Spaces:
Sleeping
Sleeping
File size: 14,204 Bytes
0b4562b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2025 Apple Inc. All Rights Reserved.
#
from typing import Mapping, Text, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models
from einops import rearrange
from torch.cuda.amp import autocast
from .lpips import LPIPS
from .discriminator import NLayerDiscriminator, NLayer3DDiscriminator
_IMAGENET_MEAN = [0.485, 0.456, 0.406]
_IMAGENET_STD = [0.229, 0.224, 0.225]
def hinge_d_loss(logits_real: torch.Tensor, logits_fake: torch.Tensor) -> torch.Tensor:
"""Hinge loss for discrminator.
This function is borrowed from
https://github.com/CompVis/taming-transformers/blob/master/taming/modules/losses/vqperceptual.py#L20
"""
loss_real = torch.mean(F.relu(1.0 - logits_real))
loss_fake = torch.mean(F.relu(1.0 + logits_fake))
d_loss = 0.5 * (loss_real + loss_fake)
return d_loss
def compute_lecam_loss(
logits_real_mean: torch.Tensor,
logits_fake_mean: torch.Tensor,
ema_logits_real_mean: torch.Tensor,
ema_logits_fake_mean: torch.Tensor
) -> torch.Tensor:
"""Computes the LeCam loss for the given average real and fake logits.
Args:
logits_real_mean -> torch.Tensor: The average real logits.
logits_fake_mean -> torch.Tensor: The average fake logits.
ema_logits_real_mean -> torch.Tensor: The EMA of the average real logits.
ema_logits_fake_mean -> torch.Tensor: The EMA of the average fake logits.
Returns:
lecam_loss -> torch.Tensor: The LeCam loss.
"""
lecam_loss = torch.mean(torch.pow(F.relu(logits_real_mean - ema_logits_fake_mean), 2))
lecam_loss += torch.mean(torch.pow(F.relu(ema_logits_real_mean - logits_fake_mean), 2))
return lecam_loss
class PerceptualLoss(torch.nn.Module):
def __init__(self, dist, model_name: str = "convnext_s"):
"""Initializes the PerceptualLoss class.
Args:
model_name: A string, the name of the perceptual loss model to use.
Raise:
ValueError: If the model_name does not contain "lpips" or "convnext_s".
"""
super().__init__()
if ("lpips" not in model_name) and (
"convnext_s" not in model_name):
raise ValueError(f"Unsupported Perceptual Loss model name {model_name}")
self.dist = dist
self.lpips = None
self.convnext = None
self.loss_weight_lpips = None
self.loss_weight_convnext = None
# Parsing the model name. We support name formatted in
# "lpips-convnext_s-{float_number}-{float_number}", where the
# {float_number} refers to the loss weight for each component.
# E.g., lpips-convnext_s-1.0-2.0 refers to compute the perceptual loss
# using both the convnext_s and lpips, and average the final loss with
# (1.0 * loss(lpips) + 2.0 * loss(convnext_s)) / (1.0 + 2.0).
if "lpips" in model_name:
self.lpips = LPIPS(dist).eval()
if "convnext_s" in model_name:
self.convnext = models.convnext_small(weights=models.ConvNeXt_Small_Weights.IMAGENET1K_V1).eval()
if "lpips" in model_name and "convnext_s" in model_name:
loss_config = model_name.split('-')[-2:]
self.loss_weight_lpips, self.loss_weight_convnext = float(loss_config[0]), float(loss_config[1])
print(f"self.loss_weight_lpips, self.loss_weight_convnext: {self.loss_weight_lpips}, {self.loss_weight_convnext}")
self.register_buffer("imagenet_mean", torch.Tensor(_IMAGENET_MEAN)[None, :, None, None])
self.register_buffer("imagenet_std", torch.Tensor(_IMAGENET_STD)[None, :, None, None])
for param in self.parameters():
param.requires_grad = False
def forward(self, input: torch.Tensor, target: torch.Tensor):
"""Computes the perceptual loss.
Args:
input: A tensor of shape (B, C, H, W), the input image. Normalized to [0, 1].
target: A tensor of shape (B, C, H, W), the target image. Normalized to [0, 1].
Returns:
A scalar tensor, the perceptual loss.
