File size: 49,263 Bytes
42f1460 0ec03fb 42f1460 0ec03fb 42f1460 326bbbe 42f1460 02ab93e 42f1460 02ab93e 42f1460 bbde9b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 |
import gradio as gr
import pandas as pd
import os
from pathlib import Path
import random
from utils import display_table,current_time,random_ques_ans2,move_to,score_report_bar,all_contri_ans
from inference import model_chain
import warnings
# from huggingface_hub import snapshot_download
# snapshot_download(repo_id="CGIAR/weai-ref",
# repo_type="dataset",
# token=os.getenv('HF_TOKEN'),
# local_dir='./rag_data'
# )
warnings.filterwarnings('ignore')
os.environ["WANDB_DISABLED"] = "true"
global cnt
cnt=1
data=[]
save_ques_ans=[]
save_ques_ans_test=[]
cur_time=current_time()
from huggingface_hub import HfApi
# Initialize the Hugging Face API client
api = HfApi()
# Specify the organization where Llama models are hosted
organization = "meta-llama"
# List all models belonging to the specified organization
# This will return a list of ModelInfo objects
llama_models = [model.modelId for model in api.list_models(author=organization)
if 'chat' in model.modelId]
ans_path = Path("model_ans")
ans_path.mkdir(parents=True, exist_ok=True)
def random_ques_ans(model_ans):
df_temp=pd.read_excel(os.path.join("model_ans",str(model_ans)))
global cnt
id=int((df_temp.loc[cnt])['id'])
ques_temp=(df_temp.loc[cnt])['question']
ans_temp=(df_temp.loc[cnt])['answer']
cnt+=1
if cnt>=len(df_temp):
cnt=0
return ques_temp,ans_temp,id,0
return ques_temp,ans_temp,id,1
def save_all(model_ans):
temp=pd.DataFrame(data)
temp.to_excel(f"score_report\\{model_ans+cur_time}.xlsx",index=False)
gr.Info("Sucessfully save all the answer!!!")
def score_save(ques,ans,score,model_ans,token_key):
data.append({
"question":ques,
'answer':ans,
'rating':score
})
# if len(data)%5==0:
temp=pd.DataFrame(data)
temp.to_excel(f"score_report\\{model_ans+cur_time}.xlsx",index=False)
gr.Info("Sucessfully saved in local folder!!!")
ques_temp,ans_temp,id,flag=random_ques_ans(model_ans)
gr.Info("Your opinion is submitted successfully!!!")
return gr.Label(value=id,label="ID"),gr.Label(value=ques_temp, label="Question"), gr.Label(value=ans_temp, label="Answer")
def new_ques(model_ans):
ques_temp,ans_temp,id2,flag=random_ques_ans(model_ans)
return {
id:gr.Label(value=id2,label="ID"),
ques:gr.Label(value=ques_temp,label="Question"),
ans:gr.Label(value=ans_temp,label="Answer")
}
def save_the_ques(ques,ans,file_type = 'xlsx'):
"""
Saves a question and answer pair to a specified file (xlsx or csv).
Args:
ques (str): The question.
ans (str): The answer.
file_type (str, optional): The file type to save to ("xlsx" or "csv").
Defaults to "xlsx".
Returns:
str: A success label.
"""
new_data = {"question": [ques], "answer": [ans]}
df_new = pd.DataFrame(new_data)
filepath = f"data/finetune_data.{file_type}"
if Path(filepath).is_file():
df_existing = pd.read_excel(filepath) if file_type == "xlsx" else pd.read_csv(filepath)
df_combined = pd.concat([df_existing, df_new], ignore_index=True)
else:
df_combined = df_new
if file_type == "xlsx":
df_combined.to_excel(filepath, index=False)
elif file_type == "csv":
df_combined.to_csv(filepath, index=False)
return gr.Label(value="Successfully saved in local folder.", visible=True)
def save_the_ques_test(ques, ans, file_type = 'xlsx'):
"""
Saves a question and answer pair to a specified file (xlsx or csv).
Args:
ques (str): The question.
ans (str): The answer.
file_type (str, optional): The file type to save to ("xlsx" or "csv").
Defaults to "xlsx".
Returns:
str: A success label.
"""
new_data = {"question": [ques], "answer": [ans]}
df_new = pd.DataFrame(new_data)
filepath = f"data/testing_data.{file_type}"
if Path(filepath).is_file():
df_existing = pd.read_excel(filepath) if file_type == "xlsx" else pd.read_csv(filepath)
df_combined = pd.concat([df_existing, df_new], ignore_index=True)
else:
df_combined = df_new
if file_type == "xlsx":
df_combined.to_excel(filepath, index=False)
elif file_type == "csv":
df_combined.to_csv(filepath, index=False)
return gr.Label(value="Successfully saved in local folder.", visible=True)
import pandas as pd
from pathlib import Path
def save_emb_data(loss_function, first_input, second_input, third_input, file_type="xlsx"):
"""
Saves embedding data based on the specified loss function to either an Excel
file (xlsx) or a CSV file (csv).
Args:
loss_function (str): The name of the loss function.
first_input: The first input data.
second_input: The second input data.
third_input: The third input data.
file_type (str, optional): The file type to save to ("xlsx" or "csv").
