, headers=self.headers, timeout=10)
|
| 258 |
|
|
|
|
| 260 |
data = response.json()
|
| 261 |
work = data.get('message', {})
|
| 262 |
|
| 263 |
+
result["verified"] = True
|
| 264 |
+
result["metadata"] = {
|
| 265 |
+
"title": work.get('title', [''])[0],
|
| 266 |
+
"authors": work.get('author', []),
|
| 267 |
+
"journal": work.get('container-title', [''])[0],
|
| 268 |
+
"year": work.get('published', {}).get('date-parts', [[None]])[0][0],
|
| 269 |
+
"url": work.get('URL')
|
| 270 |
+
}
|
| 271 |
|
| 272 |
# Buscar PDF
|
| 273 |
links = work.get('link', [])
|
| 274 |
for link in links:
|
| 275 |
if link.get('content-type') == 'application/pdf':
|
| 276 |
result["download_url"] = link.get('URL')
|
|
|
|
| 277 |
break
|
| 278 |
|
| 279 |
+
# Si no hay PDF en Crossref, probar Unpaywall
|
| 280 |
+
if not result["download_url"]:
|
| 281 |
+
unpaywall_url = f"https://api.unpaywall.org/v2/{doi}[email protected]"
|
| 282 |
+
unpaywall_response = requests.get(unpaywall_url, timeout=10)
|
| 283 |
+
if unpaywall_response.status_code == 200:
|
| 284 |
+
unpaywall_data = unpaywall_response.json()
|
| 285 |
+
if unpaywall_data.get('is_oa'):
|
| 286 |
+
result["download_url"] = unpaywall_data.get('best_oa_location', {}).get('url')
|
| 287 |
+
|
| 288 |
+
else:
|
| 289 |
+
result["error"] = f"Crossref API returned {response.status_code}"
|
| 290 |
+
|
| 291 |
except Exception as e:
|
| 292 |
+
result["error"] = str(e)
|
| 293 |
|
| 294 |
+
return result
|
| 295 |
|
| 296 |
+
async def verify_arxiv(self, arxiv_id: str) -> Dict[str, Any]:
|
| 297 |
+
"""Verifica un arXiv ID"""
|
| 298 |
import requests
|
| 299 |
|
| 300 |
+
result = {
|
| 301 |
+
"identifier": arxiv_id,
|
| 302 |
+
"type": "arxiv",
|
| 303 |
+
"verified": False,
|
| 304 |
+
"metadata": {},
|
| 305 |
+
"download_url": None,
|
| 306 |
+
"error": None
|
| 307 |
+
}
|
| 308 |
+
|
| 309 |
try:
|
| 310 |
# Limpiar ID
|
| 311 |
if 'arxiv:' in arxiv_id.lower():
|
| 312 |
arxiv_id = arxiv_id.split(':')[-1].strip()
|
| 313 |
|
| 314 |
+
# Obtener metadatos
|
| 315 |
api_url = f"http://export.arxiv.org/api/query?id_list={arxiv_id}"
|
| 316 |
response = requests.get(api_url, headers=self.headers, timeout=10)
|
| 317 |
|
| 318 |
if response.status_code == 200:
|
| 319 |
+
result["verified"] = True
|
| 320 |
+
result["download_url"] = f"https://arxiv.org/pdf/{arxiv_id}.pdf"
|
| 321 |
+
|
| 322 |
+
# Parsear metadatos básicos del XML
|
| 323 |
+
import xml.etree.ElementTree as ET
|
| 324 |
+
root = ET.fromstring(response.text)
|
| 325 |
+
ns = {'atom': 'http://www.w3.org/2005/Atom'}
|
| 326 |
+
|
| 327 |
+
entry = root.find('.//atom:entry', ns)
|
| 328 |
+
if entry is not None:
|
| 329 |
+
title = entry.find('atom:title', ns)
|
| 330 |
+
if title is not None:
|
| 331 |
+
result["metadata"]["title"] = title.text
|
| 332 |
+
|
| 333 |
+
