Spaces:
Sleeping
Sleeping
GitHub Actions
commited on
Commit
·
cb7edc9
1
Parent(s):
2ab3610
Deploy Wed Nov 19 16:30:12 UTC 2025
Browse files- Dockerfile +31 -0
- README.md +3 -4
- hg_login.py +4 -0
- inference_chroma.py +1029 -0
- requirements_heavy.txt +15 -0
- requirements_light.txt +8 -0
- s3_utils.py +49 -0
- upload_model.py +26 -0
Dockerfile
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
FROM python:3.11-slim
|
| 3 |
+
|
| 4 |
+
#for huggingface space
|
| 5 |
+
ENV PORT = 7860
|
| 6 |
+
EXPOSE 7860
|
| 7 |
+
|
| 8 |
+
WORKDIR /app
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
RUN apt-get update \
|
| 12 |
+
&& apt-get install -y --no-install-recommends \
|
| 13 |
+
build-essential \
|
| 14 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
COPY requirements_heavy.txt .
|
| 18 |
+
RUN pip install --timeout 2000 -r requirements_heavy.txt \
|
| 19 |
+
--extra-index-url https://download.pytorch.org/whl/cpu
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
COPY requirements_light.txt .
|
| 23 |
+
RUN pip install --timeout 2000 -r requirements_light.txt \
|
| 24 |
+
--extra-index-url https://download.pytorch.org/whl/cpu
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# COPY inference_chroma.py .
|
| 28 |
+
COPY . .
|
| 29 |
+
|
| 30 |
+
# CMD ["uvicorn", "inference_chroma:app", "--host", "0.0.0.0", "--port", "8000"]
|
| 31 |
+
CMD ["uvicorn", "inference_chroma:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
CHANGED
|
@@ -1,11 +1,10 @@
|
|
| 1 |
---
|
| 2 |
-
title: WHO Rag System
|
| 3 |
emoji: 😻
|
| 4 |
colorFrom: pink
|
| 5 |
colorTo: purple
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
license: mit
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: "WHO Rag System"
|
| 3 |
emoji: 😻
|
| 4 |
colorFrom: pink
|
| 5 |
colorTo: purple
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
license: mit
|
| 9 |
+
app_port: 7860
|
| 10 |
+
---
|
|
|
hg_login.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import login
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
login(token=os.getenv('HF_TOKEN'))
|
inference_chroma.py
ADDED
|
@@ -0,0 +1,1029 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
import asyncio
|
| 3 |
+
import gc
|
| 4 |
+
import os
|
| 5 |
+
import json
|
| 6 |
+
import logging
|
| 7 |
+
import torch
|
| 8 |
+
from typing import List, Dict, Tuple, Optional, Literal
|
| 9 |
+
from fastapi import FastAPI, HTTPException
|
| 10 |
+
from pydantic import BaseModel, Field
|
| 11 |
+
|
| 12 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, Pipeline
|
| 13 |
+
from sentence_transformers import CrossEncoder
|
| 14 |
+
from fastembed import TextEmbedding
|
| 15 |
+
from s3_utils import download_chroma_folder_from_s3
|
| 16 |
+
|
| 17 |
+
import chromadb
|
| 18 |
+
from chromadb.api import Collection
|
| 19 |
+
from chromadb import PersistentClient
|
| 20 |
+
from chromadb.api.types import QueryResult
|
| 21 |
+
import time
|
| 22 |
+
from llama_cpp import Llama
|
| 23 |
+
|
| 24 |
+
from huggingface_hub import hf_hub_download
|
| 25 |
+
|
| 26 |
+
logging.basicConfig(level=logging.INFO, format='{"time": "%(asctime)s", "level": "%(levelname)s", "message": "%(message)s"}')
|
| 27 |
+
logger = logging.getLogger(__name__)
|
| 28 |
+
|
| 29 |
+
CHROMA_DIR = os.getenv("CHROMA_DIR")
|
| 30 |
+
CHROMA_DIR_INF = "/" + CHROMA_DIR
|
| 31 |
+
CHROMA_COLLECTION = os.getenv("CHROMA_COLLECTION")
|
| 32 |
+
CHROMA_CACHE_COLLECTION = os.getenv("CHROMA_CACHE_COLLECTION", "semantic_cache")
|
| 33 |
+
|
| 34 |
+
LLM_MODEL_CPU_ID = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 35 |
+
LLM_MODEL_GPU_ID = "meta-llama/Llama-3.1-8B-Instruct"
|
| 36 |
+
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 37 |
+
CHROMA_DB_FILENAME = os.getenv("CHROMA_DB_FILENAME")
|
| 38 |
+
SUMMARY_TRIGGER_TOKENS = int(os.getenv("SUMMARY_TRIGGER_TOKENS", 1000))
|
| 39 |
+
SUMMARY_TARGET_TOKENS = int(os.getenv("SUMMARY_TARGET_TOKENS", 120))
|
| 40 |
+
# SEMANTIC_CACHE_DIST_THRESHOLD = float(os.getenv("SEMANTIC_CACHE_SIM_THRESHOLD", 0.1))
|
| 41 |
+
|
| 42 |
+
RETRIEVE_TOP_K_CPU = int(os.getenv("RETRIEVE_TOP_K_CPU", 3))
|
| 43 |
+
RETRIEVE_TOP_K_GPU = int(os.getenv("RETRIEVE_TOP_K_GPU", 8))
|
| 44 |
+
MAX_NEW_TOKENS_CPU = int(os.getenv("MAX_NEW_TOKENS_CPU", 256))
|
| 45 |
+
MAX_NEW_TOKENS_GPU = int(os.getenv("MAX_NEW_TOKENS_GPU", 1024))
|
| 46 |
+
# GPU_MIN_FREE_HOURS_THRESHOLD = float(os.getenv("GPU_MIN_FREE_HOURS_THRESHOLD", 0.5))
|
| 47 |
+
GPU_MIN_FREE_HOURS_THRESHOLD = 11
|
| 48 |
+
|
| 49 |
+
# LLAMA_GGUF_PATH = os.getenv("LLAMA_GGUF_PATH", "/model/tinyllama-reasoning.Q4_K_M.gguf")
|
| 50 |
+
LLM_TOKENIZER_ID = "alexredna/TinyLlama-1.1B-Chat-v1.0-reasoning-v2"
|
| 51 |
+
|
| 52 |
+
TINYLAMA_CONTEXT_WINDOW = 2048
|
| 53 |
+
LLAMA_3_CONTEXT_WINDOW = 8192
|
| 54 |
+
SAFETY_BUFFER = 50
|
| 55 |
+
# MAX_INPUT_TOKENS = TINYLAMA_CONTEXT_WINDOW - MAX_NEW_TOKENS - SAFETY_BUFFER
|
| 56 |
+
|
| 57 |
+
LLAMA_3_CHAT_TEMPLATE = (
|
| 58 |
+
"{% for message in messages %}"
|
| 59 |
+
"{% if message['role'] == 'user' %}"
|
| 60 |
+
"{{ '<|start_header_id|>user<|end_header_id|>\n' + message['content'] + '<|eot_id|>' }}"
|
| 61 |
+
"{% elif message['role'] == 'assistant' %}"
|
| 62 |
+
"{{ '<|start_header_id|>assistant<|end_header_id|>\n' + message['content'] + '<|eot_id|>' }}"
|
| 63 |
+
"{% elif message['role'] == 'system' %}"
|
| 64 |
+
"{{ '<|start_header_id|>system<|end_header_id|>\n' + message['content'] + '<|eot_id|>' }}"
|
| 65 |
+
"{% endif %}"
|
| 66 |
+
"{% if loop.last and message['role'] == 'user' %}"
|
| 67 |
+
"{{ '<|start_header_id|>assistant<|end_header_id|>\n' }}"
|
| 68 |
+
"{% endif %}"
|
| 69 |
+
"{% endfor %}"
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
CROSS_ENCODER_MODEL = "cross-encoder/ms-marco-MiniLM-L-6-v2"
|
| 73 |
+
MODEL_ID = "EJ4U/WHO-rag-model"
|
| 74 |
+
FILENAME = "tinyllama-reasoning.Q4_K_M.gguf"
|
| 75 |
+
|
| 76 |
+
try:
|
| 77 |
+
cross_encoder = CrossEncoder(CROSS_ENCODER_MODEL, device=DEVICE)
|
| 78 |
+
logger.info("Cross-encoder model loaded successfully.")
|
| 79 |
+
except Exception as e:
|
| 80 |
+
logger.warning("Cross-encoder model error: %s", e)
|
| 81 |
+
|
| 82 |
+
LLAMA_GGUF_PATH = hf_hub_download(
|
| 83 |
+
repo_id=MODEL_ID,
|
| 84 |
+
filename=FILENAME,
|
| 85 |
+
cache_dir="model"
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
EMBEDDING_MODEL = TextEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
| 89 |
+
_ = list(EMBEDDING_MODEL.embed(["warmup"]))
|
| 90 |
+
logger.info("FastEmbed model warmup complete.")
