File size: 20,777 Bytes
0b4562b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a6a9cd
0b4562b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d8eef3
 
 
0b4562b
2d8eef3
 
34395b9
 
 
2d8eef3
 
 
 
 
 
 
 
34395b9
 
2d8eef3
34395b9
2d8eef3
 
 
 
34395b9
2d8eef3
0b4562b
 
 
 
 
 
3a6a9cd
0b4562b
3a6a9cd
0b4562b
 
 
 
3a6a9cd
0b4562b
 
3a6a9cd
0b4562b
 
 
 
3a6a9cd
0b4562b
 
 
 
3a6a9cd
0b4562b
3a6a9cd
 
0b4562b
 
3a6a9cd
 
 
 
 
 
 
 
0b4562b
 
 
 
 
 
fa69135
0b4562b
fa69135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a6a9cd
0b4562b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc2ca3c
 
0b4562b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34395b9
 
0b4562b
 
 
34395b9
fa69135
 
 
 
 
 
 
 
 
0b4562b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34395b9
 
0b4562b
 
 
 
 
 
 
 
 
 
 
a1fd3d3
0b4562b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2025 Apple Inc. All Rights Reserved.
#
#!/usr/bin/env python3
"""
Scalable Transformer Autoregressive Flow (STARFlow) Sampling Script

This script provides functionality for sampling from trained transformer autoregressive flow models.
Supports both image and video generation with various conditioning options.

Usage:
    python sample.py --model_config_path config.yaml --checkpoint_path model.pth --caption "A cat"
"""

import argparse
import copy
import pathlib
import time
import gc
from typing import Dict, List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.data
import torchvision as tv
import tqdm
import yaml
from einops import repeat
from PIL import Image

# Local imports
import transformer_flow
import utils
from dataset import aspect_ratio_to_image_size
from train import get_tarflow_parser
from utils import process_denoising, save_samples_unified, load_model_config, encode_text, add_noise
from transformer_flow import KVCache
from misc import print


# Default caption templates for testing and demonstrations
DEFAULT_CAPTIONS = {
    'template1': "In the image, a corgi dog is wearing a Santa hat and is laying on a fluffy rug. The dog's tongue is sticking out and it appears to be happy. There are two pumpkins and a basket of leaves nearby, indicating that the scene takes place during the fall season. The background features a Christmas tree, further suggesting the holiday atmosphere. The image has a warm and cozy feel to it, with the dog looking adorable in its hat and the pumpkins adding a festive touch.",
    'template2': "A close-up portrait of a cheerful Corgi dog, showcasing its fluffy, sandy-brown fur and perky ears. The dog has a friendly expression with a slight smile, looking directly into the camera. Set against a soft, natural green background, the image is captured in a high-definition, realistic photography style, emphasizing the texture of the fur and the vibrant colors.",
    'template3': "A high-resolution, wide-angle selfie photograph of Albert Einstein in a garden setting. Einstein looks directly into the camera with a gentle, knowing smile. His distinctive wild white hair and bushy mustache frame a face marked by thoughtful wrinkles. He wears a classic tweed jacket over a simple shirt. In the background, lush greenery and flowering bushes under soft daylight create a serene, scholarly atmosphere. Ultra-realistic style, 4K detail.",
    'template4': 'A close-up, high-resolution selfie of a red panda perched on a tree branch, its large dark eyes looking directly into the lens. Rich reddish-orange fur with white facial markings contrasts against the lush green bamboo forest behind. Soft sunlight filters through the leaves, casting a warm, natural glow over the scene. Ultra-realistic detail, digital photograph style, 4K resolution.',
    'template5': "A realistic selfie of a llama standing in front of a classic Ivy League building on the Princeton University campus. He is smiling gently, wearing his iconic wild hair and mustache, dressed in a wool sweater and collared shirt. The photo has a vintage, slightly sepia tone, with soft natural lighting and leafy trees in the background, capturing an academic and historical vibe.",
}




def setup_model_and_components(args: argparse.Namespace) -> Tuple[torch.nn.Module, Optional[torch.nn.Module], tuple]:
    """Initialize and load the model, VAE, and text encoder."""
    # Initialize distributed training context
    # For single GPU inference, we still need to initialize process group
    # because the model code uses torch.distributed.all_reduce
    dist = utils.Distributed()
    