summary = entry.find('atom:summary', ns)
|
| 334 |
+
if summary is not None:
|
| 335 |
+
result["metadata"]["abstract"] = summary.text
|
| 336 |
+
|
| 337 |
+
else:
|
| 338 |
+
result["error"] = f"arXiv API returned {response.status_code}"
|
| 339 |
+
|
| 340 |
except Exception as e:
|
| 341 |
+
result["error"] = str(e)
|
| 342 |
|
| 343 |
+
return result
|
| 344 |
|
| 345 |
+
async def download_paper(self, url: str, filename: str) -> Optional[str]:
|
| 346 |
+
"""Descarga un paper desde una URL"""
|
| 347 |
import requests
|
| 348 |
+
import os
|
| 349 |
|
| 350 |
try:
|
| 351 |
+
response = requests.get(url, headers=self.headers, stream=True, timeout=30)
|
| 352 |
|
| 353 |
if response.status_code == 200:
|
| 354 |
+
# Crear directorio de descargas si no existe
|
| 355 |
+
os.makedirs("downloads", exist_ok=True)
|
| 356 |
|
| 357 |
+
# Determinar extensión
|
| 358 |
content_type = response.headers.get('content-type', '')
|
| 359 |
if 'application/pdf' in content_type:
|
| 360 |
+
ext = '.pdf'
|
| 361 |
+
elif 'application/epub' in content_type:
|
| 362 |
+
ext = '.epub'
|
| 363 |
+
else:
|
| 364 |
+
ext = '.pdf' # Por defecto
|
| 365 |
+
|
| 366 |
+
filepath = os.path.join("downloads", f"{filename}{ext}")
|
| 367 |
+
|
| 368 |
+
with open(filepath, 'wb') as f:
|
| 369 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 370 |
+
if chunk:
|
| 371 |
+
f.write(chunk)
|
| 372 |
+
|
| 373 |
+
return filepath
|
| 374 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
except Exception as e:
|
| 376 |
+
logger.error(f"Error downloading {url}: {e}")
|
| 377 |
|
| 378 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
|
| 380 |
+
# ========== SISTEMA PRINCIPAL ==========
|
| 381 |
|
| 382 |
+
class BibliographySystem:
|
| 383 |
+
"""Sistema principal de procesamiento bibliográfico"""
|
| 384 |
|
| 385 |
+
def __init__(self):
|
| 386 |
+
self.extractor = ReferenceExtractor()
|
| 387 |
+
self.verifier = ReferenceVerifier()
|
| 388 |
+
self.api_provider = APIProvider()
|
| 389 |
+
|
| 390 |
+
# Directorios
|
| 391 |
+
os.makedirs("downloads", exist_ok=True)
|
| 392 |
+
os.makedirs("reports", exist_ok=True)
|
| 393 |
+
|
| 394 |
+
async def process_document(self, text: str, use_ai: bool = False,
|
| 395 |
+
api_provider: str = "openai", api_key: str = "",
|
| 396 |
+
api_model: str = "") -> Dict[str, Any]:
|
| 397 |
+
"""Procesa un documento y extrae referencias"""
|
| 398 |
+
start_time = datetime.now()
|
| 399 |
+
|
| 400 |
+
# 1. Extraer referencias
|
| 401 |
+
logger.info("Extracting references...")
|
| 402 |
+
references = self.extractor.extract_from_text(text)
|
| 403 |
+
|
| 404 |
+
total_refs = sum(len(v) for v in references.values())
|
| 405 |
+
logger.info(f"Found {total_refs} references")
|
| 406 |
+
|
| 407 |
+
# 2. Verificar referencias
|
| 408 |
+
logger.info("Verifying references...")