"""
if input.dim() == 5:
# If the input is 5D, we assume it is a batch of videos.
# We will average the loss over the temporal dimension.
input = rearrange(input, "b t c h w -> (b t) c h w")
target = rearrange(target, "b t c h w -> (b t) c h w")
# Always in eval mode.
self.eval()
loss = 0.
num_losses = 0.
lpips_loss = 0.
convnext_loss = 0.
# Computes LPIPS loss, if available.
if self.lpips is not None:
lpips_loss = self.lpips(input, target)
if self.loss_weight_lpips is None:
loss += lpips_loss
num_losses += 1
else:
num_losses += self.loss_weight_lpips
loss += self.loss_weight_lpips * lpips_loss
if self.convnext is not None:
# Computes ConvNeXt-s loss, if available.
input = torch.nn.functional.interpolate(input, size=224, mode="bilinear", align_corners=False, antialias=True)
target = torch.nn.functional.interpolate(target, size=224, mode="bilinear", align_corners=False, antialias=True)
pred_input = self.convnext((input - self.imagenet_mean) / self.imagenet_std)
pred_target = self.convnext((target - self.imagenet_mean) / self.imagenet_std)
convnext_loss = torch.nn.functional.mse_loss(
pred_input,
pred_target,
reduction="mean")
if self.loss_weight_convnext is None:
num_losses += 1
loss += convnext_loss
else:
num_losses += self.loss_weight_convnext
loss += self.loss_weight_convnext * convnext_loss
# weighted avg.
loss = loss / num_losses
return loss
class WaveletLoss3D(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, inputs, targets):
from torch_dwt.functional import dwt3
inputs, targets = inputs.float(), targets.float()
l1_loss = torch.abs(
dwt3(inputs.contiguous(), "haar") - dwt3(targets.contiguous(), "haar")
)
# Average over the number of wavelet filters, reducing the dimensions
l1_loss = torch.mean(l1_loss, dim=1)
# Average over all of the filter banks, keeping dimensions
l1_loss = torch.mean(l1_loss, dim=-1, keepdim=True)
l1_loss = torch.mean(l1_loss, dim=-2, keepdim=True)
l1_loss = torch.mean(l1_loss, dim=-3, keepdim=True)
return l1_loss
class ReconstructionLoss_Single_Stage(torch.nn.Module):
def __init__(self, dist, args):
"""Initializes the losses module.
Args:
config: A dictionary, the configuration for the model and everything else.
"""
super().__init__()
self.dist = dist
self.with_condition = False
self.quantize_mode = 'vae'
self.discriminator = NLayerDiscriminator(with_condition=False).eval() if not args.use_3d_disc else NLayer3DDiscriminator(with_condition=False).eval()
self.reconstruction_loss = "l2"
self.reconstruction_weight = 1.0
self.quantizer_weight = 1.0
self.perceptual_loss = PerceptualLoss(dist, "lpips-convnext_s-1.0-0.1").eval()
self.perceptual_weight = 1.1
self.discriminator_iter_start = 0
self.discriminator_factor = 1.0
self.discriminator_weight = 0.1
self.lecam_regularization_weight = 0.001
self.lecam_ema_decay = 0.999
self.kl_weight = 1e-6
self.wavelet_loss_weight = 0.5
self.wavelet_loss = WaveletLoss3D()
self.logvar = nn.Parameter(torch.ones(size=()) * 0.0, requires_grad=False)
if self.lecam_regularization_weight > 0.0:
self.register_buffer("ema_real_logits_mean", torch.zeros((1)))
self.register_buffer("ema_fake_logits_mean", torch.zeros((1)))
@torch.amp.autocast("cuda", enabled=False)
def forward(self,
inputs: torch.Tensor,
reconstructions: torch.Tensor,
extra_result_dict: Mapping[Text, torch.Tensor],
global_step: int,
mode: str = "generator",
) -> Tuple[torch.Tensor, Mapping[Text, torch.Tensor]]:
# Both inputs and reconstructions are in range [0, 1].
inputs = inputs.float()
reconstructions = reconstructions.float()
if mode == "generator":
return self._forward_generator(inputs, reconstructions, extra_result_dict, global_step)
elif mode == "discriminator":
return self._forward_discriminator(inputs, reconstructions, extra_result_dict, global_step)
else:
raise ValueError(f"Unsupported mode {mode}")
def should_discriminator_be_trained(self, global_step : int):
return global_step >= self.discriminator_iter_start
def _forward_discriminator(self,
inputs: torch.Tensor,
reconstructions: torch.Tensor,
extra_result_dict: Mapping[Text, torch.Tensor],
global_step: int,
) -> Tuple[torch.Tensor, Mapping[Text, torch.Tensor]]:
"""Discrminator training step."""