Defaults to "xlsx".
Returns:
str: A success message indicating whether data was appended or a new file
was created.
"""
if loss_function == "MultipleNegativesRankingLoss":
data = pd.DataFrame({
"anchor": [first_input],
"positive": [second_input],
"negative": [third_input]
})
elif loss_function == "OnlineContrastiveLoss":
data = pd.DataFrame({
"sentence1": [first_input],
"sentence2": [second_input],
"label": [third_input]
})
elif loss_function == "CoSENTLoss":
data = pd.DataFrame({
"sentence1": [first_input],
"sentence2": [second_input],
"score": [third_input]
})
elif loss_function == "GISTEmbedLoss":
data = pd.DataFrame({
"anchor": [first_input],
"positive": [second_input],
"negative": [third_input]
})
elif loss_function == "TripletLoss":
data = pd.DataFrame({
"anchor": [first_input],
"positive": [second_input],
"negative": [third_input]
})
filepath = f"data/emb_data.{file_type}"
try:
if file_type == "xlsx":
existing_data = pd.read_excel(filepath)
elif file_type == "csv":
existing_data = pd.read_csv(filepath)
if list(data.columns) == list(existing_data.columns):
combined_data = pd.concat([existing_data, data], ignore_index=True)
if file_type == "xlsx":
combined_data.to_excel(filepath, index=False)
elif file_type == "csv":
combined_data.to_csv(filepath, index=False)
return "Data appended to existing file!"
else:
if file_type == "xlsx":
data.to_excel(filepath, index=False)
elif file_type == "csv":
data.to_csv(filepath, index=False)
return "Data saved to a new file (overwritten)!"
except FileNotFoundError:
if file_type == "xlsx":
data.to_excel(filepath, index=False)
elif file_type == "csv":
data.to_csv(filepath, index=False)
return "Data saved to a new file!"
def parse_data_func(link_temp,progress=gr.Progress()):
progress(0, desc="Starting...")
parse_data(link_temp,progress)
gr.Info("Finished parsing!! Save as a docx file.")
def next_ques(ques,ans):
ques_temp,ans_temp=random_ques_ans2()
return gr.Label(value=ques_temp)
with gr.Blocks(title="LLM QA Chatbot Builder") as demo:
gr.Markdown("""
# FarmerBot
""")
with gr.Tab("Data Collection"):
gr.Markdown(""" # Instructions:
In this page you can prepare data for LLM fine-tuning, testing and embedding model finetuning your model. The data can be provided through Excel file or CSV file or directly via web interface. Additionally, data can be parsed from the target website (Data parsing for RAG) to further enhance the model performance.
## 1. If you want to provide data in Excel file or CSV file for model fine-tuning and testing.
- Create an Excel or CSV file in the data folder and name it `finetune_data.xlsx` or `finetune_data.csv` for finetuning the model.
- Create an Excel or CSV file in the data folder and name it `testing_data.xlsx` or `testing_data.csv` for generating answers using the fine-tuned model.
- `finetune_data.xlsx` or `finetune_data.csv` has two columns: `question` and `answer`. `testing_data.xlsx` or `testing_data.csv` has three columns: `question`, `ground_truth` ,`context`.
""")
gr.Markdown("""
## `finetune_data.xlsx` | `finetune_data.csv`
""")
gr.HTML(value=display_table(), label="finetune_data.xlsx or finetune_data.csv")
gr.Markdown("""
## `testing_data.xlsx` | `testing_data.csv`
""")
gr.HTML(value=display_table("data/demo_test_data.xlsx"), label="testing_data.xlsx or testing_data.csv")
gr.Markdown("""
## 2. You can use the below interface to create the dataset for training and testing models.
""")
#Training data generation
with gr.Tab("Training Data Generation"):
with gr.Tab("Existing Questions"):
gr.Markdown("""
Existing questions are provided by the administrator and placed in the data folder named `existing_dataset.xlsx`. This file has only one column: `question`.
After clicking the `Save the Answer` button. Those questions and answers are saved in the `data` folder as a `finetune_data.xlsx` file.
""")
ques_temp,ans_temp=random_ques_ans2()
with gr.Row():
ques=gr.Label(value=ques_temp,label="Question")
with gr.Row():
ans=gr.TextArea(label="Answer")
with gr.Row():
with gr.Row():
type_options = gr.Dropdown(choices=["Save xlsx", "Save csv"], value="Save xlsx", label="Preferred file type")
save_training = gr.Button(value="Save")
question = gr.Button("Generate New Question")
with gr.Row():
lab=gr.Label(visible=False)
question.click(next_ques,None,ques)
save_training.click(save_the_ques,[ques,ans,type_options],lab)
with gr.Tab("Custom Questions"):
gr.Markdown("""
After clicking the `save the answer` button. Those questions and answers are saved in the `data` folder as a `finetune_data.xlsx` file.