|
| 409 |
+
verified_refs = []
|
| 410 |
+
download_tasks = []
|
| 411 |
+
|
| 412 |
+
# Procesar DOIs
|
| 413 |
+
for doi in references.get("doi", []):
|
| 414 |
+
result = await self.verifier.verify_doi(doi)
|
| 415 |
+
if result["verified"]:
|
| 416 |
+
verified_refs.append(result)
|
| 417 |
+
if result["download_url"]:
|
| 418 |
+
# Programar descarga
|
| 419 |
+
filename = hashlib.md5(doi.encode()).hexdigest()[:8]
|
| 420 |
+
download_tasks.append(
|
| 421 |
+
self.verifier.download_paper(result["download_url"], filename)
|
| 422 |
+
)
|
| 423 |
|
| 424 |
+
# Procesar arXiv
|
| 425 |
+
for arxiv_id in references.get("arxiv", []):
|
| 426 |
+
result = await self.verifier.verify_arxiv(arxiv_id)
|
| 427 |
+
if result["verified"]:
|
| 428 |
+
verified_refs.append(result)
|
| 429 |
+
if result["download_url"]:
|
| 430 |
+
filename = hashlib.md5(arxiv_id.encode()).hexdigest()[:8]
|
| 431 |
+
download_tasks.append(
|
| 432 |
+
self.verifier.download_paper(result["download_url"], filename)
|
| 433 |
+
)
|
| 434 |
|
| 435 |
+
# 3. Usar IA para análisis si está activado
|
| 436 |
+
ai_analysis = None
|
| 437 |
+
if use_ai and api_key and api_provider:
|
| 438 |
+
logger.info("Using AI for analysis...")
|
| 439 |
+
ai_analysis = await self._analyze_with_ai(
|
| 440 |
+
text, references, verified_refs,
|
| 441 |
+
api_provider, api_key, api_model
|
| 442 |
+
)
|
| 443 |
|
| 444 |
+
# 4. Descargar archivos
|
| 445 |
+
logger.info("Downloading files...")
|
| 446 |
+
downloaded_files = []
|
| 447 |
+
if download_tasks:
|
| 448 |
+
download_results = await asyncio.gather(*download_tasks)
|
| 449 |
+
downloaded_files = [r for r in download_results if r]
|
| 450 |
+
|
| 451 |
+
# 5. Crear reporte
|
| 452 |
+
processing_time = (datetime.now() - start_time).total_seconds()
|
| 453 |
+
|
| 454 |
+
report = {
|
| 455 |
+
"timestamp": datetime.now().isoformat(),
|
| 456 |
+
"processing_time": processing_time,
|
| 457 |
+
"total_references_found": total_refs,
|
| 458 |
+
"references_by_type": references,
|
| 459 |
+
"verified_references": len(verified_refs),
|
| 460 |
+
"verification_details": verified_refs,
|
| 461 |
+
"downloaded_files": downloaded_files,
|
| 462 |
+
"ai_analysis": ai_analysis,
|
| 463 |
+
"statistics": {
|
| 464 |
+
"verification_rate": len(verified_refs) / max(1, total_refs),
|
| 465 |
+
"download_rate": len(downloaded_files) / max(1, len(verified_refs))
|
| 466 |
+
}
|
| 467 |
}
|
| 468 |
|
| 469 |
+
# 6. Guardar reporte
|
| 470 |
+
report_filename = f"report_{hashlib.md5(text.encode()).hexdigest()[:8]}.json"
|
| 471 |
+
report_path = os.path.join("reports", report_filename)
|
|
|
|
|
|
|
| 472 |
|
| 473 |
+
with open(report_path, 'w', encoding='utf-8') as f:
|
| 474 |
+
json.dump(report, f, indent=2, ensure_ascii=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 475 |
|
| 476 |
+
# 7. Crear ZIP
|
| 477 |
+
zip_path = self._create_zip(report, downloaded_files)
|
| 478 |
|
| 479 |
+
return {
|
| 480 |
+
"success": True,
|
| 481 |
+
"report": report,
|
| 482 |
+
"zip_path": zip_path,
|
| 483 |
+
"summary": {
|
| 484 |
+
"found": total_refs,
|
| 485 |
+
"verified": len(verified_refs),
|
| 486 |
+
"downloaded": len(downloaded_files),
|
| 487 |
+
"time": f"{processing_time:.2f}s"
|
| 488 |
+
}
|
| 489 |
+
}
|
| 490 |
+
|
| 491 |
+
async def _analyze_with_ai(self, text: str, references: Dict,
|
| 492 |
+
verified_refs: List, api_provider: str,
|
| 493 |
+
api_key: str, api_model: str) -> Optional[Dict]:
|
| 494 |
+
"""Analiza el documento con IA"""
|
| 495 |
try:
|
| 496 |
+
# Preparar prompt
|
| 497 |
+
prompt = f"""Analiza el siguiente documento académico y sus referencias:
|
| 498 |
+
|
| 499 |
+
Documento (primeros 2000 caracteres):
|
| 500 |
+
{text[:2000]}...
