Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- evaluation_module.py +229 -0
- memory.py +147 -0
evaluation_module.py
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''import torch
|
| 2 |
+
from sacrebleu import corpus_bleu
|
| 3 |
+
from rouge_score import rouge_scorer
|
| 4 |
+
from bert_score import score
|
| 5 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline
|
| 6 |
+
from transformers import AutoModelForSequenceClassification
|
| 7 |
+
import nltk
|
| 8 |
+
from nltk.util import ngrams
|
| 9 |
+
from nltk.tokenize import word_tokenize
|
| 10 |
+
from nltk.translate.meteor_score import meteor_score
|
| 11 |
+
from nltk.translate.chrf_score import sentence_chrf
|
| 12 |
+
from textstat import flesch_reading_ease, flesch_kincaid_grade
|
| 13 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 14 |
+
|
| 15 |
+
class RAGEvaluator:
|
| 16 |
+
def __init__(self):
|
| 17 |
+
self.gpt2_model, self.gpt2_tokenizer = self.load_gpt2_model()
|
| 18 |
+
self.bias_pipeline = pipeline("zero-shot-classification", model="Hate-speech-CNERG/dehatebert-mono-english")
|
| 19 |
+
|
| 20 |
+
def load_gpt2_model(self):
|
| 21 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
| 22 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
| 23 |
+
return model, tokenizer
|
| 24 |
+
|
| 25 |
+
def evaluate_bleu_rouge(self, candidates, references):
|
| 26 |
+
bleu_score = corpus_bleu(candidates, [references]).score
|
| 27 |
+
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
|
| 28 |
+
rouge_scores = [scorer.score(ref, cand) for ref, cand in zip(references, candidates)]
|
| 29 |
+
rouge1 = sum([score['rouge1'].fmeasure for score in rouge_scores]) / len(rouge_scores)
|
| 30 |
+
return bleu_score, rouge1
|
| 31 |
+
|
| 32 |
+
def evaluate_bert_score(self, candidates, references):
|
| 33 |
+
P, R, F1 = score(candidates, references, lang="en", model_type='bert-base-multilingual-cased')
|
| 34 |
+
return P.mean().item(), R.mean().item(), F1.mean().item()
|
| 35 |
+
|
| 36 |
+
def evaluate_perplexity(self, text):
|
| 37 |
+
encodings = self.gpt2_tokenizer(text, return_tensors='pt')
|
| 38 |
+
max_length = self.gpt2_model.config.n_positions
|
| 39 |
+
stride = 512
|
| 40 |
+
lls = []
|
| 41 |
+
for i in range(0, encodings.input_ids.size(1), stride):
|
| 42 |
+
begin_loc = max(i + stride - max_length, 0)
|
| 43 |
+
end_loc = min(i + stride, encodings.input_ids.size(1))
|
| 44 |
+
trg_len = end_loc - i
|
| 45 |
+
input_ids = encodings.input_ids[:, begin_loc:end_loc]
|
| 46 |
+
target_ids = input_ids.clone()
|
| 47 |
+
target_ids[:, :-trg_len] = -100
|
| 48 |
+
with torch.no_grad():
|
| 49 |
+
outputs = self.gpt2_model(input_ids, labels=target_ids)
|
| 50 |
+
log_likelihood = outputs[0] * trg_len
|
| 51 |
+
lls.append(log_likelihood)
|
| 52 |
+
ppl = torch.exp(torch.stack(lls).sum() / end_loc)
|
| 53 |
+
return ppl.item()
|
| 54 |
+
|
| 55 |
+
def evaluate_diversity(self, texts):
|
| 56 |
+
all_tokens = [tok for text in texts for tok in text.split()]
|
| 57 |
+