""")
with gr.Row():
ques=gr.Textbox(label="Question")
with gr.Row():
ans=gr.TextArea(label="Answer")
with gr.Row():
with gr.Row():
type_options = gr.Dropdown(choices=["Save xlsx", "Save csv"], value="Save xlsx", label="Preferred file type")
save_training = gr.Button(value="Save")
with gr.Row():
lab=gr.Label(visible=False,value="You answer is submitted!!! Thank you for your contribution.",label="Submitted")
save_training.click(save_the_ques,[ques,ans,type_options],lab)
### Testing data generation
with gr.Tab("Testing Data Generation"):
gr.Markdown("""
You can create test data for generating answers using the fine-tune model, which will be used for testing the model's performance.
After clicking the `Save the Answer` button. Those questions and answers are saved in the `data` folder as a `testing_data.xlsx` file.
""")
with gr.Row():
ques=gr.Textbox(label="Question")
with gr.Row():
ans=gr.TextArea(label="Ground Truth")
with gr.Row():
ans=gr.TextArea(label="Contexts")
with gr.Row():
with gr.Row():
type_options = gr.Dropdown(choices=["Save xlsx", "Save csv"], value="Save xlsx", label="Preferred file type")
save_test = gr.Button(value="Save")
with gr.Row():
lab=gr.Label(visible=False,value="You answer is submitted!!! Thank you for your contribution.",label="Submitted")
save_test.click(save_the_ques_test,[ques,ans,type_options],None)
## Embedding data generation
def update_fields(loss_function):
if loss_function == "MultipleNegativesRankingLoss":
first_input = gr.Textbox(label="Anchor", visible=True, placeholder="The sentence to be embedded.")
second_input = gr.Textbox(label="Positive", visible=True, placeholder="A sentence semantically similar to the anchor.")
third_input = gr.Textbox(label="Negative", visible=True, placeholder="A sentence semantically dissimilar to the anchor.")
markdown = gr.Markdown(
"""
**MultipleNegativesRankingLoss:**
Expects data with columns: `anchor`, `positive`, `negative`.
- `anchor`: The sentence to be embedded.
- `positive`: A sentence semantically similar to the anchor.
- `negative`: A sentence semantically dissimilar to the anchor.""",
visible=True
)
elif loss_function == "OnlineContrastiveLoss":
first_input = gr.Textbox(label="Sentence 1", visible=True, placeholder="The first sentence.")
second_input = gr.Textbox(label="Sentence 2", visible=True, placeholder="The second sentence.")
third_input = gr.Textbox(label="Label", visible=True, placeholder="1 if the sentences are similar, 0 if dissimilar.")
markdown = gr.Markdown(
"""
**OnlineContrastiveLoss:**
Expects data with columns: `sentence1`, `sentence2`, `label`.
- `sentence1`, `sentence2`: Pairs of sentences.
- `label`: 1 if the sentences are similar, 0 if dissimilar.""",
visible=True
)
elif loss_function == "CoSENTLoss":
first_input = gr.Textbox(label="Sentence 1", visible=True, placeholder="The first sentence.")
second_input = gr.Textbox(label="Sentence 2", visible=True, placeholder="The second sentence.")
third_input = gr.Textbox(label="Score", visible=True, placeholder="A float value (e.g., 0-1) representing their similarity.")
markdown = gr.Markdown(
"""
**CoSENTLoss:**
Expects data with columns: `sentence1`, `sentence2`, `score`.
- `sentence1`, `sentence2`: Pairs of sentences.
- `score`: A float value (e.g., 0-1) representing their similarity.""",
visible=True
)
elif loss_function == "GISTEmbedLoss":
first_input = gr.Textbox(label="Anchor", visible=True, placeholder="The sentence to be embedded.")
second_input = gr.Textbox(label="Positive", visible=True, placeholder="A sentence semantically similar to the anchor.")
third_input = gr.Textbox(label="Negative", visible=True, placeholder="A sentence semantically dissimilar to the anchor. Can be empty.")
markdown = gr.Markdown(
"""
**GISTEmbedLoss:**
Expects data with either:
- Columns: `anchor`, `positive`, `negative` (like TripletLoss).
- Columns: `anchor`, `positive` (for pairs of similar sentences).""",
visible=True
)
elif loss_function == "TripletLoss":
first_input = gr.Textbox(label="Anchor", visible=True, placeholder="The sentence to be embedded.")
second_input = gr.Textbox(label="Positive", visible=True, placeholder="A sentence semantically similar to the anchor.")
third_input = gr.Textbox(label="Negative", visible=True, placeholder="A sentence semantically dissimilar to the anchor.")
markdown = gr.Markdown(
"""
**TripletLoss:**
Expects data with columns: `anchor`, `positive`, `negative`.
- `anchor`: The sentence to be embedded.
- `positive`: A sentence semantically similar to the anchor.
- `negative`: A sentence semantically dissimilar to the anchor.""",
visible=True
)
else:
first_input = gr.Textbox(visible=False)
second_input = gr.Textbox(visible=False)
third_input = gr.Textbox(visible=False)
markdown = gr.Markdown(visible=False)
return first_input, second_input, third_input, markdown
with gr.Tab("Embedding Data Generation"):
gr.Markdown("**Choose a loss function to format your embedding data.**")
with gr.Row():
loss_function = gr.Dropdown(
choices=[
"MultipleNegativesRankingLoss",
"OnlineContrastiveLoss",
"CoSENTLoss",
"GISTEmbedLoss",
"TripletLoss",
],
label="Select the loss function",
)
with gr.Row():
gr.Markdown("""Format `data/emb_data.xlsx` or `data/emb_data.csv` to the expected data format, according to the selected loss function.