|
| 501 |
+
|
| 502 |
+
Referencias encontradas:
|
| 503 |
+
{json.dumps(references, indent=2, ensure_ascii=False)}
|
| 504 |
+
|
| 505 |
+
Referencias verificadas: {len(verified_refs)}
|
| 506 |
+
|
| 507 |
+
Proporciona un análisis que incluya:
|
| 508 |
+
1. Temas principales del documento
|
| 509 |
+
2. Calidad de las referencias (relevancia, actualidad)
|
| 510 |
+
3. Sugerencias de referencias faltantes
|
| 511 |
+
4. Evaluación general de la solidez bibliográfica
|
| 512 |
+
|
| 513 |
+
Responde en formato JSON con las siguientes claves:
|
| 514 |
+
- main_topics (lista de temas)
|
| 515 |
+
- reference_quality (score 1-10)
|
| 516 |
+
- missing_references (sugerencias)
|
| 517 |
+
- overall_assessment (texto)
|
| 518 |
+
- recommendations (lista)"""
|
| 519 |
+
|
| 520 |
+
messages = [
|
| 521 |
+
{"role": "system", "content": "Eres un experto en análisis bibliográfico académico."},
|
| 522 |
+
{"role": "user", "content": prompt}
|
| 523 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 524 |
|
| 525 |
+
# Llamar a la API
|
| 526 |
+
analysis_text = await self.api_provider.call_api(
|
| 527 |
+
api_provider, api_key, api_model, messages, max_tokens=1500
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 528 |
)
|
| 529 |
|
| 530 |
+
if analysis_text:
|
| 531 |
+
# Intentar extraer JSON
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 532 |
try:
|
| 533 |
+
# Buscar JSON en la respuesta
|
| 534 |
+
json_match = re.search(r'\{.*\}', analysis_text, re.DOTALL)
|
| 535 |
+
if json_match:
|
| 536 |
+
return json.loads(json_match.group())
|
| 537 |
+
else:
|
| 538 |
+
return {"raw_analysis": analysis_text}
|
| 539 |
+
except:
|
| 540 |
+
return {"raw_analysis": analysis_text}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 541 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 542 |
except Exception as e:
|
| 543 |
+
logger.error(f"AI analysis error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 544 |
|
| 545 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 546 |
|
| 547 |
+
def _create_zip(self, report: Dict, downloaded_files: List[str]) -> str:
|
| 548 |
+
"""Crea un archivo ZIP con los resultados"""
|
| 549 |
import zipfile
|
| 550 |
+
from datetime import datetime
|
| 551 |
|
| 552 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 553 |
+
zip_filename = f"bibliography_results_{timestamp}.zip"
|
| 554 |
|
| 555 |
+
with zipfile.ZipFile(zip_filename, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
| 556 |
+
# Agregar reporte JSON
|
| 557 |
+
report_path = os.path.join("reports", f"report_{timestamp}.json")
|
| 558 |
+
with open(report_path, 'w', encoding='utf-8') as f:
|
| 559 |
+
json.dump(report, f, indent=2, ensure_ascii=False)
|
| 560 |
+
zipf.write(report_path, "report.json")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 561 |
|
| 562 |
# Agregar archivos descargados
|
| 563 |
+
for file_path in downloaded_files:
|
| 564 |
if os.path.exists(file_path):
|
| 565 |
+
zipf.write(file_path, f"downloads/{os.path.basename(file_path)}")
|
|
|
|
| 566 |
|
| 567 |
+
# Agregar resumen en texto
|
| 568 |
+
summary = self._generate_summary_text(report)
|
| 569 |
+
zipf.writestr("summary.txt", summary)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 570 |
|
| 571 |
+
return zip_filename
|
| 572 |
|
| 573 |
+
def _generate_summary_text(self, report: Dict) -> str:
|
| 574 |
+
"""Genera un resumen en texto"""
|
| 575 |
+
return f"""
|
| 576 |
+
RESUMEN DE PROCESAMIENTO BIBLIOGRÁFICO
|
| 577 |
+
