Spaces:
Sleeping
Sleeping
Upload ejemplo_referencias.txt
Browse files- ejemplo_referencias.txt +122 -0
ejemplo_referencias.txt
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
T铆tulo del Documento: Investigaci贸n sobre Aprendizaje Profundo en Visi贸n Computacional
|
| 2 |
+
|
| 3 |
+
Este documento presenta un resumen de los principales avances en aprendizaje profundo aplicado a visi贸n por computadora. Se incluyen referencias a trabajos seminales y publicaciones recientes.
|
| 4 |
+
|
| 5 |
+
Referencias Principales:
|
| 6 |
+
|
| 7 |
+
1. AlexNet: Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in neural information processing systems, 25. DOI: 10.1145/3065386
|
| 8 |
+
|
| 9 |
+
2. VGG: Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
|
| 10 |
+
|
| 11 |
+
3. ResNet: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). DOI: 10.1109/CVPR.2016.90
|
| 12 |
+
|
| 13 |
+
4. Transformers para visi贸n: Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
|
| 14 |
+
|
| 15 |
+
5. YOLO: Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).
|
| 16 |
+
|
| 17 |
+
Libros de Referencia:
|
| 18 |
+
|
| 19 |
+
- Deep Learning (Adaptive Computation and Machine Learning series) de Ian Goodfellow, Yoshua Bengio, Aaron Courville. MIT Press, 2016. ISBN: 978-0262035613
|
| 20 |
+
|
| 21 |
+
- Pattern Recognition and Machine Learning de Christopher M. Bishop. Springer, 2006. ISBN: 978-0387310732
|
| 22 |
+
|
| 23 |
+
- Computer Vision: Algorithms and Applications de Richard Szeliski. Springer, 2010. ISBN: 978-1848829343
|
| 24 |
+
|
| 25 |
+
Recursos en L铆nea:
|
| 26 |
+
|
| 27 |
+
- Tutorial sobre redes neuronales convolucionales: https://cs231n.github.io/convolutional-networks/
|
| 28 |
+
- Repositorio de implementaciones: https://github.com/pytorch/vision
|
| 29 |
+
- Dataset ImageNet: https://www.image-net.org/
|
| 30 |
+
- Papers with Code: https://paperswithcode.com/
|
| 31 |
+
|
| 32 |
+
Art铆culos Adicionales:
|
| 33 |
+
|
| 34 |
+
6. MobileNet: Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
|
| 35 |
+
|
| 36 |
+
7. EfficientNet: Tan, M., & Le, Q. V. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning (pp. 6105-6114). PMLR.
|
| 37 |
+
|
| 38 |
+
8. UNet: Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham. DOI: 10.1007/978-3-319-24574-4_28
|
| 39 |
+
|
| 40 |
+
9. StyleGAN: Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4401-4410).
|
| 41 |
+
|
| 42 |
+
Referencias para B煤squeda Avanzada:
|
| 43 |
+
|
| 44 |
+
- DOI: 10.1038/s41586-021-03819-2
|
| 45 |
+
- DOI: 10.1109/TPAMI.2020.2983666
|
| 46 |
+
- DOI: 10.1007/s11263-020-01407-x
|
| 47 |
+
|
| 48 |
+
IDs de arXiv para descarga directa:
|
| 49 |
+
- arXiv:1506.02640 (YOLO v1)
|
| 50 |
+
- arXiv:1512.03385 (ResNet)
|
| 51 |
+
- arXiv:1704.04861 (MobileNet)
|
| 52 |
+
- arXiv:1905.11946 (EfficientNet)
|
| 53 |
+
|
| 54 |
+
URLs Acad茅micas:
|
| 55 |
+
- https://ieeexplore.ieee.org/document/9356352
|
| 56 |
+
- https://dl.acm.org/doi/10.1145/3394171.3413521
|
| 57 |
+
- https://www.sciencedirect.com/science/article/pii/S0167865521001039
|
| 58 |
+
- https://link.springer.com/chapter/10.1007/978-3-030-58592-1_5
|
| 59 |
+
|
| 60 |
+
Identificadores Varios:
|
| 61 |
+
|
| 62 |
+
- PubMed ID: 33745078 (revisi贸n sobre visi贸n computacional en medicina)
|
| 63 |
+
- PubMed ID: 33423081 (aplicaciones de deep learning en radiolog铆a)
|
| 64 |
+
- ISBN adicional: 978-1492032649 (Deep Learning with Python)
|
| 65 |
+
|
| 66 |
+
Conferencias Relevantes:
|
| 67 |
+
|
| 68 |
+
- CVPR (Conference on Computer Vision and Pattern Recognition): https://cvpr2022.thecvf.com/
|
| 69 |
+
- ICCV (International Conference on Computer Vision): https://iccv2021.thecvf.com/
|
| 70 |
+
- ECCV (European Conference on Computer Vision): https://eccv2022.ecva.net/
|
| 71 |
+
|
| 72 |
+
M谩s Referencias en Texto Libre:
|
| 73 |
+
|
| 74 |
+
El trabajo seminal de LeCun et al. sobre backpropagation (DOI: 10.1038/323533a0) sent贸 las bases. M谩s recientemente, los transformers han dominado el campo NLP (arXiv:1706.03762) y ahora se aplican a visi贸n.
