File size: 49,263 Bytes
42f1460
 
 
 
 
 
 
 
0ec03fb
42f1460
0ec03fb
 
 
 
 
42f1460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326bbbe
42f1460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02ab93e
42f1460
 
 
 
 
 
 
 
 
 
02ab93e
 
 
42f1460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbde9b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
import gradio as gr
import pandas as pd
import os
from pathlib import Path
import random
from utils import display_table,current_time,random_ques_ans2,move_to,score_report_bar,all_contri_ans
from inference import model_chain
import warnings
# from huggingface_hub import snapshot_download

# snapshot_download(repo_id="CGIAR/weai-ref", 
#                   repo_type="dataset", 
#                   token=os.getenv('HF_TOKEN'), 
#                   local_dir='./rag_data'
#                   )
warnings.filterwarnings('ignore')
os.environ["WANDB_DISABLED"] = "true"
global cnt
cnt=1
data=[]
save_ques_ans=[]
save_ques_ans_test=[]
cur_time=current_time()

from huggingface_hub import HfApi
# Initialize the Hugging Face API client
api = HfApi()

# Specify the organization where Llama models are hosted
organization = "meta-llama"

# List all models belonging to the specified organization
# This will return a list of ModelInfo objects
llama_models = [model.modelId for model in api.list_models(author=organization)
                if 'chat' in model.modelId]


ans_path = Path("model_ans")
ans_path.mkdir(parents=True, exist_ok=True)

def random_ques_ans(model_ans):
    df_temp=pd.read_excel(os.path.join("model_ans",str(model_ans)))
    global cnt
    id=int((df_temp.loc[cnt])['id'])
    ques_temp=(df_temp.loc[cnt])['question']
    ans_temp=(df_temp.loc[cnt])['answer']
    cnt+=1
    if cnt>=len(df_temp):
        cnt=0
        return ques_temp,ans_temp,id,0
    return ques_temp,ans_temp,id,1
def save_all(model_ans):
    temp=pd.DataFrame(data)
    temp.to_excel(f"score_report\\{model_ans+cur_time}.xlsx",index=False)
    gr.Info("Sucessfully save all the answer!!!")

def score_save(ques,ans,score,model_ans,token_key):
    data.append({
        "question":ques,
        'answer':ans,
        'rating':score
    })
    # if len(data)%5==0:
    temp=pd.DataFrame(data)
    temp.to_excel(f"score_report\\{model_ans+cur_time}.xlsx",index=False)
    gr.Info("Sucessfully saved in local folder!!!")
    ques_temp,ans_temp,id,flag=random_ques_ans(model_ans)
    gr.Info("Your opinion is submitted successfully!!!")
    return gr.Label(value=id,label="ID"),gr.Label(value=ques_temp, label="Question"), gr.Label(value=ans_temp, label="Answer")

def new_ques(model_ans):
    ques_temp,ans_temp,id2,flag=random_ques_ans(model_ans)
    return {
        id:gr.Label(value=id2,label="ID"),
        ques:gr.Label(value=ques_temp,label="Question"),
        ans:gr.Label(value=ans_temp,label="Answer")
    }

def save_the_ques(ques,ans,file_type = 'xlsx'):
    """
    Saves a question and answer pair to a specified file (xlsx or csv).

    Args:
        ques (str): The question.
        ans (str): The answer.
        file_type (str, optional): The file type to save to ("xlsx" or "csv").
                                    Defaults to "xlsx".

    Returns:
        str: A success label.
    """

    new_data = {"question": [ques], "answer": [ans]}
    df_new = pd.DataFrame(new_data)

    filepath = f"data/finetune_data.{file_type}"

    if Path(filepath).is_file():
        df_existing = pd.read_excel(filepath) if file_type == "xlsx" else pd.read_csv(filepath)
        df_combined = pd.concat([df_existing, df_new], ignore_index=True)
    else:
        df_combined = df_new

    if file_type == "xlsx":
        df_combined.to_excel(filepath, index=False)
    elif file_type == "csv":
        df_combined.to_csv(filepath, index=False)

    return gr.Label(value="Successfully saved in local folder.", visible=True)

def save_the_ques_test(ques, ans, file_type = 'xlsx'):
    """
    Saves a question and answer pair to a specified file (xlsx or csv).

    Args:
        ques (str): The question.
        ans (str): The answer.
        file_type (str, optional): The file type to save to ("xlsx" or "csv").
                                    Defaults to "xlsx".

    Returns:
        str: A success label.
    """

    new_data = {"question": [ques], "answer": [ans]}
    df_new = pd.DataFrame(new_data)

    filepath = f"data/testing_data.{file_type}"

    if Path(filepath).is_file():
        df_existing = pd.read_excel(filepath) if file_type == "xlsx" else pd.read_csv(filepath)
        df_combined = pd.concat([df_existing, df_new], ignore_index=True)
    else:
        df_combined = df_new

    if file_type == "xlsx":
        df_combined.to_excel(filepath, index=False)
    elif file_type == "csv":
        df_combined.to_csv(filepath, index=False)

    return gr.Label(value="Successfully saved in local folder.", visible=True)

import pandas as pd
from pathlib import Path

def save_emb_data(loss_function, first_input, second_input, third_input, file_type="xlsx"):
    """
    Saves embedding data based on the specified loss function to either an Excel
    file (xlsx) or a CSV file (csv).

    Args:
        loss_function (str): The name of the loss function.
        first_input: The first input data.
        second_input: The second input data.
        third_input: The third input data.
        file_type (str, optional): The file type to save to ("xlsx" or "csv").
                                    Defaults to "xlsx".