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def initialize_cpp_llm(gguf_path: str, n_ctx: int = TINYLAMA_CONTEXT_WINDOW, n_threads: int = 4) -> Llama:
|
| 94 |
+
"""
|
| 95 |
+
Initialize a quantized GGUF model via llama-cpp (llama_cpp.Llama).
|
| 96 |
+
This replaces the HF AutoModel pipeline for CPU inference.
|
| 97 |
+
"""
|
| 98 |
+
logger.info(f"Initializing llama.cpp model from GGUF: {gguf_path}")
|
| 99 |
+
if not os.path.exists(gguf_path):
|
| 100 |
+
logger.error(f"GGUF model not found at {gguf_path}. Make sure the file exists.")
|
| 101 |
+
raise RuntimeError(f"GGUF model not found at {gguf_path}")
|
| 102 |
+
|
| 103 |
+
llm = Llama(
|
| 104 |
+
model_path=gguf_path,
|
| 105 |
+
n_ctx=n_ctx,
|
| 106 |
+
n_threads=n_threads,
|
| 107 |
+
n_batch=256,
|
| 108 |
+
use_mmap=True, # memory-map weights for faster cold-start
|
| 109 |
+
n_gpu_layers=0
|
| 110 |
+
)
|
| 111 |
+
logger.info("llama.cpp model loaded successfully.")
|
| 112 |
+
return llm
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def initialize_llm_pipeline(model_id: str, device: str) -> Pipeline:
|
| 116 |
+
"""Initializes a Hugging Face transformers pipeline for GPU."""
|
| 117 |
+
logger.info(f"Initializing HF Pipeline for model: {model_id} on {device}")
|
| 118 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 119 |
+
model_id,
|
| 120 |
+
torch_dtype=torch.bfloat16,
|
| 121 |
+
device_map=device,
|
| 122 |
+
trust_remote_code=True
|
| 123 |
+
)
|
| 124 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 125 |
+
if not getattr(tokenizer, "chat_template", None):
|
| 126 |
+
logger.info("Applying Llama-3 chat template to tokenizer.")
|
| 127 |
+
tokenizer.chat_template = LLAMA_3_CHAT_TEMPLATE
|
| 128 |
+
|
| 129 |
+
if tokenizer.pad_token is None:
|
| 130 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 131 |
+
|
| 132 |
+
pipe = pipeline(
|
| 133 |
+
"text-generation",
|
| 134 |
+
model=model,
|
| 135 |
+
tokenizer=tokenizer,
|
| 136 |
+
device_map=device
|
| 137 |
+
)
|
| 138 |
+
logger.info(f"HF Pipeline for {model_id} loaded successfully.")
|
| 139 |
+
return pipe
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def initialize_chroma_client() -> chromadb.PersistentClient:
|
| 143 |
+
"""Initializes Chroma client and loads the index from S3/disk."""
|
| 144 |
+
logger.info(f"Initializing Chroma client from persistence directory: {CHROMA_DIR_INF}")
|
| 145 |
+
|
| 146 |
+
local_db = os.path.exists(CHROMA_DIR_INF) and os.listdir(CHROMA_DIR_INF)
|
| 147 |
+
db_exist = os.path.join(CHROMA_DIR_INF, "chroma.sqlite3")
|
| 148 |
+
|
| 149 |
+
if not local_db or not os.path.exists(db_exist):
|
| 150 |
+
logger.warning(f"local chroma directory {CHROMA_DIR_INF} is missing or empty. "
|
| 151 |
+
f"Attempting download from s3.")
|
| 152 |
+
|
| 153 |
+
if CHROMA_DIR:
|
| 154 |
+
download_chroma_folder_from_s3(
|
| 155 |
+
s3_prefix=CHROMA_DIR,
|
| 156 |
+
local_dir=CHROMA_DIR_INF
|
| 157 |
+
)
|
| 158 |
+
logger.info("Chroma data downloaded from S3.")
|
| 159 |
+
else:
|
| 160 |
+
logger.error("CHROMA_DIR is not set. Cannot retrieve chroma index")
|
| 161 |
+
raise RuntimeError("Chroma index failed to load")
|
| 162 |
+
else:
|
| 163 |
+
logger.info(f"Local chroma data found at {CHROMA_DIR_INF}.")
|
| 164 |
+
logger.info(f"Initializing chroma client from persistence directory: {CHROMA_DIR_INF}")
|
| 165 |
+
try:
|
| 166 |
+
client = PersistentClient(path=CHROMA_DIR_INF, settings=chromadb.Settings(allow_reset=False))
|
| 167 |
+
logger.info(" Chroma client initialized successfully.")
|
| 168 |
+
except Exception as e:
|
| 169 |
+
logger.error(f" Failed to load Chroma index: {e}")
|
| 170 |
+
raise RuntimeError("Chroma index failed to load.")
|
| 171 |
+
|
| 172 |
+
return client
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
async def load_cpu_pipeline() -> Tuple[Optional[object], str, int, int, int]:
|
| 177 |
+
|
| 178 |
+
if getattr(app.state, 'cpu_pipeline', None) is not None:
|
| 179 |
+
if isinstance(app.state.cpu_pipeline, Llama):
|
| 180 |
+
return app.state.cpu_pipeline, "cpu_gguf", TINYLAMA_CONTEXT_WINDOW, MAX_NEW_TOKENS_CPU, RETRIEVE_TOP_K_CPU
|
| 181 |
+
return app.state.cpu_pipeline, "hf_gpu" if torch.cuda.is_available() else "cpu_hf", TINYLAMA_CONTEXT_WINDOW, MAX_NEW_TOKENS_CPU, RETRIEVE_TOP_K_CPU
|
| 182 |
+
|
| 183 |
+
if getattr(app.state, 'tokenizer', None) is None:
|
| 184 |
+
try:
|
| 185 |
+
logger.info(f"Loading tokenizer from {LLM_TOKENIZER_ID}")
|
| 186 |
+
app.state.tokenizer = AutoTokenizer.from_pretrained(LLM_TOKENIZER_ID, use_fast=False)
|
| 187 |
+
if not getattr(app.state.tokenizer, "chat_template", None):
|
| 188 |
+
app.state.tokenizer.chat_template = LLAMA_3_CHAT_TEMPLATE
|
| 189 |
+
except Exception as e:
|
| 190 |
+
logger.error(f"Failed to load tokenizer: {e}", exc_info=True)
|
| 191 |
+
raise HTTPException(status_code=503, detail=f"Failed to load tokenizer: {e}")
|
| 192 |
+
|
| 193 |
+
if torch.cuda.is_available():
|
| 194 |
+
try:
|
| 195 |
+
logger.info(f"GPU detected. Attempting to load HF GPU model {LLM_MODEL_GPU_ID}...")
|
| 196 |
+
app.state.cpu_pipeline = await asyncio.to_thread(
|
| 197 |
+
initialize_llm_pipeline,
|
| 198 |
+
LLM_MODEL_GPU_ID,
|
| 199 |
+
"cuda"
|
| 200 |
+
)
|
| 201 |
+
logger.info("HF GPU model loaded successfully.")
|
| 202 |
+
return app.state.cpu_pipeline, "hf_gpu", TINYLAMA_CONTEXT_WINDOW, MAX_NEW_TOKENS_CPU, RETRIEVE_TOP_K_CPU
|
| 203 |
+
except Exception as e:
|
| 204 |
+
logger.warning(f"Failed to load HF GPU model: {e}. Falling back to CPU...")
|
| 205 |
+
|
| 206 |
+
if LLAMA_GGUF_PATH and os.path.exists(LLAMA_GGUF_PATH):
|
| 207 |
+
try:
|
| 208 |
+
logger.info("Loading TinyLlama GGUF (CPU)...")
|
| 209 |
+
logger.info(f"Model: {LLAMA_GGUF_PATH}")
|
| 210 |
+
app.state.cpu_pipeline = await asyncio.to_thread(
|
| 211 |
+
initialize_cpp_llm,
|
| 212 |
+
LLAMA_GGUF_PATH,
|
| 213 |
+
TINYLAMA_CONTEXT_WINDOW,
|
| 214 |
+
max(1, os.cpu_count() - 1)
|
| 215 |
+
)
|
| 216 |
+
logger.info("TinyLlama GGUF loaded successfully.")
