Spaces:
Running
Running
Multipageify
Browse files- app.py +0 -108
- rewrite.py → pages/1_Rewrite.py +0 -0
- pages/2_Highlights.py +109 -0
app.py
CHANGED
|
@@ -1,109 +1 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import pandas as pd
|
| 3 |
-
import html
|
| 4 |
-
|
| 5 |
-
model_options = [
|
| 6 |
-
'API',
|
| 7 |
-
'google/gemma-1.1-2b-it',
|
| 8 |
-
'google/gemma-1.1-7b-it'
|
| 9 |
-
]
|
| 10 |
-
|
| 11 |
-
model_name = st.selectbox("Select a model", model_options + ['other'])
|
| 12 |
-
|
| 13 |
-
if model_name == 'other':
|
| 14 |
-
model_name = st.text_input("Enter model name", model_options[0])
|
| 15 |
-
|
| 16 |
-
@st.cache_resource
|
| 17 |
-
def get_tokenizer(model_name):
|
| 18 |
-
from transformers import AutoTokenizer
|
| 19 |
-
return AutoTokenizer.from_pretrained(model_name).from_pretrained(model_name)
|
| 20 |
-
|
| 21 |
-
@st.cache_resource
|
| 22 |
-
def get_model(model_name):
|
| 23 |
-
import torch
|
| 24 |
-
from transformers import AutoModelForCausalLM
|
| 25 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, device_map='auto', torch_dtype=torch.bfloat16)
|
| 26 |
-
print(f"Loaded model, {model.num_parameters():,d} parameters.")
|
| 27 |
-
return model
|
| 28 |
-
|
| 29 |
-
prompt = st.text_area("Prompt", "Rewrite this document to be more clear and concise.")
|
| 30 |
-
doc = st.text_area("Document", "This is a document that I would like to have rewritten to be more concise.")
|
| 31 |
-
updated_doc = st.text_area("Updated Doc", help="Your edited document. Leave this blank to use your original document.")
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
def get_spans_local(prompt, doc, updated_doc):
|
| 35 |
-
import torch
|
| 36 |
-
|
| 37 |
-
tokenizer = get_tokenizer(model_name)
|
| 38 |
-
model = get_model(model_name)
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
messages = [
|
| 42 |
-
{
|
| 43 |
-
"role": "user",
|
| 44 |
-
"content": f"{prompt}\n\n{doc}",
|
| 45 |
-
},
|
| 46 |
-
]
|
| 47 |
-
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")[0]
|
| 48 |
-
assert len(tokenized_chat.shape) == 1
|
| 49 |
-
|
| 50 |
-
if len(updated_doc.strip()) == 0:
|
| 51 |
-
updated_doc = doc
|
| 52 |
-
updated_doc_ids = tokenizer(updated_doc, return_tensors='pt')['input_ids'][0]
|
| 53 |
-
joined_ids = torch.cat([tokenized_chat, updated_doc_ids[1:]])
|
| 54 |
-
|
| 55 |
-
with torch.no_grad():
|
| 56 |
-
logits = model(joined_ids[None].to(model.device)).logits[0].cpu()
|
| 57 |
-
|
| 58 |
-
spans = []
|
| 59 |
-
length_so_far = 0
|
| 60 |
-
for idx in range(len(tokenized_chat), len(joined_ids)):
|
| 61 |
-
probs = logits[idx - 1].softmax(dim=-1)
|
| 62 |
-
token_id = joined_ids[idx]
|
| 63 |
-
token = tokenizer.decode(token_id)
|
| 64 |
-
token_loss = -probs[token_id].log().item()
|
| 65 |
-
most_likely_token_id = probs.argmax()
|
| 66 |
-
print(idx, token, token_loss, tokenizer.decode(most_likely_token_id))
|
| 67 |
-
spans.append(dict(
|
| 68 |
-
start=length_so_far,
|
| 69 |
-
end=length_so_far + len(token),
|
| 70 |
-
token=token,
|
| 71 |
-
token_loss=token_loss,
|
| 72 |
-
most_likely_token=tokenizer.decode(most_likely_token_id)
|
| 73 |
-
))
|
| 74 |
-
length_so_far += len(token)
|
| 75 |
-
return spans
|
| 76 |
-
|
| 77 |
-
def get_highlights_api(prompt, doc, updated_doc):
|
| 78 |
-
# Make a request to the API. prompt and doc are query parameters:
|
| 79 |
-
# https://tools.kenarnold.org/api/highlights?prompt=Rewrite%20this%20document&doc=This%20is%20a%20document
|
| 80 |
-
# The response is a JSON array
|
| 81 |
-
import requests
|
| 82 |
-
response = requests.get("https://tools.kenarnold.org/api/highlights", params=dict(prompt=prompt, doc=doc, updated_doc=updated_doc))
|
| 83 |
-
return response.json()['highlights']
|
| 84 |
-
|
| 85 |
-
if model_name == 'API':
|
| 86 |
-
spans = get_highlights_api(prompt, doc, updated_doc)
|
| 87 |
-
else:
|
| 88 |
-
spans = get_spans_local(prompt, doc, updated_doc)
|
| 89 |
-
|
| 90 |
-
if len(spans) < 2:
|
| 91 |
-
st.write("No spans found.")