    Returns:
        str: A success message indicating whether data was appended or a new file
             was created.
    """

    if loss_function == "MultipleNegativesRankingLoss":
        data = pd.DataFrame({
            "anchor": [first_input],
            "positive": [second_input],
            "negative": [third_input]
        })
    elif loss_function == "OnlineContrastiveLoss":
        data = pd.DataFrame({
            "sentence1": [first_input],
            "sentence2": [second_input],
            "label": [third_input]
        })
    elif loss_function == "CoSENTLoss":
        data = pd.DataFrame({
            "sentence1": [first_input],
            "sentence2": [second_input],
            "score": [third_input]
        })
    elif loss_function == "GISTEmbedLoss":
        data = pd.DataFrame({
            "anchor": [first_input],
            "positive": [second_input],
            "negative": [third_input]
        })
    elif loss_function == "TripletLoss":
        data = pd.DataFrame({
            "anchor": [first_input],
            "positive": [second_input],
            "negative": [third_input]
        })

    filepath = f"data/emb_data.{file_type}"

    try:
        if file_type == "xlsx":
            existing_data = pd.read_excel(filepath)
        elif file_type == "csv":
            existing_data = pd.read_csv(filepath)

        if list(data.columns) == list(existing_data.columns):
            combined_data = pd.concat([existing_data, data], ignore_index=True)
            if file_type == "xlsx":
                combined_data.to_excel(filepath, index=False)
            elif file_type == "csv":
                combined_data.to_csv(filepath, index=False)
            return "Data appended to existing file!"
        else:
            if file_type == "xlsx":
                data.to_excel(filepath, index=False)
            elif file_type == "csv":
                data.to_csv(filepath, index=False)
            return "Data saved to a new file (overwritten)!"

    except FileNotFoundError:
        if file_type == "xlsx":
            data.to_excel(filepath, index=False)
        elif file_type == "csv":
            data.to_csv(filepath, index=False)
        return "Data saved to a new file!"

def parse_data_func(link_temp,progress=gr.Progress()):
    progress(0, desc="Starting...")
    parse_data(link_temp,progress)
    gr.Info("Finished parsing!! Save as a docx file.")

def next_ques(ques,ans):
    ques_temp,ans_temp=random_ques_ans2()
    return gr.Label(value=ques_temp)

with gr.Blocks(title="LLM QA Chatbot Builder") as demo:
    gr.Markdown("""
        # FarmerBot
            """)
    with gr.Tab("Data Collection"):
            gr.Markdown(""" # Instructions:
            In this page you can prepare data for LLM fine-tuning, testing and embedding model finetuning your model. The data can be provided through Excel file or CSV file or directly via web interface. Additionally, data can be parsed from the target website (Data parsing for RAG) to further enhance the model performance.

            ## 1. If you want to provide data in Excel file or CSV file for model fine-tuning and testing.
            - Create an Excel or CSV file in the data folder and name it `finetune_data.xlsx` or `finetune_data.csv` for finetuning the model.
            - Create an Excel or CSV file in the data folder and name it `testing_data.xlsx` or `testing_data.csv` for generating answers using the fine-tuned model.
            - `finetune_data.xlsx` or `finetune_data.csv` has two columns: `question` and `answer`. `testing_data.xlsx` or `testing_data.csv` has three columns: `question`, `ground_truth` ,`context`.
        """)
            gr.Markdown("""
                    ## `finetune_data.xlsx`  |  `finetune_data.csv`
                 """)
            gr.HTML(value=display_table(), label="finetune_data.xlsx or finetune_data.csv")
            gr.Markdown("""
                    ## `testing_data.xlsx`  |  `testing_data.csv`
                 """)
            gr.HTML(value=display_table("data/demo_test_data.xlsx"), label="testing_data.xlsx or testing_data.csv")
            gr.Markdown("""
                    ## 2. You can use the below interface to create the dataset for training and testing models.
                 """)

            #Training data generation
            with gr.Tab("Training Data Generation"):
                with gr.Tab("Existing Questions"):
                    gr.Markdown("""
                        Existing questions are provided by the administrator and placed in the data folder named `existing_dataset.xlsx`. This file has only one column: `question`.
                        After clicking the `Save the Answer` button. Those questions and answers are saved in the `data` folder as a `finetune_data.xlsx` file.
                    """)
                    ques_temp,ans_temp=random_ques_ans2()
                    with gr.Row():
                        ques=gr.Label(value=ques_temp,label="Question")
                    with gr.Row():
                        ans=gr.TextArea(label="Answer")
                    with gr.Row():
                        with gr.Row():
                            type_options = gr.Dropdown(choices=["Save xlsx", "Save csv"], value="Save xlsx", label="Preferred file type")
                            save_training = gr.Button(value="Save")
                        question = gr.Button("Generate New Question")
                    with gr.Row():
                        lab=gr.Label(visible=False)
                question.click(next_ques,None,ques)
                save_training.click(save_the_ques,[ques,ans,type_options],lab)

                with gr.Tab("Custom Questions"):
                    gr.Markdown("""
                        After clicking the `save the answer` button. Those questions and answers are saved in the `data` folder as a `finetune_data.xlsx` file.
                    """)
                    with gr.Row():
                        ques=gr.Textbox(label="Question")
                    with gr.Row():
                        ans=gr.TextArea(label="Answer")
                    with gr.Row():
                        with gr.Row():
                            type_options = gr.Dropdown(choices=["Save xlsx", "Save csv"], value="Save xlsx", label="Preferred file type")
                            save_training = gr.Button(value="Save")
                    with gr.Row():
                        lab=gr.Label(visible=False,value="You answer is submitted!!! Thank you for your contribution.",label="Submitted")
                    save_training.click(save_the_ques,[ques,ans,type_options],lab)

