File size: 5,228 Bytes
0b4562b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2025 Apple Inc. All Rights Reserved.
#
"""This file contains code for LPIPS.
Reference:
    https://github.com/richzhang/PerceptualSimilarity/
    https://github.com/CompVis/taming-transformers/blob/master/taming/modules/losses/lpips.py
    https://github.com/CompVis/taming-transformers/blob/master/taming/util.py
"""

import os
import hashlib
import requests
from collections import namedtuple
from tqdm import tqdm

import torch
import torch.nn as nn

from torchvision import models

_LPIPS_MEAN = [-0.030, -0.088, -0.188]
_LPIPS_STD = [0.458, 0.448, 0.450]


class LPIPS(nn.Module):
    # Learned perceptual metric.
    def __init__(self, dist, use_dropout=True):
        super().__init__()
        self.dist = dist
        self.scaling_layer = ScalingLayer()
        self.chns = [64, 128, 256, 512, 512]  # vg16 features
        self.net = vgg16(pretrained=True, requires_grad=False)
        self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
        self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
        self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
        self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
        self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
        self.load_pretrained()
        for param in self.parameters():
            param.requires_grad = False

    def load_pretrained(self):
        VGG_PATH = os.path.join(os.path.join("/root/.cache", "vgg.pth"))
        self.load_state_dict(torch.load(VGG_PATH, map_location=torch.device("cpu")), strict=False)

    def forward(self, input, target):
        # Notably, the LPIPS w/ pre-trained weights expect the input in the range of [-1, 1].
        # However, our codebase assumes all inputs are in range of [0, 1], and thus a scaling is needed.
        input = input * 2. - 1.
        target = target * 2. - 1.
        in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target))
        outs0, outs1 = self.net(in0_input), self.net(in1_input)
        feats0, feats1, diffs = {}, {}, {}
        lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
        for kk in range(len(self.chns)):
            feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
            diffs[kk] = (feats0[kk] - feats1[kk]) ** 2

        res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) for kk in range(len(self.chns))]
        val = res[0]
        for l in range(1, len(self.chns)):
            val += res[l]
        return val


class ScalingLayer(nn.Module):
    def __init__(self):
        super(ScalingLayer, self).__init__()
        self.register_buffer("shift", torch.Tensor(_LPIPS_MEAN)[None, :, None, None])
        self.register_buffer("scale", torch.Tensor(_LPIPS_STD)[None, :, None, None])

    def forward(self, inp):
        return (inp - self.shift) / self.scale


class NetLinLayer(nn.Module):
    """A single linear layer which does a 1x1 conv."""

    def __init__(self, chn_in, chn_out=1, use_dropout=False):
        super(NetLinLayer, self).__init__()
        layers = (
            [
                nn.Dropout(),
            ]
            if (use_dropout)
            else []
        )
        layers += [
            nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False),
        ]
        self.model = nn.Sequential(*layers)


class vgg16(torch.nn.Module):
    def __init__(self, requires_grad=False, pretrained=True):
        super(vgg16, self).__init__()
        vgg_pretrained_features = models.vgg16(weights=models.VGG16_Weights.IMAGENET1K_V1).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        self.N_slices = 5
        for x in range(4):
            self.slice1.add_module(str(x), vgg_pretrained_features[x])
        for x in range(4, 9):
            self.slice2.add_module(str(x), vgg_pretrained_features[x])
        for x in range(9, 16):
            self.slice3.add_module(str(x), vgg_pretrained_features[x])
        for x in range(16, 23):
            self.slice4.add_module(str(x), vgg_pretrained_features[x])
        for x in range(23, 30):
            self.slice5.add_module(str(x), vgg_pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, X):
        h = self.slice1(X)
        h_relu1_2 = h
        h = self.slice2(h)
        h_relu2_2 = h
        h = self.slice3(h)
        h_relu3_3 = h
        h = self.slice4(h)
        h_relu4_3 = h
        h = self.slice5(h)
        h_relu5_3 = h
        vgg_outputs = namedtuple("VggOutputs", ["relu1_2", "relu2_2", "relu3_3", "relu4_3", "relu5_3"])
        out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
        return out


def normalize_tensor(x, eps=1e-10):
    norm_factor = torch.sqrt(torch.sum(x**2, dim=1, keepdim=True))
    return x / (norm_factor + eps)


def spatial_average(x, keepdim=True):
    return x.mean([2, 3], keepdim=keepdim)