If the file exists and has matching columns, new data will be appended.
Otherwise, the file will be overwritten.""")
with gr.Row():
loss_info_markdown = gr.Markdown(visible=False)
with gr.Row():
first_input = gr.Textbox(label="Anchor", value="",visible=False)
second_input = gr.Textbox(label="Positive", value="",visible=False)
third_input = gr.Textbox(label="Negative", value="",visible=False)
loss_function.change(update_fields, loss_function, [first_input, second_input, third_input,loss_info_markdown])
with gr.Row():
with gr.Row():
type_options = gr.Dropdown(choices=["Save xlsx", "Save csv"], value="Save xlsx", label="Preferred file type")
save_emb = gr.Button(value="Save")
save_emb.click(save_emb_data,[loss_function,first_input,second_input,third_input,type_options])
with gr.Row():
gr.Markdown("""
## 3. Data parsing for RAG
""")
with gr.Row():
link_temp=gr.Textbox(label="Enter Link to Parse Data for RAG",info="To provide the link for parsing the data from the website, this link can help create RAG data for the model.")
parse_data_btn=gr.Button("Parse Data")
from utils import parse_data
parse_data_btn.click(parse_data_func,link_temp,link_temp)
#***************************************************
with gr.Tab("Fine-tuning"):
with gr.Tab("Fine-tune LLM"):
with gr.Row():
def login_hug(token):
from huggingface_hub import login
login(token=token)
login_hug(os.getenv('HF_TOKEN'))
gr.Markdown("""
# Instructions:
- Required VRAM for training: 24GB, for inference: 16GB.(Mistral, Zepyhr and Lllama)\n
- Required VRAM for training: 5GB, for inference: 4GB.(Phi,Flan-T5)
- For fine-tuning a custom model select `custom model` option in `Select the model for fine-tuning` dropdown section. The custom model can be configured by editing the code section.\n
- After fine-tuning the model, it will be saved in the `models` folder.
""")
def edit_model_parameter(model_name_temp,edit_code,code_temp,lr,epoch,batch_size,gradient_accumulation,quantization,lora_r,lora_alpha,lora_dropout, progress=gr.Progress()):
progress(0, desc="Fine-tune started!! please wait ...")
# write code to files if code was edited
if edit_code and len(code_temp)!=0:
if model_name_temp=="Mistral":
open(r"fine_tune_file/mistral_finetune.py","w").write(code_temp)
elif model_name_temp=="Zephyr":
open(r"fine_tune_file/zepyhr_finetune.py","w").write(code_temp)
elif model_name_temp=="Llama":
open(r"fine_tune_file/llama_finetune.py","w").write(code_temp)
elif model_name_temp=="Phi":
open(r"fine_tune_file/phi_finetune.py","w").write(code_temp)
elif model_name_temp=="Custom model":
open(r"fine_tune_file/finetune_file.py","w").write(code_temp)
# importing just before finetuning, to ensure the latest code is used
# from fine_tune_file.mistral_finetune import mistral_trainer
# from fine_tune_file.zepyhr_finetune import zephyr_trainer
# from fine_tune_file.llama_finetune import llama_trainer
# from fine_tune_file.phi_finetune import phi_trainer
from fine_tune_file.finetune_file import custom_model_trainer
# from fine_tune_file.flant5_finetune import flant5_trainer
from fine_tune_file.modular_finetune import get_trainer
# create instance of the finetuning classes and then call the finetune function
if model_name_temp=="Custom model":
gr.Info("Fine-tune started!!!")
trainer=custom_model_trainer()
trainer.custom_model_finetune()
gr.Info("Fine-tune Ended!!!")
else:
trainer=get_trainer(model_name_temp)
gr.Info("Fine-tune started!!!")
if model_name_temp=="Mistral":
trainer.mistral_finetune(lr,epoch,batch_size,gradient_accumulation,quantization,lora_r,lora_alpha,lora_dropout)
elif model_name_temp=="Zephyr":
trainer.zepyhr_finetune(lr,epoch,batch_size,gradient_accumulation,quantization,lora_r,lora_alpha,lora_dropout)
elif model_name_temp=="Llama":
trainer.llama_finetune(lr,epoch,batch_size,gradient_accumulation,quantization,lora_r,lora_alpha,lora_dropout)
elif model_name_temp=="Phi":
trainer.phi_finetune(lr,epoch,batch_size,gradient_accumulation,quantization,lora_r,lora_alpha,lora_dropout)
elif model_name_temp=="Flant5":
trainer.flant5_finetune(lr,epoch,batch_size,gradient_accumulation,quantization,lora_r,lora_alpha,lora_dropout)
gr.Info("Fine-tune Ended!!!")