======================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 578 |
|
| 579 |
+
Fecha: {report.get('timestamp', 'N/A')}
|
| 580 |
+
Tiempo de procesamiento: {report.get('processing_time', 0):.2f} segundos
|
|
|
|
|
|
|
|
|
|
| 581 |
|
| 582 |
+
ESTADÍSTICAS:
|
| 583 |
+
------------
|
| 584 |
+
• Referencias encontradas: {report.get('total_references_found', 0)}
|
| 585 |
+
• Referencias verificadas: {report.get('verified_references', 0)}
|
| 586 |
+
• Archivos descargados: {len(report.get('downloaded_files', []))}
|
| 587 |
+
• Tasa de verificación: {report.get('statistics', {}).get('verification_rate', 0) * 100:.1f}%
|
| 588 |
+
• Tasa de descarga: {report.get('statistics', {}).get('download_rate', 0) * 100:.1f}%
|
| 589 |
+
|
| 590 |
+
REFERENCIAS POR TIPO:
|
| 591 |
+
---------------------
|
| 592 |
+
{json.dumps(report.get('references_by_type', {}), indent=2, ensure_ascii=False)}
|
| 593 |
+
|
| 594 |
+
Para más detalles, consulte el reporte JSON incluido.
|
| 595 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 596 |
|
| 597 |
+
# ========== INTERFAZ GRADIO SIMPLIFICADA ==========
|
| 598 |
|
| 599 |
+
def create_simple_interface():
|
| 600 |
+
"""Crea una interfaz Gradio simple y funcional"""
|
| 601 |
|
| 602 |
+
system = BibliographySystem()
|
|
|
|
| 603 |
|
| 604 |
+
async def process_text(text_input, use_ai, api_provider, api_key, api_model):
|
| 605 |
+
"""Procesa el texto ingresado"""
|
| 606 |
+
if not text_input.strip():
|
| 607 |
+
return None, "❌ Error: No se ingresó texto", "", "", {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 608 |
|
| 609 |
try:
|
| 610 |
+
result = await system.process_document(
|
| 611 |
+
text_input, use_ai, api_provider, api_key, api_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 612 |
)
|
| 613 |
|
| 614 |
+
if result["success"]:
|
| 615 |
+
summary = result["summary"]
|
| 616 |
+
|
| 617 |
+
# Generar HTML para visualización
|
| 618 |
+
html_output = f"""
|
| 619 |
+
<div style="font-family: Arial, sans-serif; padding: 20px;">
|
| 620 |
+
<h2 style="color: #2c3e50;">📊 Resultados del Procesamiento</h2>
|
| 621 |
+
|
| 622 |
+
<div style="background: #ecf0f1; padding: 15px; border-radius: 10px; margin: 15px 0;">
|
| 623 |
+
<h3 style="color: #34495e;">📈 Estadísticas</h3>
|
| 624 |
+
<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 10px;">
|
| 625 |
+
<div style="background: white; padding: 10px; border-radius: 5px;">
|
| 626 |
+
<strong>Referencias Encontradas</strong><br>
|
| 627 |
+
<span style="font-size: 24px; color: #3498db;">{summary['found']}</span>
|
| 628 |
+
</div>
|
| 629 |
+
<div style="background: white; padding: 10px; border-radius: 5px;">
|
| 630 |
+
<strong>Verificadas</strong><br>
|
| 631 |
+
<span style="font-size: 24px; color: #2ecc71;">{summary['verified']}</span>
|
| 632 |
+
</div>
|
| 633 |
+
<div style="background: white; padding: 10px; border-radius: 5px;">
|
| 634 |
+
<strong>Descargadas</strong><br>
|
| 635 |
+
<span style="font-size: 24px; color: #9b59b6;">{summary['downloaded']}</span>
|
| 636 |
+
</div>
|
| 637 |
+
<div style="background: white; padding: 10px; border-radius: 5px;">
|
| 638 |
+
<strong>Tiempo</strong><br>
|
| 639 |
+
<span style="font-size: 24px; color: #e74c3c;">{summary['time']}</span>
|
| 640 |
+
</div>
|
| 641 |
+
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 642 |
</div>
|
| 643 |
</div>
|
| 644 |
+
"""
|
| 645 |
+
|
| 646 |
+
# Generar texto simple
|
| 647 |
+
text_output = f"""
|
| 648 |
+
Procesamiento completado exitosamente.
