Spaces:
Sleeping
Sleeping
Add dataset.py and fix OpenMP warning
Browse files- app.py +3 -0
- dataset.py +929 -0
app.py
CHANGED
|
@@ -12,6 +12,9 @@ import subprocess
|
|
| 12 |
import pathlib
|
| 13 |
from pathlib import Path
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
# Try to import huggingface_hub for downloading checkpoints
|
| 16 |
try:
|
| 17 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 12 |
import pathlib
|
| 13 |
from pathlib import Path
|
| 14 |
|
| 15 |
+
# Fix OpenMP warning
|
| 16 |
+
os.environ['OMP_NUM_THREADS'] = '1'
|
| 17 |
+
|
| 18 |
# Try to import huggingface_hub for downloading checkpoints
|
| 19 |
try:
|
| 20 |
from huggingface_hub import hf_hub_download
|
dataset.py
ADDED
|
@@ -0,0 +1,929 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#
|
| 2 |
+
# For licensing see accompanying LICENSE file.
|
| 3 |
+
# Copyright (C) 2025 Apple Inc. All Rights Reserved.
|
| 4 |
+
#
|
| 5 |
+
import io
|
| 6 |
+
import os
|
| 7 |
+
import csv
|
| 8 |
+
import json
|
| 9 |
+
import random
|
| 10 |
+
import torch
|
| 11 |
+
import numpy as np
|
| 12 |
+
import math
|
| 13 |
+
import time
|
| 14 |
+
import contextlib
|
| 15 |
+
from typing import Optional, Union
|
| 16 |
+
from PIL import Image
|
| 17 |
+
from collections import defaultdict
|
| 18 |
+
from torch.utils.data import Dataset, DataLoader
|
| 19 |
+
from torchvision import transforms
|
| 20 |
+
from torch.utils.data import default_collate, get_worker_info
|
| 21 |
+
import tarfile
|
| 22 |
+
import tqdm
|
| 23 |
+
import gc
|
| 24 |
+
import threading
|
| 25 |
+
import psutil
|
| 26 |
+
import tempfile
|
| 27 |
+
import decord
|
| 28 |
+
from decord import VideoReader
|
| 29 |
+
import concurrent.futures
|
| 30 |
+
from concurrent.futures import ThreadPoolExecutor, TimeoutError
|
| 31 |
+
from misc import print, xprint
|
| 32 |
+
from misc.condition_utils import get_camera_condition, get_point_condition, get_wind_condition
|
| 33 |
+
|
| 34 |
+
# Initialize multiprocessing manager
|
| 35 |
+
manager = torch.multiprocessing.Manager()
|
| 36 |
+
|
| 37 |
+
# ==== helpers ==== #
|
| 38 |
+
|
| 39 |
+
@contextlib.contextmanager
|
| 40 |
+
def ram_temp_file(data, suffix=".mp4"):
|
| 41 |
+
available_ram = psutil.virtual_memory().available
|
| 42 |
+
video_size = len(data)
|
| 43 |
+
|
| 44 |
+
# Use RAM if available, otherwise fall back to disk
|
| 45 |
+
if video_size < available_ram - (500 * 1024 * 1024):
|
| 46 |
+
temp_dir = "/dev/shm" # RAM disk
|
| 47 |
+
else:
|
| 48 |
+
temp_dir = None # Default system temp (disk)
|
| 49 |
+
|
| 50 |
+
with tempfile.NamedTemporaryFile(dir=temp_dir, suffix=suffix, delete=True) as temp_file:
|
| 51 |
+
temp_file.write(data)
|
| 52 |
+
temp_file.flush()
|
| 53 |
+
yield temp_file.name
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def _nearest_multiple(x: float, base: int = 8) -> int:
|
| 57 |
+
"""Round x to the nearest multiple of `base`."""
