File size: 18,480 Bytes
0b4562b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2025 Apple Inc. All Rights Reserved.
#
"""
Model setup utilities for STARFlow.
Includes: transformer setup, VAE setup, text encoders.
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
import pathlib
import os
import numpy as np
from collections import OrderedDict
from typing import Optional, Tuple, Union
from einops import rearrange

from transformer_flow import pre_model_configs, Model
from diffusers.models import AutoencoderKL, AutoencoderKLWan
from diffusers import DiTPipeline
from misc.wan_vae2 import video_vae2 as AutoencoderKLWan2
from transformers import AutoTokenizer, AutoModel, AutoConfig, T5Tokenizer, T5EncoderModel


# ==== Model Setup Functions ====

def setup_transformer(args, dist, **other_kwargs):
    """Setup transformer model with given arguments."""
    common_kwargs = dict(
        in_channels=args.channel_size,
        img_size=args.img_size,
        txt_size=args.txt_size,
        sos=args.sos,  # sos_token
        cond_top_only=args.cond_top_only,
        use_softplus=args.use_softplus,
        use_pretrained_lm=args.use_pretrained_lm,
        use_mm_attn=args.use_mm_attn,
        use_final_norm=args.use_final_norm,
        soft_clip=args.soft_clip,
        seq_order=args.seq_order,
        learnable_self_denoiser=args.learnable_self_denoiser,
        conditional_denoiser=args.conditional_denoiser,
        noise_embed_denoiser=args.noise_embed_denoiser,
        temporal_causal=args.temporal_causal,
        shallow_block_local=args.shallow_block_local,
        denoiser_window=args.denoiser_window,
        local_attn_window=args.local_attn_window,
        top_block_channels=getattr(args, 'top_block_channels', None),
    )
    common_kwargs.update(other_kwargs)

    if getattr(args, "model_type", None) is not None:
        model = pre_model_configs[args.model_type](**common_kwargs)
    else:
        # generic model initialization
        model = Model(
            patch_size=args.patch_size,
            channels=args.channels,
            num_blocks=args.blocks if len(args.layers_per_block) == 1 else len(args.layers_per_block),
            layers_per_block=args.layers_per_block,
            rope=args.rope,
            pt_seq_len=args.pt_seq_len,
            head_dim=args.head_dim,
            num_heads=args.num_heads,
            num_kv_heads=args.num_kv_heads,
            use_swiglu=args.use_swiglu,
            use_bias=args.use_bias,
            use_qk_norm=args.use_qk_norm,
            use_post_norm=args.use_post_norm,
            norm_type=args.norm_type,
            **common_kwargs)
    
    if args.use_pretrained_lm:  # Note: pretrained model download removed
        model_name = args.use_pretrained_lm
        assert model_name in ['gemma3_4b', 'gemma2_2b', 'gemma3_1b'], f'{model_name} not supported'

        # Note: Pretrained LM weights are no longer automatically downloaded
        # Users should provide their own pretrained weights if needed
        local_path = pathlib.Path(args.logdir) / model_name / 'gemma_meta_block.pth'
        if local_path.exists():
            model.blocks[-1].load_state_dict(torch.load(local_path, map_location='cpu'), strict=False)
            print(f'Load top block with pretrained LLM weights from {model_name}')
        else:
            print(f"Warning: Pretrained LM weights for {model_name} not found at {local_path}")
            print("Please provide pretrained weights manually or disable use_pretrained_lm")

    return model


class VAE(nn.Module):
    def __init__(self, model_name, dist, adapter=None):
        super().__init__()
        self.model_name = model_name
        self.video_vae = False
        self.dist = dist
        model_name, extra = model_name.split(':') if ':' in model_name else (model_name, None)

        if 'Wan-AI/Wan2.1' in model_name:
            self.vae = AutoencoderKLWan.from_pretrained(model_name, subfolder="vae", torch_dtype=torch.bfloat16)
            self.latents_std = self.vae.config.latents_std
            self.latents_mean = self.vae.config.latents_mean
            self.downsample_factor = 2 ** (len(self.vae.config.dim_mult) - 1)
            self.temporal_downsample_factor = 2 ** sum(self.vae.config.temperal_downsample)
            self.video_vae = True  # this is a Video VAE

        elif 'Wan-AI/Wan2.2' in model_name:
            filename = "/tmp/Wan2.2_VAE.pth"  # Use local temp path, download if not exists. WAN2.2 has no diffusers
            if not os.path.exists(filename):
                if dist.local_rank == 0:
                    print("Downloading Wan2.2 VAE weights...")
                    os.system(f"wget https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B/resolve/main/Wan2.2_VAE.pth -O {filename}")
                dist.barrier()  # Ensure only one process downloads