|
| 75 |
+
|
| 76 |
+
Para implementaciones pr谩cticas, consultar los repositorios oficiales:
|
| 77 |
+
- TensorFlow Models: https://github.com/tensorflow/models
|
| 78 |
+
- Detectron2: https://github.com/facebookresearch/detectron2
|
| 79 |
+
- MMDetection: https://github.com/open-mmlab/mmdetection
|
| 80 |
+
|
| 81 |
+
Referencias de Surveys:
|
| 82 |
+
|
| 83 |
+
10. Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., & Pietik盲inen, M. (2020). Deep learning for generic object detection: A survey. International journal of computer vision, 128(2), 261-318. DOI: 10.1007/s11263-019-01247-4
|
| 84 |
+
|
| 85 |
+
11. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., & Terzopoulos, D. (2021). Image segmentation using deep learning: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(7), 3523-3542. DOI: 10.1109/TPAMI.2021.3059968
|
| 86 |
+
|
| 87 |
+
Lista de DOIs para Pruebas Masivas:
|
| 88 |
+
|
| 89 |
+
10.1145/3065386
|
| 90 |
+
10.1109/CVPR.2016.90
|
| 91 |
+
10.1007/978-3-319-24574-4_28
|
| 92 |
+
10.1038/s41586-021-03819-2
|
| 93 |
+
10.1109/TPAMI.2020.2983666
|
| 94 |
+
10.1007/s11263-020-01407-x
|
| 95 |
+
10.1007/s11263-019-01247-4
|
| 96 |
+
10.1109/TPAMI.2021.3059968
|
| 97 |
+
10.1038/323533a0
|
| 98 |
+
10.1016/j.neunet.2020.01.001
|
| 99 |
+
|
| 100 |
+
Informaci贸n de Contacto:
|
| 101 |
+
|
| 102 |
+
Para m谩s detalles sobre esta investigaci贸n, contactar al autor principal:
|
| 103 |
+
Dr. Investigador Ejemplo
|
| 104 |
+
Universidad de Ejemplo
|
| 105 |
+
Correo: [email protected]
|
| 106 |
+
Sitio web: https://www.ejemplo.edu/investigador
|
| 107 |
+
|
| 108 |
+
Repositorio de datos: https://zenodo.org/record/1234567
|
| 109 |
+
C贸digo fuente: https://github.com/ejemplo/codigo-vision
|
| 110 |
+
|
| 111 |
+
---
|
| 112 |
+
|
| 113 |
+
Fin del documento de ejemplo.
|
| 114 |
+
Este archivo contiene m煤ltiples tipos de referencias acad茅micas:
|
| 115 |
+
- 15+ DOIs
|
| 116 |
+
- 5+ arXiv IDs
|
| 117 |
+
- 10+ URLs acad茅micas
|
| 118 |
+
- 4+ ISBNs
|
| 119 |
+
- 2+ PubMed IDs
|
| 120 |
+
- Referencias en formato APA y texto libre
|
| 121 |
+
|
| 122 |
+
脷ltima actualizaci贸n: 2024
|