    # If not running with torchrun, initialize single-process group
    # This is needed because the model code uses torch.distributed.all_reduce
    # Works for both CUDA and CPU modes
    if not dist.distributed:
        import os
        # Initialize single-process process group for model compatibility
        if not torch.distributed.is_initialized():
            os.environ['MASTER_ADDR'] = 'localhost'
            os.environ['MASTER_PORT'] = '12355'
            os.environ['RANK'] = '0'
            os.environ['LOCAL_RANK'] = '0'
            os.environ['WORLD_SIZE'] = '1'
            # Use 'nccl' for CUDA, 'gloo' for CPU
            backend = 'nccl' if torch.cuda.is_available() else 'gloo'
            torch.distributed.init_process_group(
                backend=backend,
                init_method='env://',
                world_size=1,
                rank=0,
            )
            print(f"βœ… Initialized single-process distributed group (backend: {backend}) for model compatibility")
    
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # Set random seed
    utils.set_random_seed(args.seed + dist.rank)

    # Setup text encoder
    print("Loading text encoder...")
    tokenizer, text_encoder = utils.setup_encoder(args, dist, device)
    torch.cuda.empty_cache()  # Clear cache after text encoder

    # Setup VAE if specified
    vae = None
    if args.vae is not None:
        print("Loading VAE...")
        vae = utils.setup_vae(args, dist, device)
        args.img_size = args.img_size // vae.downsample_factor
        torch.cuda.empty_cache()  # Clear cache after VAE
    else:
        args.finetuned_vae = 'none'

    # Setup main transformer model
    print("Loading main transformer model...")
    model = utils.setup_transformer(
        args, dist,
        txt_dim=text_encoder.config.hidden_size,
        use_checkpoint=1
    )

    # Load checkpoint to CPU first, then move to GPU
    print(f"Loading checkpoint from: {args.checkpoint_path}")
    state_dict = torch.load(args.checkpoint_path, map_location='cpu')
    model.load_state_dict(state_dict, strict=False)
    del state_dict
    gc.collect()  # Force garbage collection
    torch.cuda.empty_cache()  # Clear any GPU cache
    
    # Move model to GPU after loading weights
    print("Moving model to GPU...")
    model = model.to(device)
    torch.cuda.empty_cache()  # Clear cache after moving to GPU

    # Set model to eval mode and disable gradients
    for p in model.parameters():
        p.requires_grad = False
    model.eval()

    # Parallelize model for multi-GPU sampling (do this before half precision conversion)
    _, model = utils.parallelize_model(args, model, dist, device)
    torch.cuda.empty_cache()
    
    # Convert model to half precision for memory efficiency (if CUDA available)
    # Do this AFTER parallelization to avoid issues
    if torch.cuda.is_available():
        # Use bfloat16 if supported, otherwise float16
        if torch.cuda.is_bf16_supported():
            model = model.to(torch.bfloat16)
            print("βœ… Converted model to bfloat16 for memory efficiency")
        else:
            model = model.to(torch.float16)
            print("βœ… Converted model to float16 for memory efficiency")
        torch.cuda.empty_cache()
        
        # Print memory usage
        allocated = torch.cuda.memory_allocated(0) / 1024**3
        reserved = torch.cuda.memory_reserved(0) / 1024**3
        total = torch.cuda.get_device_properties(0).total_memory / 1024**3
        print(f"πŸ“Š GPU Memory: {allocated:.2f} GB allocated, {reserved:.2f} GB reserved, {total:.2f} GB total")
    
    torch.cuda.empty_cache()  # Final cache clear

    return model, vae, (tokenizer, text_encoder, dist, device)


def prepare_captions(args: argparse.Namespace, dist) -> Tuple[List[str], List[int], int, str]:
    """Prepare captions for sampling from file or template."""
    if args.caption.endswith('.txt'):
        with open(args.caption, 'r') as f:
            lines = [line.strip() for line in f.readlines()]