            self.vae = AutoencoderKLWan2(pretrained_path=filename)
            self.downsample_factor = 16
            self.video_vae = True
            self.latents_std = self.vae.std
            self.latents_mean = self.vae.mean
            self.temporal_downsample_factor = 4
            self.temporal_scale = float(extra) if extra is not None else 1

        else:
            if 'sd-vae' in model_name or 'sdxl-vae' in model_name:
                self.vae = AutoencoderKL.from_pretrained(model_name)
                self.scaling_factor = self.vae.config.scaling_factor
            else:
                self.vae = AutoencoderKL.from_pretrained(model_name, subfolder="vae", torch_dtype=torch.bfloat16)
                self.scaling_factor = self.vae.config.scaling_factor
            self.downsample_factor = 2 ** (len(self.vae.config.down_block_types) - 1)
            self.temporal_downsample_factor = 1  # this is an Image VAE, no temporal downsample

        # self.vae.load_state_dict(self.vae.state_dict(), strict=False)  # what is this?
        self.use_adapter = adapter is not None
        if self.use_adapter:  # adapter is dit #
            self.dit_pipe = DiTPipeline.from_pretrained(adapter, torch_dtype=torch.bfloat16)

    def to(self, device):
        if self.use_adapter:
            self.dit_pipe.to(device)
        return super().to(device)

    def _encode(self, x):
        return self.vae.encode(x)

    def _decode(self, z):
        return self.vae.decode(z)

    def encode(self, x):
        if self.video_vae:  # video VAE
            if 'Wan-AI/Wan2.2' in self.model_name:
                if x.dim() == 5:
                    z = rearrange(self.vae.sample(rearrange(x, 'b t c h w -> b c t h w'), self.vae.scale), 'b c t h w -> b t c h w')
                    if self.temporal_scale != 1:
                        z[:, 1:] = z[:, 1:] * self.temporal_scale  # scale the temporal latent
                else:
                    z = rearrange(self.vae.sample(rearrange(x, 'b c h w -> b c 1 h w'), self.vae.scale), 'b c 1 h w -> b c h w')
            else:
                if x.dim() == 5:
                    z = rearrange(self._encode(rearrange(x, 'b t c h w -> b c t h w')).latent_dist.sample(), 'b c t h w -> b t c h w')
                else:
                    z = rearrange(self._encode(rearrange(x, 'b c h w -> b c 1 h w')).latent_dist.sample(), 'b c 1 h w -> b c h w')
                shape = [1, 1, -1, 1, 1] if z.dim() == 5 else [1, -1, 1, 1]

                scale, shift = torch.tensor(self.latents_std, device=x.device).view(*shape), torch.tensor(self.latents_mean, device=x.device).view(*shape)
                z = (z - shift) / scale
        else: # image VAE
            if x.dim() == 5:
                z = rearrange(self._encode(rearrange(x, 'b t c h w -> (b t) c h w')).latent_dist.sample(), '(b t) c h w -> b t c h w', t=x.shape[1])
            else:
                z = self._encode(x).latent_dist.sample()
            z = z * self.scaling_factor
        return z

    def decode(self, z, total_steps=100, noise_std=0.3):
        if self.use_adapter:
            z = self.adapter_denoise(z, total_steps, noise_std)

        if self.video_vae:  # video VAE
            if 'Wan-AI/Wan2.2' in self.model_name:
                if z.dim() == 5:
                    if self.temporal_scale != 1:
                        z = z.clone()
                        z[:, 1:] = z[:, 1:] / self.temporal_scale
                    x = rearrange(self.vae.decode(rearrange(z, 'b t c h w -> b c t h w'), self.vae.scale), 'b c t h w -> b t c h w')
                else:
                    x = rearrange(self.vae.decode(rearrange(z, 'b c h w -> b c 1 h w'), self.vae.scale), 'b c 1 h w -> b c h w')
            else:
                shape = [1, 1, -1, 1, 1] if z.dim() == 5 else [1, -1, 1, 1]
                scale = torch.tensor(self.latents_std, device=z.device).view(*shape)
                shift = torch.tensor(self.latents_mean, device=z.device).view(*shape)
                z = z * scale + shift
                if z.dim() == 5:
                    x = rearrange(self._decode(rearrange(z, 'b t c h w -> b c t h w')).sample, 'b c t h w -> b t c h w')
                else:
                    x = rearrange(self._decode(rearrange(z, 'b c h w -> b c 1 h w')).sample, 'b c 1 h w -> b c h w')
        else:
            z = z / self.scaling_factor
            if z.dim() == 5: # (b, t, c, h, w)
                x = rearrange(self._decode(rearrange(z, 'b t c h w -> (b t) c h w')).sample, '(b t) c h w -> b t c h w', t=z.shape[1])
            else:
                x = self._decode(z).sample
        return x