|
| 217 |
+
return app.state.cpu_pipeline, "cpu_gguf", TINYLAMA_CONTEXT_WINDOW, MAX_NEW_TOKENS_CPU, RETRIEVE_TOP_K_CPU
|
| 218 |
+
except Exception as e:
|
| 219 |
+
logger.warning(f"Failed to load GGUF CPU model: {e}")
|
| 220 |
+
|
| 221 |
+
try:
|
| 222 |
+
logger.info(f"Loading HF CPU model {LLM_MODEL_CPU_ID}...")
|
| 223 |
+
app.state.cpu_pipeline = await asyncio.to_thread(
|
| 224 |
+
initialize_llm_pipeline,
|
| 225 |
+
LLM_MODEL_CPU_ID,
|
| 226 |
+
"cpu"
|
| 227 |
+
)
|
| 228 |
+
logger.info("HF CPU model loaded successfully.")
|
| 229 |
+
return app.state.cpu_pipeline, "cpu_hf", TINYLAMA_CONTEXT_WINDOW, MAX_NEW_TOKENS_CPU, RETRIEVE_TOP_K_CPU
|
| 230 |
+
except Exception as e:
|
| 231 |
+
logger.error(f"FATAL: Failed to load any CPU model: {e}", exc_info=True)
|
| 232 |
+
raise HTTPException(status_code=503, detail=f"Failed to load any model: {e}")
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
async def get_pipeline_for_runtime() -> Tuple[Optional[object], str, int, int, int]:
|
| 236 |
+
"""
|
| 237 |
+
Determines runtime, lazily loads the correct pipeline (GPU/CPU),
|
| 238 |
+
and returns the pipeline and its associated settings.
|
| 239 |
+
NOTE: Return type is Optional[object] to handle both Pipeline and Llama
|
| 240 |
+
"""
|
| 241 |
+
if await gpu_hours_available():
|
| 242 |
+
logger.info("GPU hours available. Attempting to load GPU pipeline.")
|
| 243 |
+
if getattr(app.state, 'gpu_pipeline', None) is None:
|
| 244 |
+
logger.info("Lazy-loading Llama-3.1-8B (GPU)...")
|
| 245 |
+
try:
|
| 246 |
+
if getattr(app.state, 'cpu_pipeline', None):
|
| 247 |
+
# NOTE: Clear both the Llama object and the separate tokenizer
|
| 248 |
+
del app.state.cpu_pipeline
|
| 249 |
+
app.state.cpu_pipeline = None
|
| 250 |
+
if getattr(app.state, 'llm_cpp', None):
|
| 251 |
+
del app.state.llm_cpp
|
| 252 |
+
app.state.llm_cpp = None
|
| 253 |
+
if getattr(app.state, 'tokenizer', None):
|
| 254 |
+
del app.state.tokenizer
|
| 255 |
+
app.state.tokenizer = None
|
| 256 |
+
gc.collect()
|
| 257 |
+
logger.info("Cleared CPU pipeline (Llama) and tokenizer from memory.")
|
| 258 |
+
|
| 259 |
+
if torch.cuda.is_available():
|
| 260 |
+
torch.cuda.empty_cache()
|
| 261 |
+
|
| 262 |
+
app.state.gpu_pipeline = await asyncio.to_thread(
|
| 263 |
+
initialize_llm_pipeline, LLM_MODEL_GPU_ID, "cuda"
|
| 264 |
+
)
|
| 265 |
+
logger.info("GPU pipeline loaded successfully.")
|
| 266 |
+
except Exception as e:
|
| 267 |
+
logger.error(f"Failed to load GPU pipeline: {e}. Falling back to CPU.", exc_info=True)
|
| 268 |
+
return await load_cpu_pipeline()
|
| 269 |
+
|
| 270 |
+
return app.state.gpu_pipeline, "gpu", LLAMA_3_CONTEXT_WINDOW, MAX_NEW_TOKENS_GPU, RETRIEVE_TOP_K_GPU
|
| 271 |
+
else:
|
| 272 |
+
logger.info("GPU hours exhausted or unavailable. Loading CPU pipeline.")
|
| 273 |
+
return await load_cpu_pipeline()
|
| 274 |
+
|
| 275 |
+
async def gpu_hours_available() -> bool:
|
| 276 |
+
|
| 277 |
+
force_gpu = False
|
| 278 |
+
if force_gpu:
|
| 279 |
+
return True
|
| 280 |
+
|
| 281 |
+
remaining_hours = 10
|
| 282 |
+
return remaining_hours > GPU_MIN_FREE_HOURS_THRESHOLD
|
| 283 |
+
|
| 284 |
+
app = FastAPI(title="RAG Inference API (Chroma + Llama 3)", version="1.0.0")
|
| 285 |
+
|
| 286 |
+
@app.on_event("startup")
|
| 287 |
+
async def load_models():
|
| 288 |
+
try:
|
| 289 |
+
logger.info("Starting FastAPI model loading...")
|
| 290 |
+
|
| 291 |
+
client = await asyncio.to_thread(initialize_chroma_client)
|
| 292 |
+
|
| 293 |
+
if not CHROMA_COLLECTION:
|
| 294 |
+
raise RuntimeError("CHROMA_COLLECTION variable not set in env")
|
| 295 |
+
app.state.chroma_collection = client.get_collection(name=CHROMA_COLLECTION)
|
| 296 |
+
if(app.state.chroma_collection):
|
| 297 |
+
app.state.chroma_ready = app.state.chroma_collection is not None
|
| 298 |
+
logger.info(f" Loaded collection: {CHROMA_COLLECTION} (Documents: {app.state.chroma_collection.count()})")
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
app.state.cache_collection = client.get_or_create_collection(name=CHROMA_CACHE_COLLECTION)
|
| 302 |
+
logger.info(f"Loaded Cache collection: {CHROMA_CACHE_COLLECTION} ({app.state.cache_collection.count()} items)")
|
| 303 |
+
|
| 304 |
+
app.state.gpu_pipeline: Optional[Pipeline] = None # type: ignore
|
| 305 |
+
app.state.cpu_pipeline: Optional[object] = None # type: ignore
|
| 306 |
+
app.state.llm_cpp: Optional[Llama] = None # type: ignore
|
| 307 |
+
app.state.tokenizer: Optional[AutoTokenizer] = None # type: ignore
|
| 308 |
+
|
| 309 |
+
if not app.state.chroma_ready:
|
| 310 |
+
raise RuntimeError("ChromaDB critical component failed to load.")
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
await load_cpu_pipeline()
|
| 314 |
+
logger.info("FastAPI models loaded successfully (CPU pipeline pre-warmed).")
|
| 315 |
+
|
| 316 |
+
except Exception as e:
|
| 317 |
+
app.state.chroma_ready = False
|
| 318 |
+
logger.error(f"Error during startup: {e}", exc_info=True)
|
| 319 |
+
raise
|
| 320 |
+
|
| 321 |
+
class HistoryMessage(BaseModel):
|
| 322 |
+
role: Literal['user', 'assistant']
|
| 323 |
+
content: str
|
| 324 |
+
|
| 325 |
+
class QueryRequest(BaseModel):
|
| 326 |
+
query: str = Field(..., description="The user's latest message.")
|
| 327 |
+
history: List[HistoryMessage] = Field(default_factory=list, description="The previous turns of the conversation.")
|
| 328 |
+
stream: bool = Field(False)
|
| 329 |
+
|
| 330 |
+
class RAGResponse(BaseModel):
|
| 331 |
+
query: str = Field(..., description="The original user query.")
|
| 332 |
+
answer: str = Field(..., description="The final answer generated by the LLM.")
|
| 333 |
+
sources: List[str] = Field(..., description="Unique source URLs used for the answer.")
|
| 334 |
+
context_chunks: List[str] = Field(..., description="The final context chunks (text only) sent to the LLM.")
|
| 335 |
+
expanded_queries: List[str] = Field(..., description="Queries used for retrieval.")