discriminator_factor = self.discriminator_factor if self.should_discriminator_be_trained(global_step) else 0
loss_dict = {}
# Turn the gradients on.
for param in self.discriminator.parameters():
param.requires_grad = True
condition = extra_result_dict.get("condition", None) if self.with_condition else None
real_images = inputs.detach().requires_grad_(True)
logits_real = self.discriminator(real_images, condition)
logits_fake = self.discriminator(reconstructions.detach(), condition)
discriminator_loss = discriminator_factor * hinge_d_loss(logits_real=logits_real, logits_fake=logits_fake)
# optional lecam regularization
lecam_loss = torch.zeros((), device=inputs.device)
if self.lecam_regularization_weight > 0.0:
lecam_loss = compute_lecam_loss(
torch.mean(logits_real),
torch.mean(logits_fake),
self.ema_real_logits_mean,
self.ema_fake_logits_mean
) * self.lecam_regularization_weight
self.ema_real_logits_mean = self.ema_real_logits_mean * self.lecam_ema_decay + torch.mean(logits_real).detach() * (1 - self.lecam_ema_decay)
self.ema_fake_logits_mean = self.ema_fake_logits_mean * self.lecam_ema_decay + torch.mean(logits_fake).detach() * (1 - self.lecam_ema_decay)
discriminator_loss += lecam_loss
loss_dict = dict(
discriminator_loss=discriminator_loss.detach(),
logits_real=logits_real.detach().mean(),
logits_fake=logits_fake.detach().mean(),
lecam_loss=lecam_loss.detach(),
)
return discriminator_loss, loss_dict
def _forward_generator(self,
inputs: torch.Tensor,
reconstructions: torch.Tensor,
extra_result_dict: Mapping[Text, torch.Tensor],
global_step: int
) -> Tuple[torch.Tensor, Mapping[Text, torch.Tensor]]:
"""Generator training step."""
inputs = inputs.contiguous()
reconstructions = reconstructions.contiguous()
if self.reconstruction_loss == "l1":
reconstruction_loss = F.l1_loss(inputs, reconstructions, reduction="mean")
elif self.reconstruction_loss == "l2":
reconstruction_loss = F.mse_loss(inputs, reconstructions, reduction="mean")
else:
raise ValueError(f"Unsuppored reconstruction_loss {self.reconstruction_loss}")
reconstruction_loss *= self.reconstruction_weight
# Compute wavelet loss.
if inputs.dim() == 5:
wavelet_loss = self.wavelet_loss(
inputs.permute(0,2,1,3,4), reconstructions.permute(0,2,1,3,4)).mean()
else:
wavelet_loss = 0
# Compute perceptual loss.
perceptual_loss = self.perceptual_loss(inputs, reconstructions).mean()
# Compute discriminator loss.
generator_loss = torch.zeros((), device=inputs.device)
discriminator_factor = self.discriminator_factor if self.should_discriminator_be_trained(global_step) else 0
d_weight = 1.0
if discriminator_factor > 0.0 and self.discriminator_weight > 0.0:
# Disable discriminator gradients.
for param in self.discriminator.parameters():
param.requires_grad = False
logits_fake = self.discriminator(reconstructions)
generator_loss = -torch.mean(logits_fake)
d_weight *= self.discriminator_weight
assert self.quantize_mode == "vae", "Only vae mode is supported for now"
# Compute kl loss.
reconstruction_loss = reconstruction_loss / torch.exp(self.logvar)
total_loss = (
reconstruction_loss
+ self.perceptual_weight * perceptual_loss
+ d_weight * discriminator_factor * generator_loss
+ self.wavelet_loss_weight * wavelet_loss
)
loss_dict = dict(
total_loss=total_loss.clone().detach(),
reconstruction_loss=reconstruction_loss.detach(),
perceptual_loss=(self.perceptual_weight * perceptual_loss).detach(),
weighted_gan_loss=(d_weight * discriminator_factor * generator_loss).detach(),
discriminator_factor=torch.tensor(discriminator_factor),
d_weight=d_weight,
gan_loss=generator_loss.detach(),
wavelet_loss=(self.wavelet_loss_weight * wavelet_loss).detach(),
)
return total_loss, loss_dict
|