            ### Testing data generation
            with gr.Tab("Testing Data Generation"):
                gr.Markdown("""
                    You can create test data for generating answers using the fine-tune model, which will be used for testing the model's performance.
                    After clicking the `Save the Answer` button. Those questions and answers are saved in the `data` folder as a `testing_data.xlsx` file.
                            """)
                with gr.Row():
                    ques=gr.Textbox(label="Question")
                with gr.Row():
                    ans=gr.TextArea(label="Ground Truth")
                with gr.Row():
                    ans=gr.TextArea(label="Contexts")
                with gr.Row():
                    with gr.Row():
                        type_options = gr.Dropdown(choices=["Save xlsx", "Save csv"], value="Save xlsx", label="Preferred file type")
                        save_test = gr.Button(value="Save")
                with gr.Row():
                    lab=gr.Label(visible=False,value="You answer is submitted!!! Thank you for your contribution.",label="Submitted")
                save_test.click(save_the_ques_test,[ques,ans,type_options],None)

            ## Embedding data generation
            def update_fields(loss_function):
                if loss_function == "MultipleNegativesRankingLoss":
                    first_input = gr.Textbox(label="Anchor", visible=True, placeholder="The sentence to be embedded.")
                    second_input = gr.Textbox(label="Positive", visible=True, placeholder="A sentence semantically similar to the anchor.")
                    third_input = gr.Textbox(label="Negative", visible=True, placeholder="A sentence semantically dissimilar to the anchor.")
                    markdown = gr.Markdown(
                    """
                    **MultipleNegativesRankingLoss:**
                    Expects data with columns: `anchor`, `positive`, `negative`.
                    - `anchor`: The sentence to be embedded.
                    - `positive`: A sentence semantically similar to the anchor.
                    - `negative`: A sentence semantically dissimilar to the anchor.""",
                    visible=True
                )
                elif loss_function == "OnlineContrastiveLoss":
                    first_input = gr.Textbox(label="Sentence 1", visible=True, placeholder="The first sentence.")
                    second_input = gr.Textbox(label="Sentence 2", visible=True, placeholder="The second sentence.")
                    third_input = gr.Textbox(label="Label", visible=True, placeholder="1 if the sentences are similar, 0 if dissimilar.")
                    markdown = gr.Markdown(
                    """
                    **OnlineContrastiveLoss:**
                    Expects data with columns: `sentence1`, `sentence2`, `label`.
                    - `sentence1`, `sentence2`: Pairs of sentences.
                    - `label`: 1 if the sentences are similar, 0 if dissimilar.""",
                    visible=True
                )
                elif loss_function == "CoSENTLoss":
                    first_input = gr.Textbox(label="Sentence 1", visible=True, placeholder="The first sentence.")
                    second_input = gr.Textbox(label="Sentence 2", visible=True, placeholder="The second sentence.")
                    third_input = gr.Textbox(label="Score", visible=True, placeholder="A float value (e.g., 0-1) representing their similarity.")
                    markdown = gr.Markdown(
                    """
                    **CoSENTLoss:**
                    Expects data with columns: `sentence1`, `sentence2`, `score`.
                    - `sentence1`, `sentence2`: Pairs of sentences.
                    - `score`: A float value (e.g., 0-1) representing their similarity.""",
                    visible=True
                )
                elif loss_function == "GISTEmbedLoss":
                    first_input = gr.Textbox(label="Anchor", visible=True, placeholder="The sentence to be embedded.")
                    second_input = gr.Textbox(label="Positive", visible=True, placeholder="A sentence semantically similar to the anchor.")
                    third_input = gr.Textbox(label="Negative", visible=True, placeholder="A sentence semantically dissimilar to the anchor. Can be empty.")
                    markdown = gr.Markdown(
                    """
                    **GISTEmbedLoss:**
                    Expects data with either:
                    - Columns: `anchor`, `positive`, `negative` (like TripletLoss).
                    - Columns: `anchor`, `positive` (for pairs of similar sentences).""",
                    visible=True
                )
                elif loss_function == "TripletLoss":
                    first_input = gr.Textbox(label="Anchor", visible=True, placeholder="The sentence to be embedded.")
                    second_input = gr.Textbox(label="Positive", visible=True, placeholder="A sentence semantically similar to the anchor.")
                    third_input = gr.Textbox(label="Negative", visible=True, placeholder="A sentence semantically dissimilar to the anchor.")
                    markdown = gr.Markdown(
                    """
                    **TripletLoss:**
                    Expects data with columns: `anchor`, `positive`, `negative`.
                    - `anchor`: The sentence to be embedded.
                    - `positive`: A sentence semantically similar to the anchor.
                    - `negative`: A sentence semantically dissimilar to the anchor.""",
                    visible=True
                )
                else:
                    first_input = gr.Textbox(visible=False)
                    second_input = gr.Textbox(visible=False)
                    third_input = gr.Textbox(visible=False)
                    markdown = gr.Markdown(visible=False)

