File size: 8,176 Bytes
0b4562b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2025 Apple Inc. All Rights Reserved.
#
## camera

from pathlib import Path
import json
import re
import tarfile
from einops import rearrange
import torch
import numpy as np
from PIL import Image
import torchvision.transforms.functional as F
from torchvision import transforms
import math

def find_factors(n):
    factors = set()
    for i in range(1, int(math.sqrt(n)) + 1):
        if n % i == 0:
            factors.add(i)
            factors.add(n // i)
    return sorted(factors, reverse=True)

def find_max_scale_factor(A, B):
    gcd = math.gcd(A, B)
    
    factors = find_factors(gcd)
    
    for factor in factors:
        if A // factor >= 32 and B // factor >= 32 and abs(A-B)//factor % 2 ==0:
            return factor
    
    return 1 

def _get_plucker_embedding(intrinsic_parameters, w2c_matrices, height, width, norm_t=False, mask_idx=[0], project=False):
    return np.concatenate([
        get_plucker_embedding(intrinsic_parameters, w2c_matrices, height, width, norm_t, idx, project) 
        for idx in mask_idx], -1)
    

def get_plucker_embedding(intrinsic_parameters, w2c_matrices, height, width, norm_t=False, mask_idx=0, project=True):
    """
        intrinsic_parameters.shape = [b f 4]
        c2w_matrices.shape = [b f 4 4]
    """

    num_frames = intrinsic_parameters.shape[0]
    c2w_matrices = np.linalg.inv(w2c_matrices)

    if project:
        w2c_cond_matrices = w2c_matrices[mask_idx: mask_idx+1]
        c2w_matrices = w2c_cond_matrices @ c2w_matrices # relative pose to the first frame
    

    if norm_t:
        offset = c2w_matrices[:, :3, -1:]  # f, 3, 1
        offset = offset / (np.abs(offset).max(axis=(1, 2), keepdims=True) + 1e-7)
        c2w_matrices[:, :3, -1:] = offset

    ys, xs = np.meshgrid(
        np.linspace(0, height - 1, height, dtype=c2w_matrices.dtype),
        np.linspace(0, width - 1, width, dtype=c2w_matrices.dtype), indexing='ij')
    ys = np.tile(ys.reshape([1, height * width]), [num_frames, 1])  +0.5
    xs = np.tile(xs.reshape([1, height * width]), [num_frames, 1])  +0.5

    fx, fy, cx, cy = np.split(intrinsic_parameters, 4, -1)
    fx, fy, cx, cy = fx * width, fy * height, cx * width, cy * height

    zs_cam = np.ones_like(xs)
    xs_cam = (xs - cx) / fx * zs_cam
    ys_cam = (ys - cy) / fy * zs_cam
    directions = np.stack((xs_cam, ys_cam, zs_cam), -1)
    directions = directions / np.linalg.norm(directions, axis=-1, keepdims=True)
    
    ray_directions_w = (c2w_matrices[..., :3, :3] @ directions.transpose(0, 2, 1)).transpose(0, 2, 1)
    ray_origin_w = np.expand_dims(c2w_matrices[..., :3, 3], axis=-2)
    ray_origin_w = np.broadcast_to(ray_origin_w, ray_directions_w.shape)
    ray_dxo = np.cross(ray_origin_w, ray_directions_w)
    plucker_embedding = np.concatenate([ray_dxo, ray_directions_w], -1).reshape(num_frames, height, width, 6)

    return plucker_embedding


def label_to_camera(label):
    num_frames = label.shape[0]
    bottom = np.zeros([num_frames, 1, 4])
    bottom[:, :, -1] = 1
   
    # [w, h, flx, fly] + camera_model[0] + camera_model[1] + camera_model[2] + camera_model[3]
    w, h, fx, fy = label[:, 0:1], label[:, 1:2], label[:, 2:3], label[:, 3:4]
    fx, fy = fx / w, fy / h
    c2w = label[:, 4:].reshape(num_frames, 4, 4)
    c2w[:, 2, :] *= -1
    c2w = c2w[:, np.array([1, 0, 2, 3]), :]
    c2w[:, 0:3, 1:3] *= -1
    w2c = np.linalg.inv(c2w)
    intrinsic = np.concatenate([fx, fy, np.ones_like(fx) * .5, np.ones_like(fx) * .5], 1)
    
    return intrinsic, w2c


def get_camera_condition(tar, camera_file, width=960, height=544, factor=16, frame_inds=None):
    
    try:
        with tar.extractfile(camera_file) as cam_data:
            camera_data = json.load(cam_data)
            
            prefix = [camera_data['w'], camera_data['h'], camera_data['fl_x'], camera_data['fl_y']]