unique_bigrams = set(ngrams(all_tokens, 2))
|
| 58 |
+
diversity_score = len(unique_bigrams) / len(all_tokens) if all_tokens else 0
|
| 59 |
+
return diversity_score
|
| 60 |
+
|
| 61 |
+
def evaluate_racial_bias(self, text):
|
| 62 |
+
results = self.bias_pipeline([text], candidate_labels=["hate speech", "not hate speech"])
|
| 63 |
+
bias_score = results[0]['scores'][results[0]['labels'].index('hate speech')]
|
| 64 |
+
return bias_score
|
| 65 |
+
|
| 66 |
+
def evaluate_meteor(self, candidates, references):
|
| 67 |
+
nltk.download('punkt', quiet=True)
|
| 68 |
+
|
| 69 |
+
meteor_scores = [
|
| 70 |
+
meteor_score([word_tokenize(ref)], word_tokenize(cand))
|
| 71 |
+
for ref, cand in zip(references, candidates)
|
| 72 |
+
]
|
| 73 |
+
return sum(meteor_scores) / len(meteor_scores)
|
| 74 |
+
|
| 75 |
+
def evaluate_chrf(self, candidates, references):
|
| 76 |
+
chrf_scores = [sentence_chrf(ref, cand) for ref, cand in zip(references, candidates)]
|
| 77 |
+
return sum(chrf_scores) / len(chrf_scores)
|
| 78 |
+
|
| 79 |
+
def evaluate_readability(self, text):
|
| 80 |
+
flesch_ease = flesch_reading_ease(text)
|
| 81 |
+
flesch_grade = flesch_kincaid_grade(text)
|
| 82 |
+
return flesch_ease, flesch_grade
|
| 83 |
+
|
| 84 |
+
def evaluate_all(self, response, reference):
|
| 85 |
+
candidates = [response]
|
| 86 |
+
references = [reference]
|
| 87 |
+
bleu, rouge1 = self.evaluate_bleu_rouge(candidates, references)
|
| 88 |
+
bert_p, bert_r, bert_f1 = self.evaluate_bert_score(candidates, references)
|
| 89 |
+
perplexity = self.evaluate_perplexity(response)
|
| 90 |
+
diversity = self.evaluate_diversity(candidates)
|
| 91 |
+
racial_bias = self.evaluate_racial_bias(response)
|
| 92 |
+
meteor = self.evaluate_meteor(candidates, references)
|
| 93 |
+
chrf = self.evaluate_chrf(candidates, references)
|
| 94 |
+
flesch_ease, flesch_grade = self.evaluate_readability(response)
|
| 95 |
+
return {
|
| 96 |
+
"BLEU": bleu,
|
| 97 |
+
"ROUGE-1": rouge1,
|
| 98 |
+
"BERT P": bert_p,
|
| 99 |
+
"BERT R": bert_r,
|
| 100 |
+
"BERT F1": bert_f1,
|
| 101 |
+
"Perplexity": perplexity,
|
| 102 |
+
"Diversity": diversity,
|
| 103 |
+
"Racial Bias": racial_bias,
|
| 104 |
+
"METEOR": meteor,
|
| 105 |
+
"CHRF": chrf,
|
| 106 |
+
"Flesch Reading Ease": flesch_ease,
|
| 107 |
+
"Flesch-Kincaid Grade": flesch_grade,
|
| 108 |
+
}'''
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
import torch
|
| 112 |
+
from sacrebleu import corpus_bleu
|
| 113 |
+
from rouge_score import rouge_scorer
|
| 114 |
+
from bert_score import score
|
| 115 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
| 116 |
+
import nltk
|
| 117 |
+
from nltk.util import ngrams
|
| 118 |
+
from nltk.tokenize import word_tokenize
|
| 119 |
+
from nltk.translate.meteor_score import meteor_score
|
| 120 |
+
from nltk.translate.chrf_score import sentence_chrf
|
| 121 |
+
from textstat import flesch_reading_ease, flesch_kincaid_grade
|
| 122 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 123 |
+
|
| 124 |
+