def code_show(model_name):
if model_name=="Mistral":
f=open(r"fine_tune_file/mistral_finetune.py").read()
return gr.Code(visible=True,value=f,interactive=True,language="python")
elif model_name=="Zephyr":
f=open(r"fine_tune_file/zepyhr_finetune.py").read()
return gr.Code(visible=True,value=f,interactive=True,language="python")
elif model_name=="Llama":
f=open(r"fine_tune_file/llama_finetune.py").read()
return gr.Code(visible=True,value=f,interactive=True,language="python")
elif model_name=="Phi":
f=open(r"fine_tune_file/phi_finetune.py").read()
return gr.Code(visible=True,value=f,interactive=True,language="python")
elif model_name=="Flant5":
f=open(r"fine_tune_file/flant5_finetune.py").read()
return gr.Code(visible=True,value=f,interactive=True,language="python")
def custom_model(model_name): # It shows custom model code in the UI.
if model_name=="Custom model":
f=open(r"fine_tune_file/finetune_file.py").read()
return [gr.Code(visible=True,value=f,interactive=True,language="python"),gr.Button(visible=False)]
else:
return [gr.Code(visible=False),gr.Button("Advance Code Editing",visible=True)]
def change_code_fun(code_,model_name):
if model_name=="Mistral":
open(r"fine_tune_file/mistral_finetune.py","w").write(code_)
gr.Info("Successfully saved code!!!")
elif model_name=="Zephyr":
open(r"fine_tune_file/zepyhr_finetune.py","w").write(code_)
gr.Info("Successfully saved code!!!")
elif model_name=="Llama":
open(r"fine_tune_file/llama_finetune.py","w").write(code_)
gr.Info("Successfully saved code!!!")
elif model_name=="Phi":
open(r"fine_tune_file/phi_finetune.py","w").write(code_)
gr.Info("Successfully saved code!!!")
elif model_name=="Flant5":
open(r"fine_tune_file/flant5_finetune.py","w").write(code_)
gr.Info("Successfully saved code!!!")
def finetune_emb(model_name, loss_name, epochs = 1, batch_size = 8):
gr.Info("Embedding model fine-tune is started!!!")
from embedding_tuner import EmbeddingFinetuner
finetuner = EmbeddingFinetuner(
model_name=model_name,
loss_function=loss_name,
epochs=epochs,
batch_size=batch_size,
)
success = finetuner.train()
if success:
gr.Info("Embedding model fine-tune finished!!!")
with gr.Row():
code_temp=gr.Code(visible=False)
with gr.Row():
model_name=gr.Dropdown(choices=["Mistral","Zephyr","Llama","Phi","Flant5","Custom model"],label="Select the LLM for fine-tuning")
with gr.Accordion("Parameter Setup"):
with gr.Row():
lr=gr.Number(label="learning_rate",value=5e-6,interactive=True,info="The step size at which the model parameters are updated during training. It controls the magnitude of the updates to the model's weights.")
epoch=gr.Number(label="epochs",value=2,interactive=True,info="One complete pass through the entire training dataset during the training process. It's a measure of how many times the algorithm has seen the entire dataset.")
batch_size=gr.Number(label="batch_size",value=4,interactive=True,info="The number of training examples used in one iteration of training. It affects the speed and stability of the training process.")
gradient_accumulation = gr.Number(info="Gradient accumulation involves updating model weights after accumulating gradients over multiple batches, instead of after each individual batch.",label="gradient_accumulation",value=4,interactive=True)
with gr.Row():
quantization = gr.Dropdown(info="Quantization is a technique used to reduce the precision of numerical values, typically from 32-bit floating-point numbers to lower bit representations.",label="quantization",choices=[4,8],value=8,interactive=True)
lora_r = gr.Number(info="LoRA_r is a hyperparameter associated with the rank of the low-rank approximation used in LoRA.",label="lora_r",value=16,interactive=True)
lora_alpha = gr.Number(info="LoRA_alpha is a hyperparameter used in LoRA for controlling the strength of the adaptation.",label="lora_alpha",value=32,interactive=True)
lora_dropout = gr.Number(info="LoRA_dropout is a hyperparameter used in LoRA to control the dropout rate during fine-tuning.",label="lora_dropout",value=.05,interactive=True)
with gr.Row():
edit_code=gr.Button("Advance Code Editing")
with gr.Row():
code_temp=gr.Code(visible=False)
with gr.Row():
parameter_alter=gr.Button("Fine-tune")
with gr.Row():
fin_com=gr.Label(visible=False)
edit_code.click(code_show,model_name,code_temp)
# On click finetune button
parameter_alter.click(edit_model_parameter,[model_name,edit_code,code_temp,lr,epoch,batch_size,gradient_accumulation,quantization,lora_r,lora_alpha,lora_dropout],model_name)
model_name.change(custom_model,model_name,[code_temp,edit_code])
with gr.Tab("Embedding model"):
with gr.Row():
embedding_model = gr.Dropdown(
choices=[
"BAAI/bge-base-en-v1.5",
"dunzhang/stella_en_1.5B_v5",
"dunzhang/stella_en_400M_v5",
"nvidia/NV-Embed-v2",
"Alibaba-NLP/gte-Qwen2-1.5B-instruct",
],
label="Select the embedding model for fine-tuning",
)
loss_function = gr.Dropdown(
choices=[
"MultipleNegativesRankingLoss",
"OnlineContrastiveLoss",
"CoSENTLoss",
"GISTEmbedLoss",
"TripletLoss",
],
label="Select the loss function",
)
epoch=gr.Number(label="epochs",value=1,interactive=True,info="One complete pass through the entire training dataset during the training process.")