|
| 649 |
+
|
| 650 |
+
• Referencias encontradas: {summary['found']}
|
| 651 |
+
• Referencias verificadas: {summary['verified']}
|
| 652 |
+
• Archivos descargados: {summary['downloaded']}
|
| 653 |
+
• Tiempo de procesamiento: {summary['time']}
|
| 654 |
+
|
| 655 |
+
El archivo ZIP con los resultados está listo para descargar.
|
| 656 |
+
"""
|
| 657 |
+
|
| 658 |
+
# JSON del reporte (limitado)
|
| 659 |
+
report_json = json.dumps(result["report"], indent=2, ensure_ascii=False)
|
| 660 |
+
if len(report_json) > 5000:
|
| 661 |
+
report_json = report_json[:5000] + "\n... (reporte truncado por tamaño)"
|
| 662 |
+
|
| 663 |
+
return result["zip_path"], "✅ Procesamiento completado", html_output, text_output, report_json
|
|
|
|
|
|
|
| 664 |
|
| 665 |
+
else:
|
| 666 |
+
return None, f"❌ Error: {result.get('error', 'Error desconocido')}", "", "", {}
|
| 667 |
+
|
| 668 |
+
except Exception as e:
|
| 669 |
+
logger.error(f"Processing error: {e}")
|
| 670 |
+
return None, f"❌ Error: {str(e)}", "", "", {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 671 |
|
| 672 |
+
# Crear interfaz simple
|
| 673 |
+
with gr.Blocks(title="Sistema de Recopilación Bibliográfica", theme=gr.themes.Soft()) as interface:
|
| 674 |
+
gr.Markdown("# 📚 Sistema de Recopilación Bibliográfica")
|
| 675 |
+
gr.Markdown("Extrae, verifica y descarga referencias académicas de textos")
|
| 676 |
|
| 677 |
with gr.Row():
|
| 678 |
with gr.Column(scale=1):
|
| 679 |
+
gr.Markdown("### ⚙️ Configuración")
|
| 680 |
|
| 681 |
+
use_ai = gr.Checkbox(
|
| 682 |
+
label="Usar IA para análisis avanzado",
|
| 683 |
+
value=False
|
|
|
|
|
|
|
| 684 |
)
|
| 685 |
|
| 686 |
+
api_provider = gr.Dropdown(
|
| 687 |
+
choices=["openai", "moonshot", "nebius", "anthropic", "deepseek"],
|
| 688 |
+
label="Proveedor de IA",
|
| 689 |
+
value="moonshot"
|
| 690 |
)
|
| 691 |
|
| 692 |
+
api_key = gr.Textbox(
|
| 693 |
+
label="API Key",
|
| 694 |
type="password",
|
| 695 |
+
placeholder="Ingresa tu API key"
|
| 696 |
)
|
| 697 |
|
| 698 |
+
api_model = gr.Textbox(
|
| 699 |
+
label="Modelo (opcional)",
|
| 700 |
+
value="moonshotai/Kimi-K2-Instruct",
|
| 701 |
+
placeholder="Deja vacío para usar el modelo por defecto"
|
| 702 |
)
|
| 703 |
|
| 704 |
+
gr.Markdown("""
|
| 705 |
+
### 🔑 APIs Soportadas
|
| 706 |
+
- **Moonshot**: moonshotai/Kimi-K2-Instruct
|
| 707 |
+
- **Nebius**: neural-chat-7b-v3-1
|
| 708 |
+
- **OpenAI**: gpt-4, gpt-3.5-turbo
|
| 709 |
+
- **Anthropic**: Claude 3
|
| 710 |
+
- **DeepSeek**: deepseek-chat
|
| 711 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 712 |
|
| 713 |
with gr.Column(scale=2):
|
| 714 |
+
gr.Markdown("### 📄 Ingresar Texto")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 715 |
|
| 716 |
+
text_input = gr.Textbox(
|
| 717 |