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
def call_llm_pipeline(pipe_like: Optional[object],
|
| 339 |
+
prompt_text: str,
|
| 340 |
+
deterministic=False,
|
| 341 |
+
max_new_tokens: int = MAX_NEW_TOKENS_CPU,
|
| 342 |
+
is_expansion: bool = False
|
| 343 |
+
) -> str:
|
| 344 |
+
"""
|
| 345 |
+
Unified caller for LLM:
|
| 346 |
+
- Handles llama_cpp.Llama instances (CPU)
|
| 347 |
+
- Handles transformers.Pipeline instances (GPU)
|
| 348 |
+
"""
|
| 349 |
+
|
| 350 |
+
logging.info(f"model used: {pipe_like}")
|
| 351 |
+
|
| 352 |
+
if pipe_like is None:
|
| 353 |
+
raise HTTPException(status_code=503, detail="LLM pipeline is not available.")
|
| 354 |
+
|
| 355 |
+
if deterministic:
|
| 356 |
+
temp = 0.0
|
| 357 |
+
elif is_expansion:
|
| 358 |
+
temp = 0.1
|
| 359 |
+
else:
|
| 360 |
+
temp = 0.6
|
| 361 |
+
tokenizer = getattr(app.state, "tokenizer", None)
|
| 362 |
+
if tokenizer is None and isinstance(pipe_like, Pipeline):
|
| 363 |
+
tokenizer = getattr(pipe_like, "tokenizer", None)
|
| 364 |
+
|
| 365 |
+
try:
|
| 366 |
+
if tokenizer:
|
| 367 |
+
input_token_count = len(tokenizer.encode(prompt_text, add_special_tokens=True))
|
| 368 |
+
logger.info(f"LLM Input Token Count: {input_token_count}.")
|
| 369 |
+
except Exception:
|
| 370 |
+
logger.debug("Token counting failed, continuing without token count.")
|
| 371 |
+
|
| 372 |
+
try:
|
| 373 |
+
|
| 374 |
+
if isinstance(pipe_like, Llama):
|
| 375 |
+
llm = pipe_like
|
| 376 |
+
with torch.inference_mode():
|
| 377 |
+
resp = llm(
|
| 378 |
+
prompt_text,
|
| 379 |
+
max_tokens=max_new_tokens,
|
| 380 |
+
temperature=temp,
|
| 381 |
+
stop=["<|eot_id|>", "<|start_header_id|>", "<|end_of_text|>"]
|
| 382 |
+
)
|
| 383 |
+
text = resp.get("choices", [{}])[0].get("text", "").strip()
|
| 384 |
+
return text
|
| 385 |
+
|
| 386 |
+
elif isinstance(pipe_like, Pipeline):
|
| 387 |
+
pipe = pipe_like
|
| 388 |
+
|
| 389 |
+
with torch.inference_mode():
|
| 390 |
+
outputs = pipe(
|
| 391 |
+
prompt_text,
|
| 392 |
+
max_new_tokens=max_new_tokens,
|
| 393 |
+
temperature=temp if temp > 0.0 else None,
|
| 394 |
+
do_sample=True if temp > 0.0 else False,
|
| 395 |
+
pad_token_id=pipe.tokenizer.eos_token_id,
|
| 396 |
+
return_full_text=False
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
text = outputs[0]['generated_text'].strip()
|
| 400 |
+
|
| 401 |
+
if '<|eot_id|>' in text:
|
| 402 |
+
text = text.split('<|eot_id|>')[0].strip()
|
| 403 |
+
if '<|end_of_text|>' in text:
|
| 404 |
+
text = text.split('<|end_of_text|>')[0].strip()
|
| 405 |
+
|
| 406 |
+
return text
|
| 407 |
+
|
| 408 |
+
else:
|
| 409 |
+
logger.error(f"Unknown pipeline type: {type(pipe_like)}")
|
| 410 |
+
raise TypeError(f"Unknown pipeline type: {type(pipe_like)}")
|
| 411 |
+
|
| 412 |
+
except Exception as e:
|
| 413 |
+
logger.error(f"Error calling LLM pipeline: {e}", exc_info=True)
|
| 414 |
+
raise HTTPException(status_code=500, detail=f"LLM generation failed: {str(e)}")
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
async def expand_query_with_llm(pipe: Optional[object],
|
| 418 |
+
user_query: str,
|
| 419 |
+
summary: str,
|
| 420 |
+
history: Optional[List[HistoryMessage]]
|
| 421 |
+
) -> List[str]:
|
| 422 |
+
"""
|
| 423 |
+
Implements the robust two-mode query strategy: expansion or rewriting.
|
| 424 |
+
"""
|
| 425 |
+
|
| 426 |
+
messages = []
|
| 427 |
+
expanded_queries: List[str] = []
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
if not history or len(history) == 0:
|
| 431 |
+
system_prompt = "You are a specialized query expansion engine."
|
| 432 |
+
user_prompt = f"""
|
| 433 |
+
Generate 3 alternative search queries similar to the user query below.
|
| 434 |
+
The goal is to maximize retrieval relevance based on the user query.
|
| 435 |
+
Return only the queries, one per line, without numbers or extra text.
|
| 436 |
+
If user query is a greeting, don't reply with a greeting too and ask how you can help.
|
| 437 |
+
If user query is gibberish
|
| 438 |
+
|
| 439 |
+
User Query:
|
| 440 |
+
{user_query}
|
| 441 |
+
"""
|
| 442 |
+
messages.append({"role": "system", "content": system_prompt})
|
| 443 |
+
messages.append({"role": "user", "content": user_prompt})
|
| 444 |
+
|
| 445 |
+
else:
|
| 446 |
+
|
| 447 |
+
messages = [
|
| 448 |
+
{
|
| 449 |
+
"role": "system",
|
| 450 |
+
"content": "You are a helpful assistant who expands user queries into multiple search queries based on conversation history and user intent."
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"role": "user",
|
| 454 |
+
"content": f"""
|
| 455 |
+
Given the conversation summary below and the user query, expand the user query into three queries that best reflect the conversation history, intent, and user needs.
|
| 456 |
+
Return only the queries, one per line, without numbers, preamble, or other text.
|
| 457 |
+
|
| 458 |
+
Conversation Summary:
|
| 459 |
+
{summary}
|
| 460 |
+
|
| 461 |
+
User Query:
|
| 462 |
+
{user_query}
|
| 463 |
+
|
| 464 |
+
Queries:
|
| 465 |
+
"""
|
| 466 |
+
}
|
| 467 |
+
]
|
| 468 |
+
|
| 469 |
+
tokenizer = getattr(app.state, "tokenizer", None)
|
| 470 |
+
if tokenizer is None and isinstance(pipe, Pipeline):
|
| 471 |
+
tokenizer = getattr(pipe, "tokenizer", None)
|
| 472 |
+
|
| 473 |
+
if tokenizer:
|
| 474 |
+
prompt_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 475 |
+
else:
|
| 476 |
+
logger.warning("No tokenizer found for expansion, using simple join.")
|
| 477 |
+
prompt_text = "\n".join([m["content"] for m in messages])
|
| 478 |
+
|
| 479 |
+
logger.info(f"Query Expansion/Rewrite Prompt: {prompt_text}")
|
| 480 |
+
start = time.time()
|
| 481 |
+
|
| 482 |
+
llm_output = await asyncio.to_thread(
|
| 483 |
+
call_llm_pipeline, pipe, prompt_text, deterministic=True, is_expansion=True, max_new_tokens=150
|
| 484 |
+
)
|
| 485 |
+
end = time.time()
|
| 486 |
+
logger.info(f"Query Expansion/Rewrite Output: {llm_output} (Time: {end-start:.2f}s)")
|
| 487 |
+
|
| 488 |
+
if not history or len(history) <= 0:
|
| 489 |
+
expanded_queries = [
|
| 490 |
+
q.strip() for q in llm_output.split('\n')
|
| 491 |
+
if q.strip() and "engine" not in q.lower() and "task" not in q.lower() and "search queries" not in q.lower()
|
| 492 |
+
]
|
| 493 |
+
else:
|
| 494 |
+
expanded_queries = [llm_output.strip()]
|
| 495 |
+
|
| 496 |
+
expanded_queries.append(user_query)
|
| 497 |
+
|
| 498 |
+
return list(set(q for q in expanded_queries if q))
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
def retrieve_context(queries: List[str], collection: Collection) -> Tuple[List[Dict], List[str]]:
|
| 502 |
+
"""Retrieves context from ChromaDB based on query embeddings."""