batch_size=gr.Number(label="batch_size",value=8,interactive=True,info="The number of training examples used in one iteration of training.")
with gr.Row():
btn_emb = gr.Button("Fine-tune the embedding model")
# with gr.Row():
# with gr.Accordion(label="Expected data format according to loss function"):
# loss_info = gr.Markdown(
# """
# # Expected data format according to loss function:
# ### Format `data/emb_data.xlsx` | `data/emb_data.xlsx` accordingly.
# **MultipleNegativesRankingLoss:**
# Expects data with columns: `anchor`, `positive`, `negative`.
# - `anchor`: The sentence to be embedded.
# - `positive`: A sentence semantically similar to the anchor.
# - `negative`: A sentence semantically dissimilar to the anchor.
# **OnlineContrastiveLoss:**
# Expects data with columns: `sentence1`, `sentence2`, `label`.
# - `sentence1`, `sentence2`: Pairs of sentences.
# - `label`: 1 if the sentences are similar, 0 if dissimilar.
# **CoSENTLoss:**
# Expects data with columns: `sentence1`, `sentence2`, `score`.
# - `sentence1`, `sentence2`: Pairs of sentences.
# - `score`: A float value (e.g., 0-1) representing their similarity.
# **GISTEmbedLoss:**
# Expects data with either:
# - Columns: `anchor`, `positive`, `negative` (like TripletLoss).
# - Columns: `anchor`, `positive` (for pairs of similar sentences).
# **TripletLoss:**
# Expects data with columns: `anchor`, `positive`, `negative`.
# - `anchor`: The sentence to be embedded.
# - `positive`: A sentence semantically similar to the anchor.
# - `negative`: A sentence semantically dissimilar to the anchor.
# """
# )
btn_emb.click(finetune_emb,[embedding_model, loss_function, epoch, batch_size], None)
#***************************************************
with gr.Tab("Testing Data Generation and RAG Customization"):
from utils import save_params_to_file
def ans_gen_fun(model_name_local,model_name_online,embedding_name,
splitter_type_dropdown,chunk_size_slider,
chunk_overlap_slider,separator_textbox,max_tokens_slider,save_as_fav,progress=gr.Progress()):
if not os.path.exists(os.path.join("data","testing_dataset.xlsx")):
gr.Warning("You need to create testing dataset first from Data collection.")
return
if save_as_fav:
save_params_to_file(model_name_local,embedding_name,
splitter_type_dropdown,chunk_size_slider,
chunk_overlap_slider,separator_textbox,max_tokens_slider)
# if not os.path.exists(model_name_local):
# gr.Error("Model not found in local folder!!")
import time
from model_ret import calculate_rag_metrics
progress(0, desc="Starting...")
idx=1
model_ques_ans_gen=[]
df_temp=pd.read_excel(r"data/testing_dataset.xlsx")
infer_model = model_chain(model_name_local,model_name_online,
True,embedding_name,splitter_type_dropdown,chunk_size_slider,
chunk_overlap_slider,separator_textbox,max_tokens_slider)
# rag_chain=infer_model.rag_chain_ret()
print("Processing test dataset...")
for x in progress.tqdm(df_temp.values):
model_ques_ans_gen.append({
"id":idx,
"question":x[0],
'answer':infer_model.ans_ret(x[0]),
# "contexts":x[2],
"ground_truths":x[1]
})
idx+=1
print("Done processing test dataset!")
model_name = infer_model.model_name.split('/')[-1]
temp=calculate_rag_metrics(model_ques_ans_gen,model_name)
# print(temp)
# temp['Average Rating'] = temp.mean(axis=1)
pd.DataFrame(temp).to_excel(os.path.join("model_ans",f"_{model_name+cur_time}.xlsx"),index=False)
rag_metrics = ['answer_correctness', 'answer_similarity', 'answer_relevancy', 'faithfulness', 'context_recall', 'context_precision']
new_df = pd.DataFrame({'Rag Metric': rag_metrics, 'Average Rating': 0.2})
return gr.BarPlot(
new_df,
x="Rag Metric",
y="Average Rating",
x_title="Rag Metric",
y_title="Average Rating",
title="RAG performance",
tooltip=["Rag Metric", "Average Rating"],
y_lim=[1, 200],
width=150,
# height=1000,
visible=True
)
gr.Info("Generating answer from model is finished!!! Now, it is ready for human evaluation. Model answer is saved in \"model_ans\" folder. ")
gr.Markdown(""" # Instructions:\n
In this page you can generate answer from fine-tuned models for human evaluation. The questions must be created using `Testing data generation` section of `Data collection` tab.