            labels = []
            if frame_inds is None:
                frame_inds = list(range(len(camera_data['frames'])))
            for ind in frame_inds:
                frame_info = camera_data['frames'][ind]
                label = prefix + sum(frame_info['transform_matrix'], [])
                labels.append(label)
                
            label = np.array(labels)
            intrinsic, w2c = label_to_camera(label)
            # factor = find_max_scale_factor(height, width) 
            H, W = height // factor, width // factor
            ray_map = _get_plucker_embedding(intrinsic, w2c, H, W, norm_t=False, mask_idx=[0], project=True)
            ray_map = torch.from_numpy(ray_map) #.permute(0, 3, 1, 2) # [f, h, w, c]
        # ray_map = F.resize(transforms.CenterCrop(min(H, W))(ray_map), 32).permute(0, 2, 3, 1)
    except Exception as e:
        print(f'Reading data error {e} {camera_file}')
        ray_map = np.zeros((len(frame_inds), H, W, 6))
    
    return ray_map


## force        
def get_wind_condition(force, angle, min_force, max_force, num_frames=45, num_channels=3, height=480, width=720):
    
    condition = torch.zeros((num_frames, num_channels, height, width)) 

    # first channel gets wind_speed
    condition[:, 0] = -1 + 2*(force-min_force)/(max_force-min_force)

    # second channel gets cos(wind_angle)
    condition[:, 1] = math.cos(angle * torch.pi / 180.0)

    # third channel gets sin(wind_angle)
    condition[:, 2] = math.sin(angle * torch.pi / 180.0)
    
    return rearrange(condition, 'f c h w -> f h w c')
    

def get_gaussian_blob(x, y, radius=10, amplitude=1.0, shape=(3, 480, 720), device=None):
    """
    Create a tensor containing a Gaussian blob at the specified location.
    
    Args:
        x (int): x-coordinate of the blob center
        y (int): y-coordinate of the blob center
        radius (int, optional): Radius of the Gaussian blob. Defaults to 10.
        amplitude (float, optional): Maximum intensity of the blob. Defaults to 1.0.
        shape (tuple, optional): Shape of the output tensor (channels, height, width). Defaults to (3, 480, 720).
        device (torch.device, optional): Device to create the tensor on. Defaults to None.
    
    Returns:
        torch.Tensor: Tensor of shape (channels, height, width) containing the Gaussian blob
    """
    num_channels, height, width = shape
    
    # Create a new tensor filled with zeros
    blob_tensor = torch.zeros(shape, device=device)
    
    # Create coordinate grids
    y_grid, x_grid = torch.meshgrid(
        torch.arange(height, device=device),
        torch.arange(width, device=device),
        indexing='ij'
    )
    
    # Calculate squared distance from (x, y)
    squared_dist = (x_grid - x) ** 2 + (y_grid - y) ** 2
    
    # Create Gaussian blob using the squared distance
    gaussian = amplitude * torch.exp(-squared_dist / (2.0 * radius ** 2))
    
    # Add the Gaussian blob to all channels
    for c in range(num_channels):
        blob_tensor[c] = gaussian
    
    return blob_tensor
    
def get_point_condition(force, angle, x_pos, y_pos, min_force, max_force, num_frames=45, num_channels=3, height=480, width=720):
    
    condition = torch.zeros((num_frames, num_channels, height, width)) # (45, 3, 480, 720)

    x_pos_start = x_pos*width
    y_pos_start = (1-y_pos)*height

    DISPLACEMENT_FOR_MAX_FORCE = width / 2
    DISPLACEMENT_FOR_MIN_FORCE = width / 8

    force_percent = (force - min_force) / (max_force - min_force)
    total_displacement = DISPLACEMENT_FOR_MIN_FORCE + (DISPLACEMENT_FOR_MAX_FORCE - DISPLACEMENT_FOR_MIN_FORCE) * force_percent

    x_pos_end = x_pos_start + total_displacement * math.cos(angle * torch.pi / 180.0)
    y_pos_end = y_pos_start - total_displacement * math.sin(angle * torch.pi / 180.0)

    for frame in range(num_frames):

        t = frame / (num_frames-1)
        x_pos_ = x_pos_start * (1-t) + x_pos_end * t # t = 0 --> start; t = 0 --> end
        y_pos_ = y_pos_start * (1-t) + y_pos_end * t # t = 0 --> start; t = 0 --> end

        blob_tensor = get_gaussian_blob(x=x_pos_, y=y_pos_, radius=20, amplitude=1.0, shape=(num_channels, height, width))

        condition[frame] += blob_tensor
    
    return rearrange(condition, 'f c h w -> f h w c')