|
| 503 |
+
try:
|
| 504 |
+
embeddings_list = [
|
| 505 |
+
[float(x) for x in emb]
|
| 506 |
+
for emb in EMBEDDING_MODEL.embed(queries, batch_size=8)
|
| 507 |
+
]
|
| 508 |
+
except Exception as e:
|
| 509 |
+
logger.error(f"Failed to generate embeddings for retrieval: {e}", exc_info=True)
|
| 510 |
+
return [], []
|
| 511 |
+
|
| 512 |
+
try:
|
| 513 |
+
n_results_to_fetch = max(10, RETRIEVE_TOP_K_CPU * len(queries))
|
| 514 |
+
start = time.time()
|
| 515 |
+
results = collection.query(
|
| 516 |
+
query_embeddings=embeddings_list,
|
| 517 |
+
n_results=n_results_to_fetch,
|
| 518 |
+
include=['documents', 'metadatas']
|
| 519 |
+
)
|
| 520 |
+
end = time.time()
|
| 521 |
+
logger.info(f'RETRIEVING TOOK: {end-start:.2f}s')
|
| 522 |
+
except Exception as e:
|
| 523 |
+
logger.error(f"Chroma query failed: {e}")
|
| 524 |
+
return [], []
|
| 525 |
+
|
| 526 |
+
context_data = []
|
| 527 |
+
source_urls = set()
|
| 528 |
+
seen_texts = set()
|
| 529 |
+
|
| 530 |
+
if results.get("documents") and results.get("metadatas"):
|
| 531 |
+
for docs_list, metadatas_list in zip(results["documents"], results["metadatas"]):
|
| 532 |
+
for doc, metadata in zip(docs_list, metadatas_list):
|
| 533 |
+
if doc and metadata and doc not in seen_texts:
|
| 534 |
+
context_data.append({'text': doc, 'url': metadata.get('source')})
|
| 535 |
+
if metadata.get("source"):
|
| 536 |
+
source_urls.add(metadata.get('source'))
|
| 537 |
+
seen_texts.add(doc)
|
| 538 |
+
|
| 539 |
+
return context_data, list(source_urls)
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
def rerank_documents(query: str, context: List[Dict], top_k: int) -> List[Dict]:
|
| 543 |
+
"""
|
| 544 |
+
Re-ranks context documents using a cross-encoder.
|
| 545 |
+
Returns the top-k most relevant documents.
|
| 546 |
+
"""
|
| 547 |
+
if not context or not cross_encoder:
|
| 548 |
+
logger.warning("Skipping reranking (no context or cross-encoder not loaded).")
|
| 549 |
+
return context[:top_k]
|
| 550 |
+
|
| 551 |
+
top_k = min(top_k, len(context))
|
| 552 |
+
pairs = [(query, doc['text']) for doc in context]
|
| 553 |
+
|
| 554 |
+
try:
|
| 555 |
+
start = time.time()
|
| 556 |
+
scores = cross_encoder.predict(pairs)
|
| 557 |
+
end = time.time()
|
| 558 |
+
logger.info(f'RERANKING TOOK {end-start:.2f}s')
|
| 559 |
+
except Exception as e:
|
| 560 |
+
logger.error(f"Cross-encoder prediction failed: {e}. Returning non-reranked results.", exc_info=True)
|
| 561 |
+
return context[:top_k]
|
| 562 |
+
|
| 563 |
+
for doc, score in zip(context, scores):
|
| 564 |
+
doc['score'] = score
|
| 565 |
+
|
| 566 |
+
ranked_docs = sorted(context, key=lambda x: x['score'], reverse=True)
|
| 567 |
+
|
| 568 |
+
return ranked_docs[:top_k]
|
| 569 |
+
|
| 570 |
+
async def summarize_history(history: List[HistoryMessage], pipe: Optional[object]) -> str:
|
| 571 |
+
"""
|
| 572 |
+
Summarizes the conversation history using the correct LLM (via call_llm_pipeline).
|
| 573 |
+
"""
|
| 574 |
+
if not history:
|
| 575 |
+
return ''
|
| 576 |
+
|
| 577 |
+
history_text = "\n".join([f"{h.role}: {h.content}" for h in history[-8:]])
|
| 578 |
+
|
| 579 |
+
tokenizer = getattr(app.state, "tokenizer", None)
|
| 580 |
+
if tokenizer is None and isinstance(pipe, Pipeline):
|
| 581 |
+
tokenizer = getattr(pipe, "tokenizer", None)
|
| 582 |
+
|
| 583 |
+
history_tokens = len(tokenizer.encode(history_text)) if tokenizer else len(history_text.split())
|
| 584 |
+
|
| 585 |
+
if history_tokens < 150:
|
| 586 |
+
return ""
|
| 587 |
+
|
| 588 |
+
summarizer_prompt = f"""
|
| 589 |
+
You are an intelligent agent who summarizes conversations.
|
| 590 |
+
Concisely summarize the key topics and entities discussed in the
|
| 591 |
+
conversation history between a user and an assistant.
|
| 592 |
+
The summary should be a few sentences long.
|
| 593 |
+
|
| 594 |
+
CONVERSATION HISTORY:
|
| 595 |
+
{history_text}
|
| 596 |
+
|
| 597 |
+
CONCISE SUMMARY:
|
| 598 |
+
"""
|
| 599 |
+
|
| 600 |
+
logger.info("Generating conversation summary...")
|
| 601 |
+
start = time.time()
|
| 602 |
+
summary = await asyncio.to_thread(
|
| 603 |
+
call_llm_pipeline, pipe, summarizer_prompt, deterministic=True, max_new_tokens=150, is_expansion=False
|
| 604 |
+
)
|
| 605 |
+
end = time.time()
|
| 606 |
+
logger.info(f"HISTORY SUMMARIZATION: {summary} (Time: {end-start:.2f}s)")
|
| 607 |
+
return summary
|
| 608 |
+
|
| 609 |
+
|
| 610 |
+
def build_prompt(user_query: str, context: List[Dict], summary: str) -> List[Dict]:
|
| 611 |
+
"""
|
| 612 |
+
Builds the final list of messages for the chat template, including the RAG context.
|
| 613 |
+
"""
|
| 614 |
+
|
| 615 |
+
messages = []
|
| 616 |
+
context_text = "\n---\n".join([c['text'] for c in context]) if context else "No relevant context found."
|
| 617 |
+
|
| 618 |
+
rag_system_prompt = f"""
|
| 619 |
+
You are a helpful medical assistant with a friendly, conversational tone.
|
| 620 |
+
Use the retrieved context to answer the user's query accurately.
|
| 621 |
+
If the context is missing, clearly state that the WHO factsheets don't contain the information.
|
| 622 |
+
Do not repeat the user's question or the context in your response. Do not answer racist, harmful, discriminatory, non-health question.
|
| 623 |
+
Formulate a direct, conversational answer using only the provided context as definitive truth.
|
| 624 |
+
|
| 625 |
+
---
|
| 626 |
+
retrieved context:
|
| 627 |
+
{context_text}
|
| 628 |
+
---
|
| 629 |
+
conversation history summary:
|
| 630 |
+
{summary if summary else "No summary available."}
|
| 631 |
+
---
|
| 632 |
+
"""
|
| 633 |
+
messages.append({"role": "system", "content": rag_system_prompt})
|
| 634 |
+
|
| 635 |
+
messages.append({"role": "user", "content": user_query})
|
| 636 |
+
|
| 637 |
+
return messages
|
| 638 |
+
|
| 639 |
+
|
| 640 |
+
async def prune_messages_to_fit_context(messages: List[Dict],
|
| 641 |
+
final_context: List[Dict],
|
| 642 |
+
summary: str,
|
| 643 |
+
max_input_tokens: int,
|
| 644 |
+
pipe: Optional[object]
|
| 645 |
+
) -> Tuple[List[Dict], List[Dict], int]:
|
| 646 |
+
"""
|
| 647 |
+
Ensures the total prompt fits within max_input_tokens.
|
| 648 |
+
Prunes retrieved context chunks and compresses summary if needed.
|
| 649 |
+
Uses app.state.tokenizer (CPU) or pipe.tokenizer (GPU).
|
| 650 |
+
"""
|
| 651 |
+
|
| 652 |
+
tokenizer = getattr(app.state, "tokenizer", None)
|
| 653 |
+
if tokenizer is None and isinstance(pipe, Pipeline):
|
| 654 |
+
tokenizer = getattr(pipe, "tokenizer", None)
|
| 655 |
+
|
| 656 |
+
if not tokenizer:
|
| 657 |
+
logger.error("Tokenizer not loaded for pruning.")
|
| 658 |
+
return messages, final_context, 0
|
| 659 |
+
|
| 660 |
+
def get_token_count(msg_list: List[Dict]) -> int:
|
| 661 |
+
prompt_text = tokenizer.apply_chat_template(msg_list, tokenize=False, add_generation_prompt=True)
|
| 662 |
+
return len(tokenizer.encode(prompt_text, add_special_tokens=False))
|
| 663 |
+
|
| 664 |
+
current_context = final_context[:]
|
| 665 |
+
current_messages = messages[:]
|
| 666 |
+
tok_length = 0
|
| 667 |
+
token_count = get_token_count(current_messages)
|
| 668 |
+
base_user_query = messages[-1]["content"]
|
| 669 |
+
logger.info(f"Pre-pruning token count: {token_count}. Max: {max_input_tokens}")
|
| 670 |
+
|
| 671 |
+
if token_count <= max_input_tokens:
|
| 672 |
+
tok_length = max_input_tokens - token_count
|
| 673 |
+
return current_messages, current_context, tok_length
|
| 674 |
+
|
| 675 |
+
current_summary = summary
|
| 676 |
+
if len(summary.split()) > 50:
|
| 677 |
+
logger.warning(f"Context overflow ({token_count} > {max_input_tokens}). Compressing conversation summary.")
