starflow / app.py
leoeric's picture
Use persistent /workspace for checkpoint cache if available
4d5b25f
raw
history blame
12.3 kB
"""
Hugging Face Space for STARFlow
Text-to-Image and Text-to-Video Generation
This app allows you to run STARFlow inference on Hugging Face GPU infrastructure.
"""
import os
import gradio as gr
import torch
import subprocess
import pathlib
from pathlib import Path
# Try to import huggingface_hub for downloading checkpoints
try:
from huggingface_hub import hf_hub_download
HF_HUB_AVAILABLE = True
except ImportError:
HF_HUB_AVAILABLE = False
print("⚠️ huggingface_hub not available. Install with: pip install huggingface_hub")
# Check if running on Hugging Face Spaces
HF_SPACE = os.environ.get("SPACE_ID") is not None
# Default checkpoint paths (if uploaded to Space Files)
DEFAULT_IMAGE_CHECKPOINT = "ckpts/starflow_3B_t2i_256x256.pth"
DEFAULT_VIDEO_CHECKPOINT = "ckpts/starflow-v_7B_t2v_caus_480p_v3.pth"
# Model Hub repositories (if using Hugging Face Model Hub)
# Set these to your Model Hub repo IDs if you upload checkpoints there
# Format: "username/repo-name"
IMAGE_CHECKPOINT_REPO = "GlobalStudio/starflow-3b-checkpoint" # Update this after creating Model Hub repo
VIDEO_CHECKPOINT_REPO = "GlobalStudio/starflow-v-7b-checkpoint" # Update this after creating Model Hub repo
def get_checkpoint_path(checkpoint_file, default_local_path, repo_id=None, filename=None):
"""Get checkpoint path, downloading from Hub if needed."""
# If user uploaded a file, use it
if checkpoint_file is not None:
if hasattr(checkpoint_file, 'name'):
return checkpoint_file.name
return str(checkpoint_file)
# Try local path first
if os.path.exists(default_local_path):
return default_local_path
# Try downloading from Model Hub if configured
if repo_id and filename and HF_HUB_AVAILABLE:
try:
print(f"📥 Downloading checkpoint from {repo_id}...")
# Use /workspace if available (persistent), otherwise /tmp
cache_dir = "/workspace/checkpoints" if os.path.exists("/workspace") else "/tmp/checkpoints"
os.makedirs(cache_dir, exist_ok=True)
checkpoint_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
cache_dir=cache_dir,
local_files_only=False
)
print(f"✅ Checkpoint downloaded to: {checkpoint_path}")
return checkpoint_path
except Exception as e:
return None, f"Error downloading checkpoint: {str(e)}"
# No checkpoint found
return None, f"Checkpoint not found. Please upload a checkpoint file or configure Model Hub repository."
# Verify CUDA availability (will be True on HF Spaces with GPU hardware)
if torch.cuda.is_available():
print(f"✅ CUDA available! Device: {torch.cuda.get_device_name(0)}")
print(f" CUDA Version: {torch.version.cuda}")
print(f" PyTorch Version: {torch.__version__}")
else:
print("⚠️ CUDA not available. Make sure GPU hardware is selected in Space settings.")
def generate_image(prompt, aspect_ratio, cfg, seed, checkpoint_file, config_path):
"""Generate image from text prompt."""
# Get checkpoint path (from upload, local, or Model Hub)
result = get_checkpoint_path(
checkpoint_file,
DEFAULT_IMAGE_CHECKPOINT,
IMAGE_CHECKPOINT_REPO,
"starflow_3B_t2i_256x256.pth"
)
if isinstance(result, tuple) and result[0] is None:
return None, result[1] # Error message
checkpoint_path = result
if not os.path.exists(checkpoint_path):
return None, f"Error: Checkpoint file not found at {checkpoint_path}."
if not config_path or not os.path.exists(config_path):
return None, "Error: Config file not found. Please ensure config file exists."
try:
# Create output directory
output_dir = Path("outputs")
output_dir.mkdir(exist_ok=True)
# Run sampling command
cmd = [
"python", "sample.py",
"--model_config_path", config_path,
"--checkpoint_path", checkpoint_path,
"--caption", prompt,
"--sample_batch_size", "1",
"--cfg", str(cfg),
"--aspect_ratio", aspect_ratio,
"--seed", str(seed),
"--save_folder", "1",
"--finetuned_vae", "none",
"--jacobi", "1",
"--jacobi_th", "0.001",
"--jacobi_block_size", "16"
]
result = subprocess.run(cmd, capture_output=True, text=True, cwd=os.getcwd())
if result.returncode != 0:
return None, f"Error: {result.stderr}"
# Find the generated image
# The sample.py script saves to logdir/model_name/...
# We need to find the most recent output
output_files = list(output_dir.glob("**/*.png")) + list(output_dir.glob("**/*.jpg"))
if output_files:
latest_file = max(output_files, key=lambda p: p.stat().st_mtime)
return str(latest_file), "Success! Image generated."
else:
return None, "Error: Generated image not found."
except Exception as e:
return None, f"Error: {str(e)}"
def generate_video(prompt, aspect_ratio, cfg, seed, target_length, checkpoint_file, config_path, input_image):
"""Generate video from text prompt."""