                return first_input, second_input, third_input, markdown

            with gr.Tab("Embedding Data Generation"):
                gr.Markdown("**Choose a loss function to format your embedding data.**")
                with gr.Row():
                    loss_function = gr.Dropdown(
                        choices=[
                            "MultipleNegativesRankingLoss",
                            "OnlineContrastiveLoss",
                            "CoSENTLoss",
                            "GISTEmbedLoss",
                            "TripletLoss",
                        ],
                        label="Select the loss function",
                    )
                with gr.Row():
                    gr.Markdown("""Format `data/emb_data.xlsx` or `data/emb_data.csv` to the expected data format, according to the selected loss function.
                If the file exists and has matching columns, new data will be appended.
                Otherwise, the file will be overwritten.""")
                with gr.Row():
                    loss_info_markdown = gr.Markdown(visible=False)
                with gr.Row():
                    first_input = gr.Textbox(label="Anchor", value="",visible=False)
                    second_input = gr.Textbox(label="Positive", value="",visible=False)
                    third_input = gr.Textbox(label="Negative", value="",visible=False)
                loss_function.change(update_fields, loss_function, [first_input, second_input, third_input,loss_info_markdown])
                with gr.Row():
                    with gr.Row():
                        type_options = gr.Dropdown(choices=["Save xlsx", "Save csv"], value="Save xlsx", label="Preferred file type")
                        save_emb = gr.Button(value="Save")
                save_emb.click(save_emb_data,[loss_function,first_input,second_input,third_input,type_options])

            with gr.Row():
                gr.Markdown("""
                        ## 3. Data parsing for RAG
                    """)
            with gr.Row():
                link_temp=gr.Textbox(label="Enter Link to Parse Data for RAG",info="To provide the link for parsing the data from the website, this link can help create RAG data for the model.")
                parse_data_btn=gr.Button("Parse Data")
            from utils import parse_data
            parse_data_btn.click(parse_data_func,link_temp,link_temp)

#***************************************************
    with gr.Tab("Fine-tuning"):
        with gr.Tab("Fine-tune LLM"):
            with gr.Row():
                def login_hug(token):
                    from huggingface_hub import login
                    login(token=token)
                login_hug(os.getenv('HF_TOKEN'))
            gr.Markdown("""
                # Instructions:
                - Required VRAM for training: 24GB, for inference: 16GB.(Mistral, Zepyhr and Lllama)\n
                - Required VRAM for training: 5GB, for inference: 4GB.(Phi,Flan-T5)
                - For fine-tuning a custom model select `custom model` option in `Select the model for fine-tuning` dropdown section. The custom model can be configured by editing the code section.\n
                - After fine-tuning the model, it will be saved in the `models` folder.
            """)

            def edit_model_parameter(model_name_temp,edit_code,code_temp,lr,epoch,batch_size,gradient_accumulation,quantization,lora_r,lora_alpha,lora_dropout, progress=gr.Progress()):
                progress(0, desc="Fine-tune started!! please wait ...")
                # write code to files if code was edited
                if edit_code and len(code_temp)!=0:
                    if model_name_temp=="Mistral":
                        open(r"fine_tune_file/mistral_finetune.py","w").write(code_temp)
                    elif model_name_temp=="Zephyr":
                        open(r"fine_tune_file/zepyhr_finetune.py","w").write(code_temp)
                    elif model_name_temp=="Llama":
                        open(r"fine_tune_file/llama_finetune.py","w").write(code_temp)
                    elif model_name_temp=="Phi":
                        open(r"fine_tune_file/phi_finetune.py","w").write(code_temp)
                    elif model_name_temp=="Custom model":
                        open(r"fine_tune_file/finetune_file.py","w").write(code_temp)
                # importing just before finetuning, to ensure the latest code is used
                # from fine_tune_file.mistral_finetune import mistral_trainer
                # from fine_tune_file.zepyhr_finetune import zephyr_trainer
                # from fine_tune_file.llama_finetune import llama_trainer
                # from fine_tune_file.phi_finetune import phi_trainer
                from fine_tune_file.finetune_file import custom_model_trainer
                # from fine_tune_file.flant5_finetune import flant5_trainer
                from fine_tune_file.modular_finetune import get_trainer
                # create instance of the finetuning classes and then call the finetune function

                if model_name_temp=="Custom model":
                    gr.Info("Fine-tune started!!!")
                    trainer=custom_model_trainer()
                    trainer.custom_model_finetune()
                    gr.Info("Fine-tune Ended!!!")
                else:
                    trainer=get_trainer(model_name_temp)
                    gr.Info("Fine-tune started!!!")
                    if model_name_temp=="Mistral":
                        trainer.mistral_finetune(lr,epoch,batch_size,gradient_accumulation,quantization,lora_r,lora_alpha,lora_dropout)
                    elif model_name_temp=="Zephyr":
                        trainer.zepyhr_finetune(lr,epoch,batch_size,gradient_accumulation,quantization,lora_r,lora_alpha,lora_dropout)
                    elif model_name_temp=="Llama":
                        trainer.llama_finetune(lr,epoch,batch_size,gradient_accumulation,quantization,lora_r,lora_alpha,lora_dropout)
                    elif model_name_temp=="Phi":
                        trainer.phi_finetune(lr,epoch,batch_size,gradient_accumulation,quantization,lora_r,lora_alpha,lora_dropout)
                    elif model_name_temp=="Flant5":
                        trainer.flant5_finetune(lr,epoch,batch_size,gradient_accumulation,quantization,lora_r,lora_alpha,lora_dropout)
                    gr.Info("Fine-tune Ended!!!")