|
| 678 |
+
compression_prompt = f"""
|
| 679 |
+
The following conversation summary is too long for the LLM's context window.
|
| 680 |
+
Rewrite it to be half its length, retaining only the essential topics.
|
| 681 |
+
Do not add preamble or commentary.
|
| 682 |
+
|
| 683 |
+
Current summary:
|
| 684 |
+
{summary}
|
| 685 |
+
|
| 686 |
+
Compressed summary:
|
| 687 |
+
"""
|
| 688 |
+
start = time.time()
|
| 689 |
+
new_summary_text = await asyncio.to_thread(
|
| 690 |
+
call_llm_pipeline, pipe, compression_prompt, deterministic=True, is_expansion=False, max_new_tokens=75
|
| 691 |
+
)
|
| 692 |
+
end = time.time()
|
| 693 |
+
current_summary = new_summary_text.strip()
|
| 694 |
+
logger.info(f"SUMMARY COMPRESSED {end - start:.2f}s. New summary: {current_summary}")
|
| 695 |
+
|
| 696 |
+
|
| 697 |
+
token_count = get_token_count(current_messages)
|
| 698 |
+
logger.info(f"Token count after summary compression: {token_count}")
|
| 699 |
+
|
| 700 |
+
if token_count <= max_input_tokens:
|
| 701 |
+
tok_length = max_input_tokens - token_count
|
| 702 |
+
return current_messages, current_context, tok_length
|
| 703 |
+
|
| 704 |
+
logger.warning(f"Context still overflowing ({token_count} > {max_input_tokens}). Pruning context chunks.")
|
| 705 |
+
while token_count > max_input_tokens and len(current_context) > 1:
|
| 706 |
+
removed_chunk = current_context.pop()
|
| 707 |
+
logger.warning(f"Removing last context chunk: {removed_chunk['text'][:50]}...")
|
| 708 |
+
|
| 709 |
+
current_messages = build_prompt(base_user_query, current_context, current_summary)
|
| 710 |
+
token_count = get_token_count(current_messages)
|
| 711 |
+
logger.info(f"Token count after removing a chunk: {token_count}")
|
| 712 |
+
|
| 713 |
+
if token_count <= max_input_tokens:
|
| 714 |
+
tok_length = max_input_tokens - token_count
|
| 715 |
+
return current_messages, current_context, tok_length
|
| 716 |
+
logger.warning(f"Context still overflowing ({token_count} > {max_input_tokens}). Aggressively dropping least-relevant chunks.")
|
| 717 |
+
|
| 718 |
+
while token_count > max_input_tokens and len(current_context) > 1:
|
| 719 |
+
removed_chunk = current_context.pop()
|
| 720 |
+
logger.warning(f"Removing last context chunk: {removed_chunk['text'][:50]}...")
|
| 721 |
+
|
| 722 |
+
current_messages = build_prompt(base_user_query, current_context, current_summary)
|
| 723 |
+
token_count = get_token_count(current_messages)
|
| 724 |
+
logger.info(f"Token count after removing a chunk: {token_count}")
|
| 725 |
+
|
| 726 |
+
if token_count <= max_input_tokens:
|
| 727 |
+
tok_length = max_input_tokens - token_count
|
| 728 |
+
return current_messages, current_context, tok_length
|
| 729 |
+
|
| 730 |
+
if token_count > max_input_tokens and current_context:
|
| 731 |
+
logger.error(f"FATAL: Prompt still exceeds limit ({token_count}) with only 1 chunk remaining. Token-based truncation required.")
|
| 732 |
+
|
| 733 |
+
tokens_without_chunk = get_token_count(build_prompt(base_user_query, [], current_summary))
|
| 734 |
+
|
| 735 |
+
max_chunk_tokens = max_input_tokens - tokens_without_chunk - 5
|
| 736 |
+
|
| 737 |
+
final_chunk = current_context[0]
|
| 738 |
+
|
| 739 |
+
if max_chunk_tokens > 50:
|
| 740 |
+
encoded_chunk = tokenizer.encode(final_chunk['text'])
|
| 741 |
+
truncated_tokens = encoded_chunk[:max_chunk_tokens]
|
| 742 |
+
|
| 743 |
+
final_chunk['text'] = tokenizer.decode(truncated_tokens, skip_special_tokens=True) + " [TRUNCATED]"
|
| 744 |
+
|
| 745 |
+
current_messages = build_prompt(base_user_query, current_context, current_summary)
|
| 746 |
+
token_count = get_token_count(current_messages)
|
| 747 |
+
logger.warning(f"Aggressively truncated final chunk. New count: {token_count}")
|
| 748 |
+
else:
|
| 749 |
+
|
| 750 |
+
current_context = []
|
| 751 |
+
current_messages = build_prompt(base_user_query, current_context, current_summary)
|
| 752 |
+
token_count = get_token_count(current_messages)
|
| 753 |
+
logger.warning("Remaining context budget too small; removing all context.")
|
| 754 |
+
|
| 755 |
+
tok_length = max_input_tokens - token_count
|
| 756 |
+
return current_messages, current_context, tok_length
|
| 757 |
+
|
| 758 |
+
tok_length = max_input_tokens - token_count if token_count < max_input_tokens else 0
|
| 759 |
+
return current_messages, current_context, tok_length
|
| 760 |
+
|
| 761 |
+
|
| 762 |
+
async def Greet(query, pipe):
|
| 763 |
+
messages = []
|
| 764 |
+
logging.info(f"User sent a greeting")
|
| 765 |
+
prompt_text = """You are a greeter. Your job is to respond politely to the user greeting.
|
| 766 |
+
ONLY a single polite and short greetings. Do not do anything else.
|
| 767 |
+
|
| 768 |
+
Examples:
|
| 769 |
+
User: Hi
|
| 770 |
+
Assistant: Hello, How may I help you today?
|
| 771 |
+
|
| 772 |
+
User: how are you?
|
| 773 |
+
Assistant: I am good, I can help you answer health related questions"""
|
| 774 |
+
|
| 775 |
+
|
| 776 |
+
messages.append({"role": "system", "content": prompt_text})
|
| 777 |
+
messages.append({"role": "user", "content": query})
|
| 778 |
+
tokenizer = getattr(app.state, "tokenizer", None)
|
| 779 |
+
prompt_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 780 |
+
|
| 781 |
+
answer = await asyncio.to_thread( call_llm_pipeline,
|
| 782 |
+
pipe,
|
| 783 |
+
prompt_text,
|
| 784 |
+
deterministic=True,
|
| 785 |
+
max_new_tokens=50,
|
| 786 |
+
is_expansion= True
|
| 787 |
+
)
|
| 788 |
+
|
| 789 |
+
return RAGResponse(
|
| 790 |
+
query=query,
|
| 791 |
+
answer=answer,
|
| 792 |
+
sources=[],
|
| 793 |
+
context_chunks=[],
|
| 794 |
+
expanded_queries=[]
|
| 795 |
+
)
|
| 796 |
+
|
| 797 |
+
async def HarmOff(query, pipe):
|
| 798 |
+
messages = []
|
| 799 |
+
logging.info(f"User asked harmful or off-topic question")
|
| 800 |
+
prompt_text = """
|
| 801 |
+
You are an intelligent assistant.
|
| 802 |
+
Your job is to inform the user that you are not allowed to answer such questions.
|
| 803 |
+
Keep it short and brief, in one sentence.