+
label="Texto con referencias bibliográficas",
|
| 718 |
+
placeholder="Pega aquí tu texto con referencias académicas...",
|
| 719 |
+
lines=15,
|
| 720 |
+
max_lines=50
|
| 721 |
)
|
| 722 |
|
| 723 |
+
process_btn = gr.Button("🔍 Procesar Texto", variant="primary")
|
| 724 |
|
| 725 |
gr.Markdown("### 📦 Resultados")
|
| 726 |
|
| 727 |
+
result_file = gr.File(label="Descargar Resultados (ZIP)")
|
| 728 |
+
result_status = gr.Markdown()
|
|
|
|
| 729 |
|
| 730 |
with gr.Tabs():
|
| 731 |
with gr.TabItem("📋 Vista HTML"):
|
| 732 |
+
html_output = gr.HTML(label="Resultados Visuales")
|
| 733 |
|
| 734 |
+
with gr.TabItem("📝 Texto"):
|
| 735 |
text_output = gr.Textbox(
|
| 736 |
label="Resumen",
|
| 737 |
+
lines=10,
|
| 738 |
+
max_lines=20
|
| 739 |
)
|
| 740 |
|
| 741 |
+
with gr.TabItem("🔧 JSON"):
|
| 742 |
json_output = gr.Code(
|
| 743 |
+
label="Datos del Reporte",
|
| 744 |
language="json",
|
| 745 |
+
lines=15
|
| 746 |
)
|
| 747 |
|
| 748 |
# Conectar eventos
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 749 |
process_btn.click(
|
| 750 |
+
process_text,
|
| 751 |
+
inputs=[text_input, use_ai, api_provider, api_key, api_model],
|
| 752 |
+
outputs=[result_file, result_status, html_output, text_output, json_output]
|
| 753 |
)
|
| 754 |
|
| 755 |
+
# Ejemplos
|
| 756 |
+
gr.Markdown("### 📖 Ejemplo de Texto")
|
| 757 |
+
gr.Examples(
|
| 758 |
+
examples=[["""Este es un ejemplo de texto con referencias académicas.
|
| 759 |
+
|
| 760 |
+
1. El paper seminal de AlexNet (Krizhevsky et al., 2012) tiene DOI: 10.1145/3065386
|
| 761 |
+
|
| 762 |
+
2. El trabajo sobre Transformers está en arXiv: arXiv:1706.03762
|
| 763 |
+
|
| 764 |
+
3. El libro de Deep Learning tiene ISBN: 978-0262035613
|
| 765 |
+
|
| 766 |
+
4. Más referencias:
|
| 767 |
+
- DOI: 10.1038/nature14539
|
| 768 |
+
- DOI: 10.1109/CVPR.2016.90
|
| 769 |
+
- arXiv: 1506.02640
|
| 770 |
+
|
| 771 |
+
URLs académicas:
|
| 772 |
+
- https://arxiv.org/abs/1706.03762
|
| 773 |
+
- https://doi.org/10.1145/3065386"""]],
|
| 774 |
+
inputs=[text_input],
|
| 775 |
+
label="Ejemplo básico"
|
| 776 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 777 |
|
| 778 |
return interface
|
| 779 |
|
| 780 |
# ========== EJECUCIÓN PRINCIPAL ==========
|
| 781 |
|
| 782 |
+
def main():
|
| 783 |
"""Función principal"""
|
| 784 |
+
# Crear e iniciar la interfaz
|
| 785 |
+
interface = create_simple_interface()
|
| 786 |
+
|
| 787 |
+
# Configuración para Hugging Face Spaces
|
| 788 |
+
interface.launch(
|
| 789 |
+
server_name="0.0.0.0",
|
| 790 |
+
server_port=7860,
|
| 791 |
+
share=False, # Desactivar share en Spaces
|
| 792 |
+
debug=False
|
| 793 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 794 |
|
| 795 |
if __name__ == "__main__":
|
| 796 |
+
main()
|
|
|