""")
with gr.Row():
embedding_name=gr.Dropdown(choices=["BAAI/bge-base-en-v1.5","dunzhang/stella_en_1.5B_v5","dunzhang/stella_en_400M_v5",
"nvidia/NV-Embed-v2","Alibaba-NLP/gte-Qwen2-1.5B-instruct"],
label="Select the Embedding Model")
splitter_type_dropdown = gr.Dropdown(choices=["character", "recursive", "token"],
value="character", label="Splitter Type",interactive=True)
chunk_size_slider = gr.Slider(minimum=100, maximum=2000, value=500, step=50, label="Chunk Size")
chunk_overlap_slider = gr.Slider(minimum=0, maximum=500, value=30, step=10, label="Chunk Overlap",interactive=True)
separator_textbox = gr.Textbox(value="\n", label="Separator (e.g., newline '\\n')",interactive=True)
max_tokens_slider = gr.Slider(minimum=100, maximum=5000, value=1000, step=100, label="Max Tokens",interactive=True)
with gr.Row():
save_as_fav=gr.Checkbox(label="Save this settings as favorite")
inf_checkbox=gr.Checkbox(label="Do you want to use without fine-tuned model from Hugging face?")
model_name_local=gr.Dropdown(visible=False)
model_name_online=gr.Dropdown(visible=False)
def model_online_local_show(inf_checkbox):
if inf_checkbox:
return [gr.Dropdown(visible=False),
gr.Dropdown(choices=llama_models,
label="Select the LLM from Huggingface",visible=True)]
else:
return [gr.Dropdown(choices=os.listdir("models"),label="Select the fine-tuned LLM",visible=True),
gr.Dropdown(visible=False)]
inf_checkbox.change(model_online_local_show,[inf_checkbox],[model_name_local,model_name_online])
with gr.Row():
ans_gen=gr.Button("Generate Answer for Testing Dataset")
with gr.Row():
plot = gr.BarPlot(visible=False)
ans_gen.click(ans_gen_fun,[model_name_local,model_name_online,embedding_name,
splitter_type_dropdown,chunk_size_slider,
chunk_overlap_slider,separator_textbox,max_tokens_slider,save_as_fav],plot)
#***************************************************Human evaluation
import secrets
def generate_token():
while True:
token=secrets.token_hex(6)
f=[x[:-5] for x in os.listdir("save_ques_ans")]
if token not in f:
data = {
'id': [],
'question': [],
'answer': []
}
df = pd.DataFrame(data)
df.to_excel("save_ques_ans//"+str(token)+".xlsx", index=False)
return gr.Label(label="Please keep the token for tracking question answer data",value=token,visible=True)
def bar_plot_fn():
temp=score_report_bar()
return gr.BarPlot(
temp,
x="Model Name",
y="Average Rating",
x_title="Model name",
y_title="Average Rating",
title="Model performance",
tooltip=["Model Name", "Average Rating"],
y_lim=[1, 200],
width=150,
# height=1000,
visible=True
)
with gr.Tab("Human Evaluation"):
def answer_updated(model_ans):
df_ques_ans=pd.read_excel(os.path.join("model_ans",str(model_ans)))
num=0
print(df_ques_ans['id'][num],"**"*10)
return [gr.Markdown(value=f"""# Model_name: {model_ans}
# Number of questions: {len(df_ques_ans)}""",visible=True),
gr.Label(value=str(df_ques_ans['id'][num])),
gr.Label(value=str(df_ques_ans['question'][num])),
gr.Label(value=str(df_ques_ans['answer'][num])),
gr.Dropdown(visible=False),
gr.Button(visible=False)
]
with gr.Row():
new_user=gr.Button("New User")
with gr.Row():
new_user_token=gr.Label(visible=False)
with gr.Row():
token_key=gr.Textbox(label="Enter your Token")
model_ans=gr.Dropdown(choices=os.listdir("model_ans"),label="Select the Model Answer for Human Evaluation")
btn_1=gr.Button("Submit")
gr.Markdown(""" # Instructions:
In this section, humans evaluate the answers of the model given specific questions. Each answer is rated between 1 and 5 by anonymous students.
Those values are saved in the `scrore_report` folder.
""")
lab_temp=gr.Markdown(visible=False)
with gr.Row():
id=gr.Label(value="",label="ID")
with gr.Row():
ques=gr.Label(value="",label="Question")
with gr.Row():
ans=gr.Label(value="",label="Answer")
with gr.Row():
score = gr.Radio(choices=[1,2,3,4,5],label="Rating")
with gr.Row():
human_ans_btn=gr.Button("Show Answer From Other Evaluators")
with gr.Row():
human_ans_lab=gr.Label(label="Human Answer",visible=False)
with gr.Row():
btn = gr.Button("Save")
question = gr.Button("Skip")
# with gr.Row():
# save_all_btn=gr.Button("Save all the data in dataframe")
# with gr.Row():
# move=gr.Number(label="Move to the question")
# move_btn=gr.Button("move")
with gr.Row():
btn_plot=gr.Button("Plot Generation")
with gr.Row():
plot = gr.BarPlot(visible=False)
btn_plot.click(bar_plot_fn, None, outputs=plot)
btn_1.click(answer_updated,model_ans,[lab_temp,id,ques,ans,model_ans,btn_1])
btn.click(score_save, inputs=[ques,ans,score,model_ans,token_key], outputs=[id,ques,ans])
question.click(new_ques,model_ans,[id,ques,ans])
# save_all_btn.click(save_all,model_ans,None)
# move_btn.click(move_to,[move,model_ans],[id,ques,ans])
def human_ans_func(id, ques):
temp=all_contri_ans(id,ques)
return [gr.Button("Show Answer from Other Evaluators"),gr.Label(value="\n".join(temp),visible=True)]
human_ans_btn.click(human_ans_func,[id, ques],[human_ans_btn,human_ans_lab])
new_user.click(generate_token,None,new_user_token)
#***************************************************
infer_ragchain=None
with gr.Tab("Inference"):
def echo(message, history,model_name_local,model_name_online,
inf_checkbox,embedding_name,splitter_type_dropdown,chunk_size_slider,
chunk_overlap_slider,separator_textbox,max_tokens_slider):
global infer_ragchain
if infer_ragchain is None:
gr.Info("Please wait!!! model is loading!!")