|
| 804 |
+
|
| 805 |
+
Examples:
|
| 806 |
+
user: write a code to print a number
|
| 807 |
+
Assistant: I am not allowed to answer such questions
|
| 808 |
+
|
| 809 |
+
User: how can I be racist
|
| 810 |
+
Assistant: Sorry, I am not allowed to answer such questions
|
| 811 |
+
"""
|
| 812 |
+
|
| 813 |
+
messages.append({"role": "system", "content": prompt_text})
|
| 814 |
+
messages.append({"role": "user", "content": query})
|
| 815 |
+
tokenizer = getattr(app.state, "tokenizer", None)
|
| 816 |
+
prompt_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 817 |
+
|
| 818 |
+
answer = await asyncio.to_thread( call_llm_pipeline,
|
| 819 |
+
pipe,
|
| 820 |
+
prompt_text,
|
| 821 |
+
deterministic=True,
|
| 822 |
+
max_new_tokens=50,
|
| 823 |
+
is_expansion= True
|
| 824 |
+
)
|
| 825 |
+
|
| 826 |
+
|
| 827 |
+
return RAGResponse(
|
| 828 |
+
query=query,
|
| 829 |
+
answer=answer,
|
| 830 |
+
sources=[],
|
| 831 |
+
context_chunks=[],
|
| 832 |
+
expanded_queries=[]
|
| 833 |
+
)
|
| 834 |
+
|
| 835 |
+
|
| 836 |
+
async def classify_intent(query: str, pipe: object) -> str:
|
| 837 |
+
"""Uses a rigid, JSON-forced prompt to classify user intent."""
|
| 838 |
+
|
| 839 |
+
tokenizer = getattr(app.state, "tokenizer", None)
|
| 840 |
+
if not tokenizer:
|
| 841 |
+
return "ERROR_TOKENIZER"
|
| 842 |
+
|
| 843 |
+
system_prompt = """You are a query classification robot. You MUST respond with ONLY ONE JSON object:
|
| 844 |
+
{"intent": "MEDICAL"}
|
| 845 |
+
{"intent": "GREET"}
|
| 846 |
+
{"intent": "OFF_TOPIC"}
|
| 847 |
+
{"intent": "HARMFUL"}
|
| 848 |
+
|
| 849 |
+
Do not add any other text, explanations, or punctuation.
|
| 850 |
+
"""
|
| 851 |
+
# Use few-shot examples (as provided in the original prompt, but restructured for JSON)
|
| 852 |
+
messages = [
|
| 853 |
+
{"role": "system", "content": system_prompt},
|
| 854 |
+
{"role": "user", "content": "Query: What are the symptoms of COVID-19?"},
|
| 855 |
+
{"role": "assistant", "content": '{"intent": "MEDICAL"}'},
|
| 856 |
+
{"role": "user", "content": "Query: Hello"},
|
| 857 |
+
{"role": "assistant", "content": '{"intent": "GREET"}'},
|
| 858 |
+
{"role": "user", "content": "Query: Tell me a joke"},
|
| 859 |
+
{"role": "assistant", "content": '{"intent": "OFF_TOPIC"}'},
|
| 860 |
+
{"role": "user", "content": "Query: Make a racist insult"},
|
| 861 |
+
{"role": "assistant", "content": '{"intent": "HARMFUL"}'},
|
| 862 |
+
|
| 863 |
+
{"role": "user", "content": f"Query: {query}"}
|
| 864 |
+
]
|
| 865 |
+
|
| 866 |
+
prompt_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 867 |
+
|
| 868 |
+
llm_output = await asyncio.to_thread(
|
| 869 |
+
call_llm_pipeline,
|
| 870 |
+
pipe,
|
| 871 |
+
prompt_text,
|
| 872 |
+
deterministic=True,
|
| 873 |
+
max_new_tokens=25, # Enough for the JSON object
|
| 874 |
+
is_expansion=False # Classification is not expansion
|
| 875 |
+
)
|
| 876 |
+
|
| 877 |
+
# --- Robust JSON Parsing ---
|
| 878 |
+
try:
|
| 879 |
+
clean_output = llm_output.strip().replace("```json", "").replace("```", "")
|
| 880 |
+
start_idx = clean_output.find('{')
|
| 881 |
+
end_idx = clean_output.rfind('}')
|
| 882 |
+
|
| 883 |
+
if start_idx != -1 and end_idx != -1:
|
| 884 |
+
json_str = clean_output[start_idx : end_idx + 1]
|
| 885 |
+
data = json.loads(json_str)
|
| 886 |
+
return data.get("intent", "UNKNOWN")
|
| 887 |
+
|
| 888 |
+
except Exception as e:
|
| 889 |
+
logger.error(f"Failed to parse JSON classifier output: {e}. Raw: {llm_output}")
|
| 890 |
+
# Fallback to check for the raw label token in case of parsing failure
|
| 891 |
+
raw_output_upper = llm_output.upper()
|
| 892 |
+
for label in ["MEDICAL", "GREET", "OFF_TOPIC", "HARMFUL"]:
|
| 893 |
+
if label in raw_output_upper:
|
| 894 |
+
return label
|
| 895 |
+
|
| 896 |
+
return "UNKNOWN"
|
| 897 |
+
|
| 898 |
+
@app.get("/health")
|
| 899 |
+
async def health_check():
|
| 900 |
+
"""Endpoint for checking the status of the RAG service."""
|
| 901 |
+
chroma_ok = getattr(app.state, 'chroma_ready', False) and app.state.chroma_collection is not None
|
| 902 |
+
|
| 903 |
+
if not chroma_ok:
|
| 904 |
+
raise HTTPException(status_code=503, detail="Vector DB is not loaded.")
|
| 905 |
+
|
| 906 |
+
llm_status = "not_loaded"
|
| 907 |
+
if getattr(app.state, 'gpu_pipeline', None) or getattr(app.state, 'cpu_pipeline', None):
|
| 908 |
+
llm_status = "loaded"
|
| 909 |
+
else:
|
| 910 |
+
try:
|
| 911 |
+
await load_cpu_pipeline()
|
| 912 |
+
llm_status = "lazy_loaded_cpu_ok"
|
| 913 |
+
except Exception as e:
|
| 914 |
+
logger.error(f"Health check failed to load CPU model: {e}", exc_info=True)
|
| 915 |
+
raise HTTPException(status_code=503, detail=f"Chroma is loaded, but failed to load fallback LLM: {e}")
|
| 916 |
+
|
| 917 |
+
return {"status": "ok", "service": "rag-service", "chroma": "loaded", "llm": llm_status}
|
| 918 |
+
|
| 919 |
+
|
| 920 |
+
@app.post("/rag", response_model=RAGResponse)
|
| 921 |
+
async def rag_handler(request: QueryRequest):
|
| 922 |
+
|
| 923 |
+
|
| 924 |
+
start = time.time()
|
| 925 |
+
try:
|
| 926 |
+
pipe, runtime_env, max_context, max_gen, top_k = await load_cpu_pipeline()
|
| 927 |
+
logger.info(f"Using model: {pipe}")
|
| 928 |
+
|
| 929 |
+
except HTTPException as e:
|
| 930 |
+
logger.error(f"Failed to get LLM pipeline: {e.detail}", exc_info=True)
|
| 931 |
+
raise e
|
| 932 |
+
except Exception as e:
|
| 933 |
+
logger.error(f"Unhandled error getting pipeline: {e}", exc_info=True)
|
| 934 |
+
raise HTTPException(status_code=503, detail=f"Failed to load LLM model: {str(e)}")
|
| 935 |
+
|
| 936 |
+
if not getattr(app.state, 'chroma_ready', False) or not app.state.chroma_collection:
|
| 937 |
+
raise HTTPException(status_code=503, detail="Service is initializing or failed to load Vector DB.")
|
| 938 |
+
|
| 939 |
+
try:
|
| 940 |
+
answer = await classify_intent(request.query, pipe)
|
| 941 |
+
end_time = time.time()
|
| 942 |
+
logger.info(f"answer directly by model: {answer}, TIME: {end_time-start:.2f}s")
|
| 943 |
+
|
| 944 |
+
if answer == 'GREET':
|
| 945 |
+
response = await Greet(request.query, pipe)
|
| 946 |
+
end_time = time.time()
|
| 947 |
+
logger.info(f"Query handled directly by model: {request.query}, TIME: {end_time-start:.2f}s")
|
| 948 |
+
logger.info(f"answer directly by model: {response}, TIME: {end_time-start:.2f}s")
|
| 949 |
+
return response
|
| 950 |
+
if answer == "HARMFUL" or answer == "OFF_TOPIC":
|
| 951 |
+
response = await HarmOff(request.query, pipe)
|
| 952 |
+
end_time = time.time()
|
| 953 |
+
logger.info(f"Query handled directly by model: {request.query}, TIME: {end_time-start:.2f}s")
|
| 954 |
+
logger.info(f"answer directly by model: {response}, TIME: {end_time-start:.2f}s")
|
| 955 |
+
return response
|
| 956 |
+
|
| 957 |
+
logger.info("Classifier returned RETRIEVE. Starting RAG pipeline.")