|
| 92 |
-
st.stop()
|
| 93 |
-
|
| 94 |
-
highest_loss = max(span['token_loss'] for span in spans[1:])
|
| 95 |
-
for span in spans:
|
| 96 |
-
span['loss_ratio'] = span['token_loss'] / highest_loss
|
| 97 |
-
|
| 98 |
-
html_out = ''
|
| 99 |
-
for span in spans:
|
| 100 |
-
is_different = span['token'] != span['most_likely_token']
|
| 101 |
-
html_out += '<span style="color: {color}" title="{title}">{orig_token}</span>'.format(
|
| 102 |
-
color="blue" if is_different else "black",
|
| 103 |
-
title=html.escape(span["most_likely_token"]).replace('\n', ' '),
|
| 104 |
-
orig_token=html.escape(span["token"]).replace('\n', '<br>')
|
| 105 |
-
)
|
| 106 |
-
html_out = f"<p style=\"background: white;\">{html_out}</p>"
|
| 107 |
-
|
| 108 |
-
st.write(html_out, unsafe_allow_html=True)
|
| 109 |
-
st.write(pd.DataFrame(spans)[['token', 'token_loss', 'most_likely_token', 'loss_ratio']])
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rewrite.py → pages/1_Rewrite.py
RENAMED
|
File without changes
|
pages/2_Highlights.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import html
|
| 4 |
+
|
| 5 |
+
model_options = [
|
| 6 |
+
'API',
|
| 7 |
+
'google/gemma-1.1-2b-it',
|
| 8 |
+
'google/gemma-1.1-7b-it'
|
| 9 |
+
]
|
| 10 |
+
|
| 11 |
+
model_name = st.selectbox("Select a model", model_options + ['other'])
|
| 12 |
+
|
| 13 |
+
if model_name == 'other':
|
| 14 |
+
model_name = st.text_input("Enter model name", model_options[0])
|
| 15 |
+
|
| 16 |
+
@st.cache_resource
|
| 17 |
+
def get_tokenizer(model_name):
|
| 18 |
+
from transformers import AutoTokenizer
|
| 19 |
+
return AutoTokenizer.from_pretrained(model_name).from_pretrained(model_name)
|
| 20 |
+
|
| 21 |
+
@st.cache_resource
|
| 22 |
+
def get_model(model_name):
|
| 23 |
+
import torch
|
| 24 |
+
from transformers import AutoModelForCausalLM
|
| 25 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map='auto', torch_dtype=torch.bfloat16)
|
| 26 |
+
print(f"Loaded model, {model.num_parameters():,d} parameters.")
|
| 27 |
+
return model
|
| 28 |
+
|
| 29 |
+
prompt = st.text_area("Prompt", "Rewrite this document to be more clear and concise.")
|
| 30 |
+
doc = st.text_area("Document", "This is a document that I would like to have rewritten to be more concise.")
|
| 31 |
+
updated_doc = st.text_area("Updated Doc", help="Your edited document. Leave this blank to use your original document.")