if inf_checkbox:
gr.Info("Model is loading from Huggingface!!")
infer_ragchain = model_chain(model_name_local,model_name_online,
inf_checkbox,embedding_name,splitter_type_dropdown,chunk_size_slider,
chunk_overlap_slider,separator_textbox,max_tokens_slider)
# rag_chain=infer_ragchain.rag_chain_ret()
return infer_ragchain.ans_ret(message)
from utils import load_params_from_file
saved_params = load_params_from_file()
# If saved parameters exist, use them; otherwise, set default values
default_model_name = saved_params['model_name'] if saved_params else "Llama"
default_embedding_name = saved_params['embedding_name'] if saved_params else "sentence-transformers/all-mpnet-base-v2"
default_splitter_type = saved_params['splitter_type_dropdown'] if saved_params else "character"
default_chunk_size = saved_params['chunk_size_slider'] if saved_params else 500
default_chunk_overlap = saved_params['chunk_overlap_slider'] if saved_params else 30
default_separator = saved_params['separator_textbox'] if saved_params else "\n"
default_max_tokens = saved_params['max_tokens_slider'] if saved_params else 1000
# with gr.Row():
with gr.Row():
def login_hug(token):
from huggingface_hub import login
login(token=token)
token_tb=gr.Textbox(label="Enter your Huggingface token to access Huggingface models")
token_tb.change(login_hug,token_tb,None)
embedding_name=gr.Dropdown(choices=["sentence-transformers/all-mpnet-base-v2", "BAAI/bge-base-en-v1.5","dunzhang/stella_en_1.5B_v5","dunzhang/stella_en_400M_v5",
"nvidia/NV-Embed-v2","Alibaba-NLP/gte-Qwen2-1.5B-instruct"],value=default_embedding_name,
label="Select the Embedding Model")
splitter_type_dropdown = gr.Dropdown(choices=["character", "recursive", "token"],
value=default_splitter_type, label="Splitter Type",interactive=True)
chunk_size_slider = gr.Slider(minimum=100, maximum=2000, value=default_chunk_size, step=50, label="Chunk Size")
chunk_overlap_slider = gr.Slider(minimum=0, maximum=500, value=default_chunk_overlap, step=10, label="Chunk Overlap",interactive=True)
separator_textbox = gr.Textbox(value=default_separator, label="Separator (e.g., newline '\\n')",interactive=True)
max_tokens_slider = gr.Slider(minimum=100, maximum=5000, value=default_max_tokens, step=100, label="Max Tokens",interactive=True)
inf_checkbox=gr.Checkbox(label="Do you want to use without fine-tuned model from Hugging face?")
model_name_local=gr.Dropdown(visible=False)
model_name_online=gr.Dropdown(visible=False)
def model_online_local_show(inf_checkbox):
if inf_checkbox:
return [gr.Dropdown(visible=False),
gr.Dropdown(choices=llama_models,
label="Select the LLM from Huggingface",visible=True)]
else:
return [gr.Dropdown(choices=os.listdir("models"),label="Select the fine-tuned LLM",visible=True),
gr.Dropdown(visible=False)]
inf_checkbox.change(model_online_local_show,[inf_checkbox],[model_name_local,model_name_online])
gr.ChatInterface(fn=echo,
additional_inputs=[model_name_local,model_name_online,inf_checkbox,embedding_name,
splitter_type_dropdown,chunk_size_slider,
chunk_overlap_slider,separator_textbox,max_tokens_slider],
title="Chatbot")
#----------------------------------------------
with gr.Tab("Deployment"):
gr.Markdown("""`deploy` folder has all the code for the deployment of the model.
For installing dependencies use the following command: `pip install -r requirements.txt`.
""")
def deploy_func(model_name):
import shutil
import os
src_folder = 'src'
deploy_folder = 'deploy'
files_to_copy = ['model_ret.py', 'create_retriever.py', 'inference.py']
for file_name in files_to_copy:
src_file_path = os.path.join(src_folder, file_name)
dest_file_path = os.path.join(deploy_folder, file_name)
param_list=load_params_from_file()
param_list["model_name"]=model_name
save_params_to_file(param_list)
# f.write(f"{model_name}")
model_name=gr.Dropdown(choices=os.listdir("models"),label="Select the Model")
btn_model=gr.Button("Deploy")
btn_model.click(deploy_func,model_name)
demo.launch(theme=gr.themes.Soft()) |