        num_samples = len(lines)
        fixed_y = lines[dist.rank:][::dist.world_size]
        fixed_idxs = list(range(len(lines)))[dist.rank:][::dist.world_size]
        caption_name = args.caption.split('/')[-1][:-4]
    else:
        caption_text = DEFAULT_CAPTIONS.get(args.caption, args.caption)
        fixed_y = [caption_text] * args.sample_batch_size
        fixed_idxs = []
        num_samples = args.sample_batch_size * dist.world_size
        caption_name = args.caption

    return fixed_y, fixed_idxs, num_samples, caption_name


def get_noise_shape(args: argparse.Namespace, vae) -> callable:
    """Generate noise tensor with appropriate shape for sampling."""
    def _get_noise_func(b: int, x_shape: tuple) -> torch.Tensor:
        rand_shape = [args.channel_size, x_shape[0], x_shape[1]]
        if len(x_shape) == 3:
            rand_shape = [x_shape[2]] + rand_shape

        if vae is not None:
            if args.vid_size is not None:
                rand_shape[0] = (rand_shape[0] - 1) // vae.temporal_downsample_factor + 1
            rand_shape[-2] //= vae.downsample_factor
            rand_shape[-1] //= vae.downsample_factor

        return torch.randn(b, *rand_shape)

    return _get_noise_func


def prepare_input_image(args: argparse.Namespace, x_shape: tuple, vae, device: torch.device, noise_std: float) -> Optional[torch.Tensor]:
    """Load and preprocess input image for conditional generation."""
    input_image = Image.open(args.input_image).convert('RGB')

    # Resize and crop to target shape
    scale = max(x_shape[0] / input_image.height, x_shape[1] / input_image.width)
    transform = tv.transforms.Compose([
        tv.transforms.Resize((int(input_image.height * scale), int(input_image.width * scale))),
        tv.transforms.CenterCrop(x_shape[:2]),
        tv.transforms.ToTensor(),
        tv.transforms.Normalize([0.5]*3, [0.5]*3)
    ])

    input_image = transform(input_image).unsqueeze(0).to(device)

    # Encode with VAE if available
    with torch.no_grad():
        if vae is not None:
            input_image = vae.encode(input_image)

    # Add noise
    input_image = add_noise(input_image, noise_std)[0]
    return input_image


def build_sampling_kwargs(args: argparse.Namespace, caption_name: str) -> dict:
    """Build sampling keyword arguments based on configuration."""
    sampling_kwargs = {
        'guidance': args.cfg,
        'guide_top': args.guide_top,
        'verbose': not caption_name.endswith('/'),
        'return_sequence': args.return_sequence,
        'jacobi': args.jacobi,
        'context_length': args.context_length
    }

    if args.jacobi:
        sampling_kwargs.update({
            'jacobi_th': args.jacobi_th,
            'jacobi_block_size': args.jacobi_block_size,
            'jacobi_max_iter': args.jacobi_max_iter
        })
    else:
        sampling_kwargs.update({
            'attn_temp': args.attn_temp,
            'annealed_guidance': False
        })

    return sampling_kwargs


def main(args: argparse.Namespace) -> None:
    """Main sampling function."""
    # Load model configuration and merge with command line args
    trainer_args = load_model_config(args.model_config_path)
    trainer_dict = vars(trainer_args)
    trainer_dict.update(vars(args))
    args = argparse.Namespace(**trainer_dict)

    # Handle target length configuration for video
    if args.target_length is not None:
        assert args.vid_size is not None, "it must be a video model to use target_length"
        assert args.jacobi == 1, "target_length is only supported with jacobi sampling"
        if args.target_length == 1:  # generate single image
            args.vid_size = None
            args.out_fps = 0
        else:
            args.local_attn_window = (int(args.vid_size.split(':')[0]) - 1) // 4 + 1
            args.vid_size = f"{args.target_length}:16"
            if args.context_length is None:
                args.context_length = args.local_attn_window - 1

