Spaces:
Sleeping
Sleeping
| # Step 1: Import required modules | |
| import streamlit as st | |
| from PyPDF2 import PdfReader | |
| import docx2txt | |
| import json | |
| import pandas as pd | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| import os | |
| from langchain.vectorstores import FAISS | |
| from langchain.chains.question_answering import load_qa_chain | |
| from langchain.prompts import PromptTemplate | |
| import whisper | |
| import requests | |
| from dotenv import load_dotenv | |
| # Load the Groq API key from the environment variable | |
| api_key = os.getenv("GROQ_API_KEY") | |
| if not api_key: | |
| raise ValueError("No API key found. Please set the GROQ_API_KEY environment variable.") | |
| # Step 4: Function to read files and extract text | |
| def extract_text(file): | |
| text = "" | |
| try: | |
| if file.name.endswith(".pdf"): | |
| pdf_reader = PdfReader(file) | |
| for page in pdf_reader.pages: | |
| text += page.extract_text() | |
| elif file.name.endswith(".docx"): | |
| text = docx2txt.process(file) | |
| elif file.name.endswith(".txt"): | |
| text = file.read().decode("utf-8") # Assuming UTF-8 by default | |
| elif file.name.endswith(".csv"): | |
| df = pd.read_csv(file, encoding='utf-8') # Assuming UTF-8 by default | |
| text = df.to_string() | |
| elif file.name.endswith(".xlsx"): | |
| df = pd.read_excel(file) | |
| text = df.to_string() | |
| elif file.name.endswith(".json"): | |
| data = json.load(file) | |
| text = json.dumps(data, indent=4) | |
| except UnicodeDecodeError: | |
| # Handle the error by trying a different encoding | |
| file.seek(0) # Reset the file pointer | |
| if file.name.endswith(".txt"): | |
| text = file.read().decode("ISO-8859-1") # Try Latin-1 encoding | |
| elif file.name.endswith(".csv"): | |
| df = pd.read_csv(file, encoding='ISO-8859-1') # Try Latin-1 encoding | |
| text = df.to_string() | |
| return text | |
| # Step 5: Function to convert text into chunks | |
| def get_text_chunks(text): | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) | |
| chunks = text_splitter.split_text(text) | |
| return chunks | |
| # Step 6: Function for converting chunks into embeddings and saving the FAISS index | |
| def get_vector_store(text_chunks): | |
| embeddings = get_groq_embeddings(text_chunks) | |
| if embeddings: | |
| vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) | |
| # Ensure the directory exists | |
| if not os.path.exists("faiss_index"): | |
| os.makedirs("faiss_index") | |
| vector_store.save_local("faiss_index") | |
| print("FAISS index saved successfully.") | |
| else: | |
| st.error("Failed to retrieve embeddings from Groq API.") | |
| # Step 7: Function to implement the Groq Model | |
| def get_conversational_chain(): | |
| prompt_template = """ | |
| Answer the question as detailed as possible from the provided context. If the answer is not in | |
| the provided context, just say, "The answer is not available in the context." Do not provide a wrong answer.\n\n | |
| Context:\n {context}\n | |
| Question: \n{question}\n | |
| Answer: | |
| """ | |
| # Assuming we use the Groq API for the model as well | |
| # Replace with your Groq model call or other LLM API | |
| model = 'llama3-8b-8192' # Placeholder for the actual model call | |
| prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
| chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) | |
| return chain | |
| # Step 8: Function to take inputs from user and generate response | |
| def user_input(user_question): | |
| embeddings = get_groq_embeddings([user_question]) | |
| if embeddings: | |
| new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) | |
| docs = new_db.similarity_search(user_question) | |
| chain = get_conversational_chain() | |
| response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True) | |
| return response["output_text"] | |
| else: | |
| return "Failed to retrieve response from Groq API." | |
| # Step 9: Streamlit App | |
| def main(): | |
| st.set_page_config(page_title="RAG Chatbot") | |
| st.header("Chat with Multiple Files using RAG and Groq π") | |
| user_question = st.text_input("Ask a Question") | |
| if user_question: | |
| with st.spinner("Processing your question..."): | |
| response = user_input(user_question) | |
| st.write("Reply: ", response) | |
| with st.sidebar: | |
| st.title("Upload Files:") | |
| uploaded_files = st.file_uploader("Upload your files", accept_multiple_files=True, type=["pdf", "docx", "txt", "csv", "xlsx", "json"]) | |
| if st.button("Submit & Process"): | |
| if uploaded_files: | |
| with st.spinner("Processing files..."): | |
| combined_text = "" | |
| for file in uploaded_files: | |
| combined_text += extract_text(file) + "\n" | |
| text_chunks = get_text_chunks(combined_text) | |
| get_vector_store(text_chunks) | |
| st.success("Files processed and indexed successfully!") | |
| else: | |
| st.error("Please upload at least one file.") | |
| if __name__ == "__main__": | |
| main() | |