    @torch.no_grad()
    def adapter_denoise(self, z, total_steps=100, noise_std=0.3):
        self.dit_pipe.scheduler.set_timesteps(total_steps)
        timesteps = self.dit_pipe.scheduler.timesteps
        one = torch.ones(z.shape[0], device=z.device)
        target_alpha2 = 1 / (1 + noise_std ** 2)
        target_t = (torch.abs(self.dit_pipe.scheduler.alphas_cumprod - target_alpha2)).argmin().item()
        z = z * np.sqrt(target_alpha2)  # normalize the latent
        for it in range(len(timesteps)):
            if timesteps[it] > target_t: continue
            noise_pred = self.dit_pipe.transformer(z, one * timesteps[it], class_labels=one.long() * 1000).sample
            model_output = torch.split(noise_pred, self.dit_pipe.transformer.config.in_channels, dim=1)[0]
            z = self.dit_pipe.scheduler.step(model_output, timesteps[it], z).prev_sample
        return z


def setup_vae(args, dist, device='cuda'):
    """Setup VAE model with given arguments."""
    print(f'Loading VAE {args.vae}...')
    # setup VAE
    vae = VAE(args.vae, dist=dist, adapter=getattr(args, "vae_adapter", None)).to(device)

    # (optional) load pretrained VAE
    if getattr(args, "finetuned_vae", None) is not None and args.finetuned_vae != 'none':
        vae_task_id = args.finetuned_vae
        local_folder = args.logdir / 'vae'
        local_folder.mkdir(parents=True, exist_ok=True)

        # Try to load from local path first
        if vae_task_id == "px82zaheuu":
            local_path = local_folder / "pytorch_model.bin"
            if local_path.exists():
                finetuned_vae_state = torch.load(local_path, map_location="cpu", weights_only=False)
                renamed_state = OrderedDict()
                for key in finetuned_vae_state:
                    new_key = key.replace("encoder.0", "encoder").replace("encoder.1", "quant_conv").replace("decoder.0", "post_quant_conv").replace("decoder.1", "decoder")
                    renamed_state[new_key] = finetuned_vae_state[key]
                vae.vae.load_state_dict(renamed_state)
                print(f'Loaded finetuned VAE {vae_task_id}')
            else:
                print(f"Warning: Finetuned VAE weights for {vae_task_id} not found at {local_path}")
                print("Please provide finetuned VAE weights manually or set finetuned_vae to 'none'")
        else:
            # Try to load general task weights
            local_path = local_folder / f"{vae_task_id}.pth"
            if local_path.exists():
                vae.load_state_dict(torch.load(local_path, map_location='cpu', weights_only=False))
                print(f'Loaded finetuned VAE {vae_task_id}')
            else:
                print(f"Warning: Finetuned VAE weights for {vae_task_id} not found at {local_path}")
                print("Please provide finetuned VAE weights manually or set finetuned_vae to 'none'")

    return vae


# ==== Text Encoder Classes and Setup ====

class LookupTableTokenizer:
    """Simple lookup table tokenizer for label-based datasets."""

    def __init__(self, vocab_file):
        from .common import read_tsv
        self.vocab = {l[0]: i for i, l in enumerate(read_tsv(f'configs/dataset/{vocab_file}'))}
        self.empty_id = len(self.vocab)

    def __len__(self):
        return len(self.vocab)

    def __call__(self, text):
        return {'input_ids': torch.tensor([[self.vocab.get(t, self.empty_id)] for t in text], dtype=torch.long)}


class LabelEmbdder(nn.Module):
    """Simple label embedder for classification-style conditioning."""
    
    def __init__(self, num_classes):
        super().__init__()
        self.num_classes = num_classes
        self.config = type('Config', (), {'hidden_size': num_classes + 1})()
        self.Embedding = nn.Parameter(torch.eye(num_classes+1), requires_grad=False)

    def forward(self, y):
        return F.embedding(y, self.Embedding)
        

class TextEmbedder(nn.Module):
    """Text embedder for large language models like Gemma."""
    