class RAGEvaluator:
|
| 125 |
+
def __init__(self):
|
| 126 |
+
self.gpt2_model, self.gpt2_tokenizer = self.load_gpt2_model()
|
| 127 |
+
self.bias_pipeline = self.load_bias_model()
|
| 128 |
+
|
| 129 |
+
def load_gpt2_model(self):
|
| 130 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
| 131 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
| 132 |
+
return model, tokenizer
|
| 133 |
+
|
| 134 |
+
def load_bias_model(self):
|
| 135 |
+
# Load the model for zero-shot classification
|
| 136 |
+
model = AutoModelForSequenceClassification.from_pretrained('Hate-speech-CNERG/dehatebert-mono-english')
|
| 137 |
+
tokenizer = AutoTokenizer.from_pretrained('Hate-speech-CNERG/dehatebert-mono-english')
|
| 138 |
+
|
| 139 |
+
# Define label2id mapping for entailment and contradiction
|
| 140 |
+
model.config.label2id = {'not hate speech': 0, 'hate speech': 1}
|
| 141 |
+
|
| 142 |
+
# Return pipeline with the proper model and tokenizer
|
| 143 |
+
return pipeline("zero-shot-classification", model=model, tokenizer=tokenizer)
|
| 144 |
+
|
| 145 |
+
def evaluate_bleu_rouge(self, candidates, references):
|
| 146 |
+
bleu_score = corpus_bleu(candidates, [references]).score
|
| 147 |
+
scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
|
| 148 |
+
rouge_scores = [scorer.score(ref, cand) for ref, cand in zip(references, candidates)]
|
| 149 |
+
rouge1 = sum([score['rouge1'].fmeasure for score in rouge_scores]) / len(rouge_scores)
|
| 150 |
+
return bleu_score, rouge1
|
| 151 |
+
|
| 152 |
+
def evaluate_bert_score(self, candidates, references):
|
| 153 |
+
P, R, F1 = score(candidates, references, lang="en", model_type='bert-base-multilingual-cased')
|
| 154 |
+
return P.mean().item(), R.mean().item(), F1.mean().item()
|
| 155 |
+
|
| 156 |
+
def evaluate_perplexity(self, text):
|
| 157 |
+
encodings = self.gpt2_tokenizer(text, return_tensors='pt')
|
| 158 |
+
max_length = self.gpt2_model.config.n_positions
|
| 159 |
+
stride = 512
|
| 160 |
+
lls = []
|
| 161 |
+
for i in range(0, encodings.input_ids.size(1), stride):
|
| 162 |
+
begin_loc = max(i + stride - max_length, 0)
|
| 163 |
+
end_loc = min(i + stride, encodings.input_ids.size(1))
|
| 164 |
+
trg_len = end_loc - i
|
| 165 |
+
input_ids = encodings.input_ids[:, begin_loc:end_loc]
|
| 166 |
+
target_ids = input_ids.clone()
|
| 167 |
+
target_ids[:, :-trg_len] = -100
|
| 168 |
+
with torch.no_grad():
|
| 169 |
+
outputs = self.gpt2_model(input_ids, labels=target_ids)
|
| 170 |
+
log_likelihood = outputs[0] * trg_len
|
| 171 |
+
lls.append(log_likelihood)
|
| 172 |
+
ppl = torch.exp(torch.stack(lls).sum() / end_loc)
|
| 173 |
+
return ppl.item()
|
| 174 |
+
|
| 175 |
+
def evaluate_diversity(self, texts):
|
| 176 |
+
all_tokens = [tok for text in texts for tok in text.split()]
|
| 177 |
+
unique_bigrams = set(ngrams(all_tokens, 2))
|
| 178 |
+
diversity_score = len(unique_bigrams) / len(all_tokens) if all_tokens else 0
|
| 179 |
+
return diversity_score
|
| 180 |
+
|
| 181 |
+
def evaluate_racial_bias(self, text):