|
| 958 |
+
|
| 959 |
+
summary = await summarize_history(request.history, pipe)
|
| 960 |
+
|
| 961 |
+
expanded_queries = await expand_query_with_llm(pipe, request.query, summary, request.history)
|
| 962 |
+
|
| 963 |
+
context_data, all_sources = await asyncio.to_thread(retrieve_context, expanded_queries, app.state.chroma_collection)
|
| 964 |
+
|
| 965 |
+
final_context = await asyncio.to_thread(rerank_documents, request.query, context_data, top_k=top_k)
|
| 966 |
+
final_sources = list({c['url'] for c in final_context if c.get('url')})
|
| 967 |
+
|
| 968 |
+
if not final_context:
|
| 969 |
+
final_answer = "I could not find relevant documents in the knowledge base to answer your question. I can help you if you have another question."
|
| 970 |
+
context_chunks_text = []
|
| 971 |
+
else:
|
| 972 |
+
initial_messages = build_prompt(request.query, final_context, summary)
|
| 973 |
+
|
| 974 |
+
max_input_tokens = max_context - max_gen - SAFETY_BUFFER
|
| 975 |
+
logger.info(
|
| 976 |
+
f"Runtime: {runtime_env}, Max Context: {max_context}, "
|
| 977 |
+
f"Max Gen: {max_gen}, Max Input: {max_input_tokens}"
|
| 978 |
+
)
|
| 979 |
+
|
| 980 |
+
final_messages, final_context_pruned, tok_length = await prune_messages_to_fit_context(
|
| 981 |
+
initial_messages,
|
| 982 |
+
final_context,
|
| 983 |
+
summary,
|
| 984 |
+
max_input_tokens,
|
| 985 |
+
pipe
|
| 986 |
+
)
|
| 987 |
+
|
| 988 |
+
context_chunks_text = [c['text'] for c in final_context_pruned]
|
| 989 |
+
|
| 990 |
+
tokenizer = getattr(app.state, "tokenizer", None)
|
| 991 |
+
if tokenizer:
|
| 992 |
+
prompt_text = tokenizer.apply_chat_template(final_messages, tokenize=False, add_generation_prompt=True)
|
| 993 |
+
else:
|
| 994 |
+
logger.warning("Tokenizer not found for final prompt, using simple join.")
|
| 995 |
+
prompt_text = "\n".join([m["content"] for m in final_messages])
|
| 996 |
+
|
| 997 |
+
final_answer = await asyncio.to_thread(
|
| 998 |
+
call_llm_pipeline,
|
| 999 |
+
pipe,
|
| 1000 |
+
prompt_text,
|
| 1001 |
+
deterministic=False,
|
| 1002 |
+
max_new_tokens=max(max_gen, tok_length)
|
| 1003 |
+
)
|
| 1004 |
+
|
| 1005 |
+
end_time = time.time()
|
| 1006 |
+
logger.info(
|
| 1007 |
+
json.dumps({
|
| 1008 |
+
"query": request.query,
|
| 1009 |
+
"latency_sec": round(end_time - start, 2),
|
| 1010 |
+
"runtime_env": runtime_env,
|
| 1011 |
+
"num_sources": len(final_sources),
|
| 1012 |
+
"num_context_chunks_sent": len(context_chunks_text),
|
| 1013 |
+
"expanded_queries": expanded_queries,
|
| 1014 |
+
"final_answer": final_answer,
|
| 1015 |
+
"retrieved_context_snippets": [c[:50] + "..." for c in context_chunks_text]
|
| 1016 |
+
})
|
| 1017 |
+
)
|
| 1018 |
+
|
| 1019 |
+
return RAGResponse(
|
| 1020 |
+
query=request.query,
|
| 1021 |
+
answer=final_answer,
|
| 1022 |
+
sources=final_sources,
|
| 1023 |
+
context_chunks=context_chunks_text,
|
| 1024 |
+
expanded_queries=expanded_queries
|
| 1025 |
+
)
|
| 1026 |
+
|
| 1027 |
+
except Exception as e:
|
| 1028 |
+
logger.error(f"Unhandled exception in RAG handler: {e}", exc_info=True)
|
| 1029 |
+
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
requirements_heavy.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# torch
|
| 2 |
+
# transformers
|
| 3 |
+
# bitsandbytes
|
| 4 |
+
# sentence-transformers
|
| 5 |
+
# accelerate
|
| 6 |
+
|
| 7 |
+
torch==2.9.0
|
| 8 |
+
transformers
|
| 9 |
+
# bitsandbytes
|
| 10 |
+
sentence-transformers
|
| 11 |
+
accelerate
|
| 12 |
+
# llama-cpp-python UNCOMMENT THIS LINE FOR LOCAL DOCKER TESTING
|
| 13 |
+
llama-cpp-python==0.2.83 --extra-index-url https://abetlen.github.io/llama-cpp-python-wheels/
|
| 14 |
+
tiktoken
|
| 15 |
+
sentencepiece
|
requirements_light.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn[standard]
|
| 3 |
+
chromadb
|
| 4 |
+
pydantic
|
| 5 |
+
fastembed
|
| 6 |
+
requests
|
| 7 |
+
python-json-logger
|
| 8 |
+
boto3
|
s3_utils.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List, Optional
|
| 2 |
+
import boto3
|
| 3 |
+
import os
|
| 4 |
+
import json
|
| 5 |
+
import logging
|
| 6 |
+
# from botocore.exceptions import NoCredentialsError, ClientError
|
| 7 |
+
|
| 8 |
+
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
| 9 |
+
AWS_ACCESS_KEY = os.getenv("AWS_ACCESS_KEY_ID")
|
| 10 |
+
AWS_SECRET_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
| 11 |
+
AWS_REGION = os.getenv("AWS_REGION")
|
| 12 |
+
|
| 13 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 14 |
+
|
| 15 |
+
def get_s3_client():
|
| 16 |
+
if not AWS_ACCESS_KEY or not AWS_SECRET_KEY:
|
| 17 |
+
logging.warning("AWS credentials not found in environment. Using default config.")
|
| 18 |
+
return boto3.client('s3', region_name=AWS_REGION)
|
| 19 |
+
|
| 20 |
+
return boto3.client(
|
| 21 |
+
's3',
|
| 22 |
+
aws_access_key_id=AWS_ACCESS_KEY,
|
| 23 |
+
aws_secret_access_key=AWS_SECRET_KEY,
|
| 24 |
+
region_name=AWS_REGION
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
def download_chroma_folder_from_s3(s3_prefix: str, local_dir: str):
|
| 28 |
+
"""
|
| 29 |
+
Downloads all files under s3_prefix from S3 to local_dir,
|
| 30 |
+
preserving the folder structure for ChromaDB.
|
| 31 |
+
"""
|
| 32 |
+
s3 = get_s3_client()
|
| 33 |
+
paginator = s3.get_paginator("list_objects_v2")
|
| 34 |
+
try:
|
| 35 |
+
for page in paginator.paginate(Bucket=S3_BUCKET_NAME, Prefix=s3_prefix):
|
| 36 |
+
for obj in page.get("Contents", []):
|
| 37 |
+
s3_key = obj["Key"]
|
| 38 |
+
rel_path = os.path.relpath(s3_key, s3_prefix)
|
| 39 |
+
local_path = os.path.join(local_dir, rel_path)
|
| 40 |
+
|
| 41 |
+
os.makedirs(os.path.dirname(local_path), exist_ok=True)
|
| 42 |
+
|
| 43 |
+
with open(local_path, "wb") as f:
|
| 44 |
+
s3.download_fileobj(Bucket=S3_BUCKET_NAME, Key=s3_key, Fileobj=f)
|
| 45 |
+
|
| 46 |
+
logging.info(f"ChromaDB folder downloaded from S3 to {local_dir} successfully.")
|
| 47 |
+
|
| 48 |
+
except Exception as e:
|
| 49 |
+
logging.error(f"Failed to download ChromaDB folder from S3: {e}")
|
upload_model.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import HfApi
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
local_model_folder = os.path.join(os.path.dirname(__file__), 'model')
|
| 6 |
+
|
| 7 |
+
repo_id = "EJ4U/WHO-rag-model"
|
| 8 |
+
repo_type = "model"
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
api = HfApi()
|
| 13 |
+
token = os.getenv('HF_TOKEN')
|
| 14 |
+
api.create_repo(repo_id=repo_id, repo_type="model", token=token, exist_ok=True)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
api.upload_folder(
|
| 19 |
+
folder_path=local_model_folder,
|
| 20 |
+
path_in_repo="",
|
| 21 |
+
repo_id=repo_id,
|
| 22 |
+
repo_type=repo_type,
|
| 23 |
+
token=token
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
print(f"Uploaded {local_model_folder} to https://huggingface.co/{repo_id}")
|