    def __init__(self, config):
        super().__init__()
        if hasattr(config, "text_config"):  # Gemma3
            self.config = config.text_config
            self.vocab_size = config.image_token_index
        else:
            self.config = config
            self.vocab_size = config.vocab_size
        self.text_token_embedder = nn.Embedding(
            self.vocab_size, self.config.hidden_size)
        self.text_token_embedder.weight.requires_grad = False
        self.normalizer = float(self.config.hidden_size) ** 0.5
    
    def forward(self, x):
        x = self.text_token_embedder(x) 
        return (x * self.normalizer).to(x.dtype)
    
    @torch.no_grad()
    def sample(
        self,
        hidden_states: torch.Tensor,
        temperatures: Union[float, None] = 1.0,
        top_ps: float = 0.95,
        top_ks: int = 64,
        embedding_bias: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        
        device = hidden_states.device
        batch_size = hidden_states.shape[0]
        temperatures = None if not temperatures else torch.FloatTensor(
            [temperatures] * batch_size).to(device)
        top_ps = torch.FloatTensor([top_ps] * batch_size).to(device)
        top_ks = torch.LongTensor([top_ks] * batch_size).to(device)
        
        # Select the last element for each sequence.
        hidden_states = hidden_states[:, -1]
        embedding = self.text_token_embedder.weight
        logits = torch.matmul(hidden_states, embedding.t())
        if embedding_bias is not None:
            logits += embedding_bias
        
        if hasattr(self.config, 'final_logit_softcapping') and self.config.final_logit_softcapping is not None:
            logits = logits / self.config.final_logit_softcapping
            logits = torch.tanh(logits)
            logits = logits * self.config.final_logit_softcapping

        if temperatures is None:
            return torch.argmax(logits, dim=-1).squeeze(dim=-1), logits

        # Apply temperature scaling.
        logits.div_(temperatures.unsqueeze(dim=1))
        
        # Apply top-k and top-p filtering (simplified version)
        probs = F.softmax(logits, dim=-1)
        next_tokens = torch.multinomial(probs, num_samples=1).squeeze(dim=-1)
        
        return next_tokens, logits


def setup_encoder(args, dist, device='cuda'):
    """Setup text encoder based on arguments."""
    assert args.txt_size > 0, 'txt_size must be set'
    print(f'Loading text encoder {args.text}...')
    
    if args.text.endswith('.vocab'):  # caption -> label 
        tokenizer = LookupTableTokenizer(args.text)
        text_encoder = LabelEmbdder(len(tokenizer)).to(device)
        block_name = 'Embedding'
        
    elif args.text == 't5xxl':
        tokenizer = T5Tokenizer.from_pretrained("THUDM/CogView3-Plus-3B", subfolder="tokenizer")
        text_encoder = T5EncoderModel.from_pretrained("THUDM/CogView3-Plus-3B", 
                                                      subfolder="text_encoder", torch_dtype=torch.bfloat16).to(device)
        block_name = 'T5Block'
        
    elif args.text == 't5xl' or args.text.startswith('google'):
        tokenizer = AutoTokenizer.from_pretrained(args.text)
        text_encoder = AutoModel.from_pretrained(args.text, add_cross_attention=False).encoder.to(device)
        block_name = 'T5Block'
        
    elif args.text == "gemma" or args.text.startswith("Alpha-VLLM"):
        tokenizer = AutoTokenizer.from_pretrained(args.text, subfolder="tokenizer")
        text_encoder = AutoModel.from_pretrained(args.text, subfolder="text_encoder", torch_dtype=torch.bfloat16).to(device)
        block_name = 'GemmaDecoderLayer'

    elif args.text in ["gemma3_4b", "gemma3_1b", "gemma2_2b"]:  # NOTE: special text embedder
        model_name = args.text
        repo_name = {"gemma3_4b": "google/gemma-3-4b-it",
                     "gemma3_1b": "google/gemma-3-1b-it",
                     "gemma2_2b": "google/gemma-2-2b-it"}[model_name]
        tokenizer = AutoTokenizer.from_pretrained(repo_name)
        config = AutoConfig.from_pretrained(repo_name)

        text_encoder = TextEmbedder(config).to(device)
        block_name = "Embedding"

        # Try to load embedding layer
        local_path = pathlib.Path(args.logdir) / model_name
        local_path.mkdir(parents=True, exist_ok=True)
        local_path = local_path / 'gemma_text_embed.pth'
        if local_path.exists():
            text_encoder.load_state_dict(torch.load(local_path, map_location='cpu'))
            print(f'Loaded text encoder weights for {model_name}')
        else:
            print(f"Warning: Text encoder weights for {model_name} not found at {local_path}")
            print("Please provide text encoder weights manually or use a different text encoder")
        
    else:
        raise NotImplementedError(f'Unknown text encoder {args.text}')
        
    text_encoder.base_block_name = block_name
    return tokenizer, text_encoder