|
| 182 |
+
results = self.bias_pipeline([text], candidate_labels=["hate speech", "not hate speech"])
|
| 183 |
+
bias_score = results[0]['scores'][results[0]['labels'].index('hate speech')]
|
| 184 |
+
return bias_score
|
| 185 |
+
|
| 186 |
+
def evaluate_meteor(self, candidates, references):
|
| 187 |
+
nltk.download('punkt', quiet=True)
|
| 188 |
+
|
| 189 |
+
meteor_scores = [
|
| 190 |
+
meteor_score([word_tokenize(ref)], word_tokenize(cand))
|
| 191 |
+
for ref, cand in zip(references, candidates)
|
| 192 |
+
]
|
| 193 |
+
return sum(meteor_scores) / len(meteor_scores)
|
| 194 |
+
|
| 195 |
+
def evaluate_chrf(self, candidates, references):
|
| 196 |
+
chrf_scores = [sentence_chrf(ref, cand) for ref, cand in zip(references, candidates)]
|
| 197 |
+
return sum(chrf_scores) / len(chrf_scores)
|
| 198 |
+
|
| 199 |
+
def evaluate_readability(self, text):
|
| 200 |
+
flesch_ease = flesch_reading_ease(text)
|
| 201 |
+
flesch_grade = flesch_kincaid_grade(text)
|
| 202 |
+
return flesch_ease, flesch_grade
|
| 203 |
+
|
| 204 |
+
def evaluate_all(self, response, reference):
|
| 205 |
+
candidates = [response]
|
| 206 |
+
references = [reference]
|
| 207 |
+
bleu, rouge1 = self.evaluate_bleu_rouge(candidates, references)
|
| 208 |
+
bert_p, bert_r, bert_f1 = self.evaluate_bert_score(candidates, references)
|
| 209 |
+
perplexity = self.evaluate_perplexity(response)
|
| 210 |
+
diversity = self.evaluate_diversity(candidates)
|
| 211 |
+
racial_bias = self.evaluate_racial_bias(response)
|
| 212 |
+
meteor = self.evaluate_meteor(candidates, references)
|
| 213 |
+
chrf = self.evaluate_chrf(candidates, references)
|
| 214 |
+
flesch_ease, flesch_grade = self.evaluate_readability(response)
|
| 215 |
+
return {
|
| 216 |
+
"BLEU": bleu,
|
| 217 |
+
"ROUGE-1": rouge1,
|
| 218 |
+
"BERT P": bert_p,
|
| 219 |
+
"BERT R": bert_r,
|
| 220 |
+
"BERT F1": bert_f1,
|
| 221 |
+
"Perplexity": perplexity,
|
| 222 |
+
"Diversity": diversity,
|
| 223 |
+
"Racial Bias": racial_bias,
|
| 224 |
+
"METEOR": meteor,
|
| 225 |
+
"CHRF": chrf,
|
| 226 |
+
"Flesch Reading Ease": flesch_ease,
|
| 227 |
+
"Flesch-Kincaid Grade": flesch_grade,
|
| 228 |
+
}
|
| 229 |
+
|
memory.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import openai
|
| 3 |
+
from openai import OpenAI
|
| 4 |
+
from brain import get_index_for_documents
|
| 5 |
+
from langchain.chains import RetrievalQA
|
| 6 |
+
from langchain_community.chat_models import ChatOpenAI
|
| 7 |
+
from langchain_community.embeddings import OpenAIEmbeddings
|
| 8 |
+
from langchain_community.vectorstores import FAISS
|
| 9 |
+
from dotenv import load_dotenv
|
| 10 |
+
import os
|
| 11 |
+
from evaluation_module import RAGEvaluator
|
| 12 |
+
|
| 13 |
+
# Set the title for the Streamlit app
|
| 14 |
+
st.title("DocuChat with Evaluation")
|
| 15 |
+
|
| 16 |
+
# Set up the OpenAI client
|
| 17 |
+
client = OpenAI()
|
| 18 |
+
load_dotenv() # Load variables from .env
|
| 19 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
| 20 |