    # Override some settings for sampling
    # Disable FSDP for single GPU inference (FSDP can cause CPU fallback)
    args.fsdp = 0  # Disable FSDP for single GPU - use regular GPU inference
    if args.use_pretrained_lm is not None:
        args.text = args.use_pretrained_lm

    # Setup model and components
    model, vae, (tokenizer, text_encoder, dist, device) = setup_model_and_components(args)

    # Setup output directory
    model_name = pathlib.Path(args.checkpoint_path).stem
    sample_dir: pathlib.Path = args.logdir / f'{model_name}'
    if dist.local_rank == 0:
        sample_dir.mkdir(parents=True, exist_ok=True)
    dist.barrier()

    print(f'{" Load ":-^80} {model_name}')

    # Prepare captions and sampling parameters
    fixed_y, fixed_idxs, num_samples, caption_name = prepare_captions(args, dist)
    print(f'Sampling {num_samples} from {args.caption} on {dist.world_size} GPU(s)')

    get_noise = get_noise_shape(args, vae)
    sampling_kwargs = build_sampling_kwargs(args, caption_name)
    noise_std = args.target_noise_std if args.target_noise_std else args.noise_std

    # Start sampling
    print(f'Starting sampling with global batch size {args.sample_batch_size}x{dist.world_size} GPUs')
    if torch.cuda.is_available():
        torch.cuda.synchronize()
    start_time = time.time()

    with torch.no_grad():
        device_type = 'cuda' if torch.cuda.is_available() else 'cpu'
        # Use bfloat16 for CUDA (memory efficient), float32 for CPU
        if torch.cuda.is_available() and torch.cuda.is_bf16_supported():
            autocast_dtype = torch.bfloat16
        elif torch.cuda.is_available():
            autocast_dtype = torch.float16
        else:
            autocast_dtype = torch.float32
        
        with torch.autocast(device_type=device_type, dtype=autocast_dtype):
            for i in tqdm.tqdm(range(int(np.ceil(num_samples / (args.sample_batch_size * dist.world_size))))):
                # Determine aspect ratio and image shape
                x_aspect = args.aspect_ratio if args.mix_aspect else None
                if x_aspect == "random":
                    x_aspect = np.random.choice([
                        "1:1", "2:3", "3:2", "16:9", "9:16", "4:5", "5:4", "21:9", "9:21"
                    ])

                x_shape = aspect_ratio_to_image_size(
                    args.img_size * vae.downsample_factor, x_aspect,
                    multiple=vae.downsample_factor * args.patch_size
                )

                # Setup text encoder kwargs
                text_encoder_kwargs = dict(
                    aspect_ratio=x_aspect,
                    fps=args.out_fps if args.fps_cond else None,
                    noise_std=noise_std if args.cond_noise_level else None
                )

                # Handle video dimensions
                if args.vid_size is not None:
                    vid_size = tuple(map(int, args.vid_size.split(':')))
                    out_fps = args.out_fps if args.fps_cond else vid_size[1]
                    num_frames = vid_size[0]
                    x_shape = (x_shape[0], x_shape[1], num_frames)
                else:
                    out_fps = args.out_fps

                # Prepare batch and captions
                b = args.sample_batch_size
                y = fixed_y[i * b : (i + 1) * b]
                y_caption = copy.deepcopy(y)

                # Add null captions for CFG
                if args.cfg > 0:
                    y += [""] * len(y)

                # Prepare text & noise
                y = encode_text(text_encoder, tokenizer, y, args.txt_size, device, **text_encoder_kwargs)
                noise = get_noise(len(y_caption), x_shape).to(device)

                # Prepare input image if specified
                if args.input_image is not None:
                    input_image = prepare_input_image(args, x_shape, vae, device, noise_std)
                    input_image = repeat(input_image, '1 c h w -> b c h w', b=b)

                    assert args.cfg > 0, "CFG is required for image conditioned generation"
                    kv_caches = model(input_image.unsqueeze(1), y, context=True)
                else:
                    input_image, kv_caches = None, None

                # Generate samples
                samples = model(noise, y, reverse=True, kv_caches=kv_caches, **sampling_kwargs)
                del kv_caches; torch.cuda.empty_cache()  # free up memory