            def code_show(model_name):
                if model_name=="Mistral":
                    f=open(r"fine_tune_file/mistral_finetune.py").read()
                    return gr.Code(visible=True,value=f,interactive=True,language="python")
                elif model_name=="Zephyr":
                    f=open(r"fine_tune_file/zepyhr_finetune.py").read()
                    return gr.Code(visible=True,value=f,interactive=True,language="python")
                elif model_name=="Llama":
                    f=open(r"fine_tune_file/llama_finetune.py").read()
                    return gr.Code(visible=True,value=f,interactive=True,language="python")
                elif model_name=="Phi":
                    f=open(r"fine_tune_file/phi_finetune.py").read()
                    return gr.Code(visible=True,value=f,interactive=True,language="python")
                elif model_name=="Flant5":
                    f=open(r"fine_tune_file/flant5_finetune.py").read()
                    return gr.Code(visible=True,value=f,interactive=True,language="python")

            def custom_model(model_name): # It shows custom model code in the UI.
                if model_name=="Custom model":
                    f=open(r"fine_tune_file/finetune_file.py").read()
                    return [gr.Code(visible=True,value=f,interactive=True,language="python"),gr.Button(visible=False)]
                else:
                    return [gr.Code(visible=False),gr.Button("Advance Code Editing",visible=True)]
            def change_code_fun(code_,model_name):
                if model_name=="Mistral":
                    open(r"fine_tune_file/mistral_finetune.py","w").write(code_)
                    gr.Info("Successfully saved code!!!")
                elif model_name=="Zephyr":
                    open(r"fine_tune_file/zepyhr_finetune.py","w").write(code_)
                    gr.Info("Successfully saved code!!!")
                elif model_name=="Llama":
                    open(r"fine_tune_file/llama_finetune.py","w").write(code_)
                    gr.Info("Successfully saved code!!!")
                elif model_name=="Phi":
                    open(r"fine_tune_file/phi_finetune.py","w").write(code_)
                    gr.Info("Successfully saved code!!!")
                elif model_name=="Flant5":
                    open(r"fine_tune_file/flant5_finetune.py","w").write(code_)
                    gr.Info("Successfully saved code!!!")

            def finetune_emb(model_name, loss_name, epochs = 1, batch_size = 8):
                gr.Info("Embedding model fine-tune is started!!!")
                from embedding_tuner import EmbeddingFinetuner
                finetuner = EmbeddingFinetuner(
                    model_name=model_name,
                    loss_function=loss_name,
                    epochs=epochs,
                    batch_size=batch_size,
                )
                success = finetuner.train()
                if success:
                    gr.Info("Embedding model fine-tune finished!!!")

            with gr.Row():
                code_temp=gr.Code(visible=False)
            with gr.Row():
                model_name=gr.Dropdown(choices=["Mistral","Zephyr","Llama","Phi","Flant5","Custom model"],label="Select the LLM for fine-tuning")
            with gr.Accordion("Parameter Setup"):
                with gr.Row():
                    lr=gr.Number(label="learning_rate",value=5e-6,interactive=True,info="The step size at which the model parameters are updated during training. It controls the magnitude of the updates to the model's weights.")
                    epoch=gr.Number(label="epochs",value=2,interactive=True,info="One complete pass through the entire training dataset during the training process. It's a measure of how many times the algorithm has seen the entire dataset.")
                    batch_size=gr.Number(label="batch_size",value=4,interactive=True,info="The number of training examples used in one iteration of training. It affects the speed and stability of the training process.")
                    gradient_accumulation = gr.Number(info="Gradient accumulation involves updating model weights after accumulating gradients over multiple batches, instead of after each individual batch.",label="gradient_accumulation",value=4,interactive=True)
                with gr.Row():
                    quantization = gr.Dropdown(info="Quantization is a technique used to reduce the precision of numerical values, typically from 32-bit floating-point numbers to lower bit representations.",label="quantization",choices=[4,8],value=8,interactive=True)
                    lora_r = gr.Number(info="LoRA_r is a hyperparameter associated with the rank of the low-rank approximation used in LoRA.",label="lora_r",value=16,interactive=True)
                    lora_alpha = gr.Number(info="LoRA_alpha is a hyperparameter used in LoRA for controlling the strength of the adaptation.",label="lora_alpha",value=32,interactive=True)
                    lora_dropout = gr.Number(info="LoRA_dropout is a hyperparameter used in LoRA to control the dropout rate during fine-tuning.",label="lora_dropout",value=.05,interactive=True)
            with gr.Row():
                edit_code=gr.Button("Advance Code Editing")
            with gr.Row():
                code_temp=gr.Code(visible=False)
            with gr.Row():
                parameter_alter=gr.Button("Fine-tune")
            with gr.Row():
                fin_com=gr.Label(visible=False)
            edit_code.click(code_show,model_name,code_temp)
            # On click finetune button
            parameter_alter.click(edit_model_parameter,[model_name,edit_code,code_temp,lr,epoch,batch_size,gradient_accumulation,quantization,lora_r,lora_alpha,lora_dropout],model_name)
            model_name.change(custom_model,model_name,[code_temp,edit_code])
        with gr.Tab("Embedding model"):
            with gr.Row():
                embedding_model = gr.Dropdown(
                    choices=[
                        "BAAI/bge-base-en-v1.5",
                        "dunzhang/stella_en_1.5B_v5",
                        "dunzhang/stella_en_400M_v5",
                        "nvidia/NV-Embed-v2",
                        "Alibaba-NLP/gte-Qwen2-1.5B-instruct",
                    ],
                    label="Select the embedding model for fine-tuning",
                )
                loss_function = gr.Dropdown(
                    choices=[
                        "MultipleNegativesRankingLoss",
                        "OnlineContrastiveLoss",
                        "CoSENTLoss",
                        "GISTEmbedLoss",
                        "TripletLoss",
                    ],
                    label="Select the loss function",
                )

                epoch=gr.Number(label="epochs",value=1,interactive=True,info="One complete pass through the entire training dataset during the training process.")
                batch_size=gr.Number(label="batch_size",value=8,interactive=True,info="The number of training examples used in one iteration of training.")
            with gr.Row():
                btn_emb = gr.Button("Fine-tune the embedding model")


            # with gr.Row():
            #     with gr.Accordion(label="Expected data format according to loss function"):
            #         loss_info = gr.Markdown(
            #             """
            #             # Expected data format according to loss function:
            #             ### Format `data/emb_data.xlsx` | `data/emb_data.xlsx` accordingly.