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def get_spans_local(prompt, doc, updated_doc):
|
| 35 |
+
import torch
|
| 36 |
+
|
| 37 |
+
tokenizer = get_tokenizer(model_name)
|
| 38 |
+
model = get_model(model_name)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
messages = [
|
| 42 |
+
{
|
| 43 |
+
"role": "user",
|
| 44 |
+
"content": f"{prompt}\n\n{doc}",
|
| 45 |
+
},
|
| 46 |
+
]
|
| 47 |
+
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")[0]
|
| 48 |
+
assert len(tokenized_chat.shape) == 1
|
| 49 |
+
|
| 50 |
+
if len(updated_doc.strip()) == 0:
|
| 51 |
+
updated_doc = doc
|
| 52 |
+
updated_doc_ids = tokenizer(updated_doc, return_tensors='pt')['input_ids'][0]
|
| 53 |
+
joined_ids = torch.cat([tokenized_chat, updated_doc_ids[1:]])
|
| 54 |
+
|
| 55 |
+
with torch.no_grad():
|
| 56 |
+
logits = model(joined_ids[None].to(model.device)).logits[0].cpu()
|
| 57 |
+
|
| 58 |
+
spans = []
|
| 59 |
+
length_so_far = 0
|
| 60 |
+
for idx in range(len(tokenized_chat), len(joined_ids)):
|
| 61 |
+
probs = logits[idx - 1].softmax(dim=-1)
|
| 62 |
+
token_id = joined_ids[idx]
|
| 63 |
+
token = tokenizer.decode(token_id)
|
| 64 |
+
token_loss = -probs[token_id].log().item()
|
| 65 |
+
most_likely_token_id = probs.argmax()
|
| 66 |
+
print(idx, token, token_loss, tokenizer.decode(most_likely_token_id))
|
| 67 |
+
spans.append(dict(
|
| 68 |
+
start=length_so_far,
|
| 69 |
+
end=length_so_far + len(token),
|
| 70 |
+
token=token,
|
| 71 |
+
token_loss=token_loss,
|
| 72 |
+
most_likely_token=tokenizer.decode(most_likely_token_id)
|
| 73 |
+
))
|
| 74 |
+
length_so_far += len(token)
|
| 75 |
+
return spans
|
| 76 |
+
|
| 77 |
+
def get_highlights_api(prompt, doc, updated_doc):
|
| 78 |
+
# Make a request to the API. prompt and doc are query parameters:
|
| 79 |
+
# https://tools.kenarnold.org/api/highlights?prompt=Rewrite%20this%20document&doc=This%20is%20a%20document
|
| 80 |
+
# The response is a JSON array
|
| 81 |
+
import requests
|
| 82 |
+
response = requests.get("https://tools.kenarnold.org/api/highlights", params=dict(prompt=prompt, doc=doc, updated_doc=updated_doc))
|
| 83 |
+
return response.json()['highlights']
|
| 84 |
+
|
| 85 |
+
if model_name == 'API':
|
| 86 |
+
spans = get_highlights_api(prompt, doc, updated_doc)
|
| 87 |
+
else:
|
| 88 |
+
spans = get_spans_local(prompt, doc, updated_doc)
|
| 89 |
+
|
| 90 |
+
if len(spans) < 2:
|
| 91 |
+
st.write("No spans found.")
|
| 92 |
+
st.stop()
|
| 93 |
+
|
| 94 |
+
highest_loss = max(span['token_loss'] for span in spans[1:])
|
| 95 |
+
for span in spans:
|
| 96 |
+
span['loss_ratio'] = span['token_loss'] / highest_loss
|
| 97 |
+
|
| 98 |
+
html_out = ''
|
| 99 |
+
for span in spans:
|
| 100 |
+
is_different = span['token'] != span['most_likely_token']
|
| 101 |
+
html_out += '<span style="color: {color}" title="{title}">{orig_token}</span>'.format(
|
| 102 |
+
color="blue" if is_different else "black",
|
| 103 |
+
title=html.escape(span["most_likely_token"]).replace('\n', ' '),
|
| 104 |
+
orig_token=html.escape(span["token"]).replace('\n', '<br>')
|
| 105 |
+
)
|
| 106 |
+
html_out = f"<p style=\"background: white;\">{html_out}</p>"
|
| 107 |
+
|
| 108 |
+
st.write(html_out, unsafe_allow_html=True)
|
| 109 |
+
st.write(pd.DataFrame(spans)[['token', 'token_loss', 'most_likely_token', 'loss_ratio']])
|