# Get checkpoint path (from upload, local, or Model Hub)
result = get_checkpoint_path(
checkpoint_file,
DEFAULT_VIDEO_CHECKPOINT,
VIDEO_CHECKPOINT_REPO,
"starflow-v_7B_t2v_caus_480p_v3.pth"
)
if isinstance(result, tuple) and result[0] is None:
return None, result[1] # Error message
checkpoint_path = result
if not os.path.exists(checkpoint_path):
return None, f"Error: Checkpoint file not found at {checkpoint_path}."
if not config_path or not os.path.exists(config_path):
return None, "Error: Config file not found. Please ensure config file exists."
# Handle input image
input_image_path = None
if input_image is not None:
if hasattr(input_image, 'name'):
input_image_path = input_image.name
else:
input_image_path = str(input_image)
try:
# Create output directory
output_dir = Path("outputs")
output_dir.mkdir(exist_ok=True)
# Run sampling command
cmd = [
"python", "sample.py",
"--model_config_path", config_path,
"--checkpoint_path", checkpoint_path,
"--caption", prompt,
"--sample_batch_size", "1",
"--cfg", str(cfg),
"--aspect_ratio", aspect_ratio,
"--seed", str(seed),
"--out_fps", "16",
"--save_folder", "1",
"--jacobi", "1",
"--jacobi_th", "0.001",
"--finetuned_vae", "none",
"--disable_learnable_denoiser", "0",
"--jacobi_block_size", "32",
"--target_length", str(target_length)
]
if input_image_path and os.path.exists(input_image_path):
cmd.extend(["--input_image", input_image_path])
else:
cmd.extend(["--input_image", "none"])
result = subprocess.run(cmd, capture_output=True, text=True, cwd=os.getcwd())
if result.returncode != 0:
return None, f"Error: {result.stderr}"
# Find the generated video
output_files = list(output_dir.glob("**/*.mp4")) + list(output_dir.glob("**/*.gif"))
if output_files:
latest_file = max(output_files, key=lambda p: p.stat().st_mtime)
return str(latest_file), "Success! Video generated."
else:
return None, "Error: Generated video not found."
except Exception as e:
return None, f"Error: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="STARFlow - Text-to-Image & Video Generation") as demo:
gr.Markdown("""
# STARFlow: Scalable Transformer Auto-Regressive Flow
Generate high-quality images and videos from text prompts using STARFlow models.
**Note**: You'll need to upload model checkpoints. Check the README for model download links.
""")
with gr.Tabs():
with gr.Tab("Text-to-Image"):
with gr.Row():
with gr.Column():
image_prompt = gr.Textbox(
label="Prompt",
placeholder="a film still of a cat playing piano",
lines=3
)
image_checkpoint = gr.File(
label="Model Checkpoint (.pth file) - Optional if already uploaded to Space",
file_types=[".pth"]
)
image_config = gr.Textbox(
label="Config Path",
value="configs/starflow_3B_t2i_256x256.yaml",
placeholder="configs/starflow_3B_t2i_256x256.yaml"
)
image_aspect = gr.Dropdown(
choices=["1:1", "2:3", "3:2", "16:9", "9:16", "4:5", "5:4"],
value="1:1",
label="Aspect Ratio"
)
image_cfg = gr.Slider(1.0, 10.0, value=3.6, step=0.1, label="CFG Scale")
image_seed = gr.Number(value=999, label="Seed", precision=0)
image_btn = gr.Button("Generate Image", variant="primary")
with gr.Column():
image_output = gr.Image(label="Generated Image")
image_status = gr.Textbox(label="Status", interactive=False)
image_btn.click(
fn=generate_image,
inputs=[image_prompt, image_aspect, image_cfg, image_seed, image_checkpoint, image_config],
outputs=[image_output, image_status],
show_progress=True
)
with gr.Tab("Text-to-Video"):
with gr.Row():
with gr.Column():
video_prompt = gr.Textbox(
label="Prompt",
placeholder="a corgi dog looks at the camera",
lines=3
)
video_checkpoint = gr.File(
label="Model Checkpoint (.pth file) - Optional if already uploaded to Space",
file_types=[".pth"]
)
video_config = gr.Textbox(
label="Config Path",
value="configs/starflow-v_7B_t2v_caus_480p.yaml",
placeholder="configs/starflow-v_7B_t2v_caus_480p.yaml"
)
video_aspect = gr.Dropdown(
choices=["16:9", "1:1", "4:3"],
value="16:9",
label="Aspect Ratio"
)
video_cfg = gr.Slider(1.0, 10.0, value=3.5, step=0.1, label="CFG Scale")
video_seed = gr.Number(value=99, label="Seed", precision=0)
video_length = gr.Slider(81, 481, value=81, step=80, label="Target Length (frames)")
video_input_image = gr.File(
label="Input Image (optional, for image-to-video)",
file_types=["image"]
)
video_btn = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video")
video_status = gr.Textbox(label="Status", interactive=False)
video_btn.click(
fn=generate_video,
inputs=[video_prompt, video_aspect, video_cfg, video_seed, video_length,
video_checkpoint, video_config, video_input_image],
outputs=[video_output, video_status],
show_progress=True
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)