            #             **MultipleNegativesRankingLoss:**
            #             Expects data with columns: `anchor`, `positive`, `negative`.
            #             - `anchor`: The sentence to be embedded.
            #             - `positive`: A sentence semantically similar to the anchor.
            #             - `negative`: A sentence semantically dissimilar to the anchor.

            #             **OnlineContrastiveLoss:**
            #             Expects data with columns: `sentence1`, `sentence2`, `label`.
            #             - `sentence1`, `sentence2`: Pairs of sentences.
            #             - `label`: 1 if the sentences are similar, 0 if dissimilar.

            #             **CoSENTLoss:**
            #             Expects data with columns: `sentence1`, `sentence2`, `score`.
            #             - `sentence1`, `sentence2`: Pairs of sentences.
            #             - `score`: A float value (e.g., 0-1) representing their similarity.

            #             **GISTEmbedLoss:**
            #             Expects data with either:
            #             - Columns: `anchor`, `positive`, `negative` (like TripletLoss).
            #             - Columns: `anchor`, `positive` (for pairs of similar sentences).

            #             **TripletLoss:**
            #             Expects data with columns: `anchor`, `positive`, `negative`.
            #             - `anchor`: The sentence to be embedded.
            #             - `positive`: A sentence semantically similar to the anchor.
            #             - `negative`: A sentence semantically dissimilar to the anchor.
            #             """
            #         )



        btn_emb.click(finetune_emb,[embedding_model, loss_function, epoch, batch_size], None)
#***************************************************
    with gr.Tab("Testing Data Generation and RAG Customization"):
        from utils import save_params_to_file
        def ans_gen_fun(model_name_local,model_name_online,embedding_name,
                                            splitter_type_dropdown,chunk_size_slider,
                                            chunk_overlap_slider,separator_textbox,max_tokens_slider,save_as_fav,progress=gr.Progress()):
            if not os.path.exists(os.path.join("data","testing_dataset.xlsx")):
                gr.Warning("You need to create testing dataset first from Data collection.")
                return
            if save_as_fav:
                save_params_to_file(model_name_local,embedding_name,
                                            splitter_type_dropdown,chunk_size_slider,
                                            chunk_overlap_slider,separator_textbox,max_tokens_slider)
            # if not os.path.exists(model_name_local):
            #     gr.Error("Model not found in local folder!!")
            import time
            from model_ret import calculate_rag_metrics
            progress(0, desc="Starting...")
            idx=1
            model_ques_ans_gen=[]
            df_temp=pd.read_excel(r"data/testing_dataset.xlsx")
            infer_model = model_chain(model_name_local,model_name_online,
                                            True,embedding_name,splitter_type_dropdown,chunk_size_slider,
                                            chunk_overlap_slider,separator_textbox,max_tokens_slider)
            # rag_chain=infer_model.rag_chain_ret()
            print("Processing test dataset...")
            for x in progress.tqdm(df_temp.values):
                model_ques_ans_gen.append({
                    "id":idx,
                    "question":x[0],
                    'answer':infer_model.ans_ret(x[0]),
                    # "contexts":x[2],
                    "ground_truths":x[1]
                })
                idx+=1
            print("Done processing test dataset!")
            model_name = infer_model.model_name.split('/')[-1]
            temp=calculate_rag_metrics(model_ques_ans_gen,model_name)
            # print(temp)
            # temp['Average Rating'] = temp.mean(axis=1)
            pd.DataFrame(temp).to_excel(os.path.join("model_ans",f"_{model_name+cur_time}.xlsx"),index=False)
            rag_metrics = ['answer_correctness', 'answer_similarity', 'answer_relevancy', 'faithfulness', 'context_recall', 'context_precision']
            new_df = pd.DataFrame({'Rag Metric': rag_metrics, 'Average Rating': 0.2})

            return gr.BarPlot(
                new_df,
                x="Rag Metric",
                y="Average Rating",
                x_title="Rag Metric",
                y_title="Average Rating",
                title="RAG performance",
                tooltip=["Rag Metric", "Average Rating"],
                y_lim=[1, 200],
                width=150,
                # height=1000,
                visible=True
            )
        gr.Info("Generating answer from model is finished!!! Now, it is ready for human evaluation. Model answer is saved in \"model_ans\" folder. ")

        gr.Markdown(""" # Instructions:\n
                    In this page you can generate answer from fine-tuned models for human evaluation. The questions must be created using `Testing data generation` section of `Data collection` tab.
                    """)
        with gr.Row():
            embedding_name=gr.Dropdown(choices=["BAAI/bge-base-en-v1.5","dunzhang/stella_en_1.5B_v5","dunzhang/stella_en_400M_v5",
                                                "nvidia/NV-Embed-v2","Alibaba-NLP/gte-Qwen2-1.5B-instruct"],
                                    label="Select the Embedding Model")
            splitter_type_dropdown = gr.Dropdown(choices=["character", "recursive", "token"],
                                             value="character", label="Splitter Type",interactive=True)