+
|
| 21 |
+
# Initialize evaluator
|
| 22 |
+
evaluator = RAGEvaluator()
|
| 23 |
+
|
| 24 |
+
# Function to create vector database from different file types
|
| 25 |
+
@st.cache_resource
|
| 26 |
+
def create_vectordb(files, filenames, raw_texts):
|
| 27 |
+
with st.spinner("Creating vector database..."):
|
| 28 |
+
vectordb = get_index_for_documents(
|
| 29 |
+
[file.getvalue() for file in files if file.type == "application/pdf"],
|
| 30 |
+
filenames,
|
| 31 |
+
[raw_text for raw_text in raw_texts.splitlines() if raw_text.strip()],
|
| 32 |
+
openai.api_key
|
| 33 |
+
)
|
| 34 |
+
return vectordb
|
| 35 |
+
|
| 36 |
+
# Upload files using Streamlit's file uploader
|
| 37 |
+
uploaded_files = st.file_uploader("Upload your documents (PDF or TXT)", type=["pdf", "txt"], accept_multiple_files=True, label_visibility="hidden")
|
| 38 |
+
|
| 39 |
+
# Text area for raw text input
|
| 40 |
+
raw_text = st.text_area("Or enter your raw text here:", height=150)
|
| 41 |
+
|
| 42 |
+
# If files are uploaded or raw text is provided, create the vectordb and store it in the session state
|
| 43 |
+
if uploaded_files or raw_text:
|
| 44 |
+
file_names = [file.name for file in uploaded_files] if uploaded_files else []
|
| 45 |
+
st.session_state["vectordb"] = create_vectordb(uploaded_files, file_names, raw_text)
|
| 46 |
+
|
| 47 |
+
# Define the template for the chatbot prompt
|
| 48 |
+
prompt_template = """
|
| 49 |
+
You are a helpful Assistant who answers to users questions based on multiple contexts given to you.
|
| 50 |
+
|
| 51 |
+
Keep your answer short and to the point.
|
| 52 |
+
|
| 53 |
+
The evidence is the context of the document extract with metadata.
|
| 54 |
+
|
| 55 |
+
Carefully focus on the metadata, especially 'filename' and 'page' whenever answering.
|
| 56 |
+
|
| 57 |
+
Make sure to add filename and page number at the end of the sentence you are citing to.
|
| 58 |
+
|
| 59 |
+
Also be able to give a summary based on the document extract given to you, but do not hallucinate.
|
| 60 |
+
|
| 61 |
+
Reply "Not applicable" if text is irrelevant.
|
| 62 |
+
|
| 63 |
+
The document content is:
|
| 64 |
+
{doc_extract}
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
# Get the current prompt from the session state or set a default value
|
| 68 |
+
prompt = st.session_state.get("prompt", [{"role": "system", "content": "none"}])
|
| 69 |
+
|
| 70 |
+
# Display previous chat messages
|
| 71 |
+
for message in prompt:
|
| 72 |
+
if message["role"] != "system":
|
| 73 |
+
with st.chat_message(message["role"]):
|
| 74 |
+
st.write(message["content"])
|
| 75 |
+
|
| 76 |
+
# Get the user's question using Streamlit's chat input
|
| 77 |
+
question = st.chat_input("Ask anything")
|
| 78 |
+
|
| 79 |
+
# Handle the user's question
|
| 80 |
+
if question:
|
| 81 |
+
vectordb = st.session_state.get("vectordb", None)
|
| 82 |
+
if not vectordb:
|
| 83 |
+
with st.chat_message("assistant"):
|
| 84 |
+
st.write("You need to provide a PDF, TXT file, or raw text.")