                # Apply denoising if enabled
                samples = process_denoising(
                    samples, y_caption, args, model, text_encoder,
                    tokenizer, text_encoder_kwargs, noise_std
                )

                # Decode with VAE if available
                if args.vae is not None:
                    dec_fn = vae.decode
                else:
                    dec_fn = lambda x: x

                if isinstance(samples, list):
                    samples = torch.cat([dec_fn(s) for s in samples], dim=-1)
                else:
                    samples = dec_fn(samples)

                # Save samples using unified function
                print(f' Saving samples ... {sample_dir}')
                
                # Determine save mode based on args
                if args.save_folder and args.caption.endswith('.txt'):
                    grid_mode = "individual"  # Save individual files when using caption file
                else:
                    grid_mode = "auto"  # Use automatic grid arrangement
                
                save_samples_unified(
                    samples=samples,
                    save_dir=sample_dir,
                    filename_prefix=caption_name[:200] if len(caption_name) > 0 else "samples",
                    epoch_or_iter=i,
                    fps=out_fps,
                    dist=dist,
                    wandb_log=False,  # Let sample.py handle its own wandb logging
                    grid_arrangement=grid_mode
                )

    # Print timing statistics
    if torch.cuda.is_available():
        torch.cuda.synchronize()
    elapsed_time = time.time() - start_time
    print(f'{model_name} cfg {args.cfg:.2f}, bsz={args.sample_batch_size}x{dist.world_size}, '
          f'time={elapsed_time:.2f}s, speed={num_samples / elapsed_time:.2f} images/s')


if __name__ == '__main__':
    parser = argparse.ArgumentParser()

    # Model config
    parser.add_argument('--model_config_path', required=True, type=str, help='path to YAML config file or directory containing config file')
    parser.add_argument('--checkpoint_path', required=True, type=str, help='path to local checkpoint file (required when using model_config_path)')
    parser.add_argument('--logdir', default='./logs', type=pathlib.Path, help='output directory for generated samples')
    parser.add_argument('--save_folder', default=0, type=int)

    # Caption, condition
    parser.add_argument('--caption', type=str, required=True, help='Caption input (required)')
    parser.add_argument('--input_image', default=None, type=str, help='path to the input image for image-conditioned generation')
    parser.add_argument('--aspect_ratio', default="1:1", type=str, choices=["random", "1:1", "2:3", "3:2", "16:9", "9:16", "4:5", "5:4", "21:9", "9:21"])
    parser.add_argument('--out_fps', default=8, type=int, help='fps for video datasets, only useful if fps_cond is set to 1')

    # Sampling parameters
    parser.add_argument('--seed', default=191, type=int)
    parser.add_argument('--denoising_batch_size', default=1, type=int)
    parser.add_argument('--self_denoising_lr', default=1, type=float)
    parser.add_argument('--disable_learnable_denoiser', default=0, type=int)
    parser.add_argument('--attn_temp', default=1, type=float)
    parser.add_argument('--jacobi_th', default=0.005, type=float)
    parser.add_argument('--jacobi', default=0, type=int)
    parser.add_argument('--jacobi_block_size', default=64, type=int)
    parser.add_argument('--jacobi_max_iter', default=32, type=int)
    parser.add_argument('--num_samples', default=50000, type=int)
    parser.add_argument('--sample_batch_size', default=16, type=int)
    parser.add_argument('--return_sequence', default=0, type=int)
    parser.add_argument('--cfg', default=5, type=float)
    parser.add_argument('--guide_top', default=None, type=int)
    parser.add_argument('--finetuned_vae', default="px82zaheuu", type=str)
    parser.add_argument('--vae_adapter', default=None)
    parser.add_argument('--target_noise_std', default=None, help="option to use different noise_std from the config")

    # Video-specific parameters
    parser.add_argument('--target_length', default=None, type=int, help="target length maybe longer than training")
    parser.add_argument('--context_length', default=16,  type=int, help="context length used for consective sampling")
    args = parser.parse_args()

    if args.input_image and args.input_image == 'none':
        args.input_image = None
    main(args)