            chunk_size_slider = gr.Slider(minimum=100, maximum=2000, value=500, step=50, label="Chunk Size")
            chunk_overlap_slider = gr.Slider(minimum=0, maximum=500, value=30, step=10, label="Chunk Overlap",interactive=True)
            separator_textbox = gr.Textbox(value="\n", label="Separator (e.g., newline '\\n')",interactive=True)
            max_tokens_slider = gr.Slider(minimum=100, maximum=5000, value=1000, step=100, label="Max Tokens",interactive=True)
        with gr.Row():
            save_as_fav=gr.Checkbox(label="Save this settings as favorite")
        inf_checkbox=gr.Checkbox(label="Do you want to use without fine-tuned model from Hugging face?")
        model_name_local=gr.Dropdown(visible=False)
        model_name_online=gr.Dropdown(visible=False)
        def model_online_local_show(inf_checkbox):
            if inf_checkbox:
                return [gr.Dropdown(visible=False),
                        gr.Dropdown(choices=llama_models,
                        label="Select the LLM from Huggingface",visible=True)]
            else:
                return [gr.Dropdown(choices=os.listdir("models"),label="Select the fine-tuned LLM",visible=True),
                        gr.Dropdown(visible=False)]
        inf_checkbox.change(model_online_local_show,[inf_checkbox],[model_name_local,model_name_online])

        with gr.Row():
            ans_gen=gr.Button("Generate Answer for Testing Dataset")
        with gr.Row():
            plot = gr.BarPlot(visible=False)
        ans_gen.click(ans_gen_fun,[model_name_local,model_name_online,embedding_name,
                                            splitter_type_dropdown,chunk_size_slider,
                                            chunk_overlap_slider,separator_textbox,max_tokens_slider,save_as_fav],plot)
#***************************************************Human evaluation
    import secrets

    def generate_token():
        while True:
            token=secrets.token_hex(6)
            f=[x[:-5] for x in os.listdir("save_ques_ans")]
            if token not in f:
                data = {
                        'id': [],
                        'question': [],
                        'answer': []
                    }
                df = pd.DataFrame(data)
                df.to_excel("save_ques_ans//"+str(token)+".xlsx", index=False)
                return gr.Label(label="Please keep the token for tracking question answer data",value=token,visible=True)

    def bar_plot_fn():
        temp=score_report_bar()
        return gr.BarPlot(
            temp,
            x="Model Name",
            y="Average Rating",
            x_title="Model name",
            y_title="Average Rating",
            title="Model performance",
            tooltip=["Model Name", "Average Rating"],
            y_lim=[1, 200],
            width=150,
            # height=1000,
            visible=True
        )
    with gr.Tab("Human Evaluation"):
        def answer_updated(model_ans):
            df_ques_ans=pd.read_excel(os.path.join("model_ans",str(model_ans)))
            num=0
            print(df_ques_ans['id'][num],"**"*10)
            return [gr.Markdown(value=f"""# Model_name: {model_ans}
                               # Number of questions: {len(df_ques_ans)}""",visible=True),
                               gr.Label(value=str(df_ques_ans['id'][num])),
                               gr.Label(value=str(df_ques_ans['question'][num])),
                               gr.Label(value=str(df_ques_ans['answer'][num])),
                               gr.Dropdown(visible=False),
                               gr.Button(visible=False)
                               ]

        with gr.Row():
            new_user=gr.Button("New User")
        with gr.Row():
            new_user_token=gr.Label(visible=False)
        with gr.Row():
            token_key=gr.Textbox(label="Enter your Token")
            model_ans=gr.Dropdown(choices=os.listdir("model_ans"),label="Select the Model Answer for Human Evaluation")
        btn_1=gr.Button("Submit")
        gr.Markdown(""" # Instructions:
            In this section, humans evaluate the answers of the model given specific questions. Each answer is rated between 1 and 5 by anonymous students.
            Those values are saved in the `scrore_report` folder.
                    """)
        lab_temp=gr.Markdown(visible=False)

        with gr.Row():
            id=gr.Label(value="",label="ID")
        with gr.Row():
            ques=gr.Label(value="",label="Question")
        with gr.Row():
            ans=gr.Label(value="",label="Answer")
        with gr.Row():
            score = gr.Radio(choices=[1,2,3,4,5],label="Rating")
        with gr.Row():
            human_ans_btn=gr.Button("Show Answer From Other Evaluators")
        with gr.Row():
            human_ans_lab=gr.Label(label="Human Answer",visible=False)
        with gr.Row():
            btn = gr.Button("Save")
            question = gr.Button("Skip")
        # with gr.Row():
            # save_all_btn=gr.Button("Save all the data in dataframe")
        # with gr.Row():
        #     move=gr.Number(label="Move to the question")
        #     move_btn=gr.Button("move")
        with gr.Row():
            btn_plot=gr.Button("Plot Generation")
        with gr.Row():
            plot = gr.BarPlot(visible=False)
        btn_plot.click(bar_plot_fn, None, outputs=plot)
        btn_1.click(answer_updated,model_ans,[lab_temp,id,ques,ans,model_ans,btn_1])
        btn.click(score_save, inputs=[ques,ans,score,model_ans,token_key], outputs=[id,ques,ans])
        question.click(new_ques,model_ans,[id,ques,ans])
        # save_all_btn.click(save_all,model_ans,None)
        # move_btn.click(move_to,[move,model_ans],[id,ques,ans])
        def human_ans_func(id, ques):
            temp=all_contri_ans(id,ques)
            return [gr.Button("Show Answer from Other Evaluators"),gr.Label(value="\n".join(temp),visible=True)]
        human_ans_btn.click(human_ans_func,[id, ques],[human_ans_btn,human_ans_lab])
        new_user.click(generate_token,None,new_user_token)