|
| 85 |
+
st.stop()
|
| 86 |
+
|
| 87 |
+
# Search the vectordb for similar content to the user's question
|
| 88 |
+
search_results = vectordb.similarity_search(question, k=3)
|
| 89 |
+
doc_extract = "\n".join([result.page_content for result in search_results])
|
| 90 |
+
|
| 91 |
+
# Update the prompt with the document extract
|
| 92 |
+
prompt[0] = {
|
| 93 |
+
"role": "system",
|
| 94 |
+
"content": prompt_template.format(doc_extract=doc_extract),
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
# Add the user's question to the prompt and display it
|
| 98 |
+
prompt.append({"role": "user", "content": question})
|
| 99 |
+
with st.chat_message("user"):
|
| 100 |
+
st.write(question)
|
| 101 |
+
|
| 102 |
+
# Display an empty assistant message while waiting for the response
|
| 103 |
+
with st.chat_message("assistant"):
|
| 104 |
+
botmsg = st.empty()
|
| 105 |
+
|
| 106 |
+
# Call ChatGPT with streaming and display the response as it comes
|
| 107 |
+
response = []
|
| 108 |
+
result = ""
|
| 109 |
+
for chunk in client.chat.completions.create(
|
| 110 |
+
model="gpt-3.5-turbo", messages=prompt, stream=True
|
| 111 |
+
):
|
| 112 |
+
text = chunk.choices[0].delta.content
|
| 113 |
+
if text is not None:
|
| 114 |
+
response.append(text)
|
| 115 |
+
result = "".join(response).strip()
|
| 116 |
+
botmsg.write(result)
|
| 117 |
+
|
| 118 |
+
# Add the assistant's response to the prompt
|
| 119 |
+
prompt.append({"role": "assistant", "content": result})
|
| 120 |
+
|
| 121 |
+
# Store the updated prompt in the session state
|
| 122 |
+
st.session_state["prompt"] = prompt
|
| 123 |
+
|
| 124 |
+
# Evaluation Section
|
| 125 |
+
st.write("## Evaluation Results")
|
| 126 |
+
if st.button("Evaluate Response"):
|
| 127 |
+
if doc_extract and result:
|
| 128 |
+
# Perform evaluation
|
| 129 |
+
metrics = evaluator.evaluate_all(result, doc_extract)
|
| 130 |
+
|
| 131 |
+
# Display metrics with explanations
|
| 132 |
+
st.write(f"**BLEU Score**: {metrics['BLEU']:.2f}")
|
| 133 |
+
st.write("BLEU measures the overlap between the generated output and reference text based on n-grams. Range: 0-100. Higher scores indicate better match.")
|
| 134 |
+
|
| 135 |
+
st.write(f"**ROUGE-1 Score**: {metrics['ROUGE-1']:.2f}")
|
| 136 |
+
st.write("ROUGE-1 measures the overlap of unigrams between the generated output and reference text. Range: 0-1. Higher scores indicate better match.")
|
| 137 |
+
|
| 138 |
+
st.write(f"**BERT Precision**: {metrics['BERT P']:.2f}")
|
| 139 |
+
st.write(f"**BERT Recall**: {metrics['BERT R']:.2f}")
|
| 140 |
+
st.write(f"**BERT F1 Score**: {metrics['BERT F1']:.2f}")
|
| 141 |
+
st.write("BERTScore evaluates the semantic similarity between the generated output and reference text using BERT embeddings. Range: 0-1. Higher scores indicate better semantic similarity.")
|
| 142 |
+
|
| 143 |
+
st.write(f"**Perplexity**: {metrics['Perplexity']:.2f}")
|
| 144 |
+
st.write("Perplexity measures how well a language model predicts the text. Range: 1 to ∞. Lower values indicate better fluency and coherence.")
|
| 145 |
+
|
| 146 |
+
st.write(f"**Diversity**: {metrics['Diversity']:.2f}")
|
| 147 |
+
st.write("Diversity measures the uniqueness of bigrams in the generated output. Range: 0-1. Higher values indicate more diverse and varied output.")
|