#***************************************************
    infer_ragchain=None
    with gr.Tab("Inference"):
        def echo(message, history,model_name_local,model_name_online,
                                            inf_checkbox,embedding_name,splitter_type_dropdown,chunk_size_slider,
                                            chunk_overlap_slider,separator_textbox,max_tokens_slider):
            global infer_ragchain
            if infer_ragchain is None:
                gr.Info("Please wait!!! model is loading!!")
                if inf_checkbox:
                    gr.Info("Model is loading from Huggingface!!")
                infer_ragchain = model_chain(model_name_local,model_name_online,
                                            inf_checkbox,embedding_name,splitter_type_dropdown,chunk_size_slider,
                                            chunk_overlap_slider,separator_textbox,max_tokens_slider)
            # rag_chain=infer_ragchain.rag_chain_ret()
            return infer_ragchain.ans_ret(message)
        from utils import load_params_from_file
        saved_params = load_params_from_file()
    # If saved parameters exist, use them; otherwise, set default values
        default_model_name = saved_params['model_name'] if saved_params else "Llama"
        default_embedding_name = saved_params['embedding_name'] if saved_params else "sentence-transformers/all-mpnet-base-v2"
        default_splitter_type = saved_params['splitter_type_dropdown'] if saved_params else "character"
        default_chunk_size = saved_params['chunk_size_slider'] if saved_params else 500
        default_chunk_overlap = saved_params['chunk_overlap_slider'] if saved_params else 30
        default_separator = saved_params['separator_textbox'] if saved_params else "\n"
        default_max_tokens = saved_params['max_tokens_slider'] if saved_params else 1000
        # with gr.Row():
        with gr.Row():
            def login_hug(token):
                from huggingface_hub import login
                login(token=token)
            token_tb=gr.Textbox(label="Enter your Huggingface token to access Huggingface models")
            token_tb.change(login_hug,token_tb,None)
            embedding_name=gr.Dropdown(choices=["sentence-transformers/all-mpnet-base-v2", "BAAI/bge-base-en-v1.5","dunzhang/stella_en_1.5B_v5","dunzhang/stella_en_400M_v5",
                                                "nvidia/NV-Embed-v2","Alibaba-NLP/gte-Qwen2-1.5B-instruct"],value=default_embedding_name,
                                    label="Select the Embedding Model")
            splitter_type_dropdown = gr.Dropdown(choices=["character", "recursive", "token"],
                                             value=default_splitter_type, label="Splitter Type",interactive=True)

            chunk_size_slider = gr.Slider(minimum=100, maximum=2000, value=default_chunk_size, step=50, label="Chunk Size")
            chunk_overlap_slider = gr.Slider(minimum=0, maximum=500, value=default_chunk_overlap, step=10, label="Chunk Overlap",interactive=True)
            separator_textbox = gr.Textbox(value=default_separator, label="Separator (e.g., newline '\\n')",interactive=True)
            max_tokens_slider = gr.Slider(minimum=100, maximum=5000, value=default_max_tokens, step=100, label="Max Tokens",interactive=True)

        inf_checkbox=gr.Checkbox(label="Do you want to use without fine-tuned model from Hugging face?")
        model_name_local=gr.Dropdown(visible=False)
        model_name_online=gr.Dropdown(visible=False)
        def model_online_local_show(inf_checkbox):
            if inf_checkbox:
                return [gr.Dropdown(visible=False),
                        gr.Dropdown(choices=llama_models,
                        label="Select the LLM from Huggingface",visible=True)]
            else:
                return [gr.Dropdown(choices=os.listdir("models"),label="Select the fine-tuned LLM",visible=True),
                        gr.Dropdown(visible=False)]

        inf_checkbox.change(model_online_local_show,[inf_checkbox],[model_name_local,model_name_online])
        gr.ChatInterface(fn=echo,
                         additional_inputs=[model_name_local,model_name_online,inf_checkbox,embedding_name,
                                            splitter_type_dropdown,chunk_size_slider,
                                            chunk_overlap_slider,separator_textbox,max_tokens_slider],
                           title="Chatbot")
    #----------------------------------------------
    with gr.Tab("Deployment"):
        gr.Markdown("""`deploy` folder has all the code for the deployment of the model.
                    For installing dependencies use the following command: `pip install -r requirements.txt`.
                    """)
        def deploy_func(model_name):
            import shutil
            import os
            src_folder = 'src'
            deploy_folder = 'deploy'
            files_to_copy = ['model_ret.py', 'create_retriever.py', 'inference.py']
            for file_name in files_to_copy:
                src_file_path = os.path.join(src_folder, file_name)
                dest_file_path = os.path.join(deploy_folder, file_name)
            param_list=load_params_from_file()
            param_list["model_name"]=model_name
            save_params_to_file(param_list)
            # f.write(f"{model_name}")


        model_name=gr.Dropdown(choices=os.listdir("models"),label="Select the Model")
        btn_model=gr.Button("Deploy")
        btn_model.click(deploy_func,model_name)

demo.launch(theme=gr.themes.Soft())