|
| 58 |
+
return int(round(x / base)) * base
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def aspect_ratio_to_image_size(target_size, R, multiple=8):
|
| 62 |
+
if R is None:
|
| 63 |
+
return target_size, target_size
|
| 64 |
+
if isinstance(R, str):
|
| 65 |
+
rw, rh = map(int, R.split(':'))
|
| 66 |
+
R = rw / rh
|
| 67 |
+
area = target_size ** 2
|
| 68 |
+
out_h = _nearest_multiple(math.sqrt(area / R), multiple)
|
| 69 |
+
out_w = _nearest_multiple(math.sqrt(area * R), multiple)
|
| 70 |
+
return out_h, out_w
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def read_tsv(filename):
|
| 74 |
+
# Open the TSV file for reading
|
| 75 |
+
with open(filename, 'r', newline='') as tsvfile:
|
| 76 |
+
reader = csv.reader(tsvfile, delimiter='\t')
|
| 77 |
+
rows = []
|
| 78 |
+
while True:
|
| 79 |
+
try:
|
| 80 |
+
r = next(reader)
|
| 81 |
+
rows.append(r)
|
| 82 |
+
except csv.Error as e:
|
| 83 |
+
print(f'{e}')
|
| 84 |
+
except StopIteration:
|
| 85 |
+
break
|
| 86 |
+
return rows
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def sample_clip(
|
| 90 |
+
video_path: str,
|
| 91 |
+
num_frames: int = 8,
|
| 92 |
+
out_fps: Optional[float] = None, # ← pass an fps here
|
| 93 |
+
):
|
| 94 |
+
vr = VideoReader(video_path)
|
| 95 |
+
src_fps = vr.get_avg_fps() # native fps
|
| 96 |
+
total = len(vr)
|
| 97 |
+
|
| 98 |
+
if out_fps is None or out_fps >= src_fps:
|
| 99 |
+
step = 1 # keep native rate or up-sample later
|
| 100 |
+
else:
|
| 101 |
+
target_duration = (num_frames - 1) / out_fps # duration in seconds
|
| 102 |
+
frame_span = target_duration * src_fps # frames needed for this duration
|
| 103 |
+
step = max(frame_span / (num_frames - 1), 1)
|
| 104 |
+
|
| 105 |
+
max_start = total - step * (num_frames - 1)
|
| 106 |
+
if max_start <= 1: # video too short for requested clip
|
| 107 |
+
indices = np.linspace(0, total - 1, num_frames, dtype=int)
|
| 108 |
+
return vr.get_batch(indices.tolist()), indices
|
| 109 |
+
|
| 110 |
+
max_start = int(np.floor(max_start - 1))
|
| 111 |
+
start = random.randint(0, max_start) if max_start > 0 else 0
|
| 112 |
+
idxs = [int(np.round(start + i * step)) for i in range(num_frames)]
|
| 113 |
+
return vr.get_batch(idxs), idxs
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
class InfiniteDataLoader(torch.utils.data.DataLoader):
|
| 117 |
+
def __init__(self, *args, **kwargs):
|
| 118 |
+
super().__init__(*args, **kwargs)
|
| 119 |
+
# Initialize an iterator over the dataset.
|
| 120 |
+
self.dataset_iterator = super().__iter__()
|
| 121 |
+
|
| 122 |
+
def __iter__(self):
|
| 123 |
+
return self
|
| 124 |
+
|
| 125 |
+
def __next__(self):
|
| 126 |
+
try:
|
| 127 |
+
batch = next(self.dataset_iterator)
|
| 128 |
+
except StopIteration:
|
| 129 |
+
# Dataset exhausted, use a new fresh iterator.
|
| 130 |
+
print('Another Loop over the dataset', flush=True)
|
| 131 |
+
self.dataset_iterator = super().__iter__()
|
| 132 |
+
batch = next(self.dataset_iterator)
|
| 133 |
+
return batch
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
class DataLoaderWrapper(InfiniteDataLoader):
|
| 137 |
+
def __iter__(self):
|
| 138 |
+
return IterWrapper(super().__iter__())
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
class IterWrapper:
|
| 142 |
+
def __init__(self, obj):
|
| 143 |
+
self.obj = obj
|
| 144 |
+
|
| 145 |
+
def __iter__(self):
|
| 146 |
+
return self
|
| 147 |
+
|
| 148 |
+
def __next__(self):
|
| 149 |
+
return self.next()
|
| 150 |
+
|
| 151 |
+
def next(self):
|
| 152 |
+
return next(self.obj)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
# ==== Dataset Implementation, Load your own data ==== #
|
| 156 |
+
|
| 157 |
+
class ImageTarDataset(Dataset):
|
| 158 |
+
def __init__(self, dataset_tsv, image_size, temporal_size=None, rank=0, world_size=1,
|
| 159 |
+
use_image_bucket=False, multiple=8, no_flip=False, edit=False):
|
| 160 |
+
all_lines = []
|
| 161 |
+
|
| 162 |
+
# get all data lines
|
| 163 |
+
self.buckets = {}
|
| 164 |
+
self.weights = {}
|
| 165 |
+
self.image_buckets = defaultdict(lambda: 0)
|
| 166 |
+
self.image_buckets['1:1'] = 0 # default bucket
|
| 167 |
+
|
| 168 |
+
skipped = 0
|
| 169 |
+
for line in tqdm.tqdm(read_tsv(dataset_tsv)[1:]):
|
| 170 |
+
tsv_file = line[0]
|
| 171 |
+
bucket = line[1] if len(line) > 1 else 'mlx'
|
| 172 |
+
caption = line[2] if len(line) > 2 else 'caption'
|
| 173 |
+
weights = float(line[3] if len(line) > 3 else "1")
|
| 174 |
+
all_data = read_tsv(tsv_file)
|
| 175 |
+
all_maps = {all_data[0][i]: i for i in range(len(all_data[0]))}
|
| 176 |
+
self.weights[all_data[1][0]] = weights
|
| 177 |
+
for line in all_data[1:]:
|
| 178 |
+
try:
|
| 179 |
+
if 'width' in all_maps: # filter too small images
|
| 180 |
+
width, height = int(line[all_maps['width']]), int(line[all_maps['height']])
|
| 181 |
+
if width * height < (image_size * image_size) / 2: # if image is smaller than half size of the target size
|
| 182 |
+
skipped += 1; continue
|
| 183 |
+
|
| 184 |
+
if caption != 'folder': # input caption has higher priority
|
| 185 |
+
captions = caption.split('|')[0].split(':')
|
| 186 |
+
operation = caption.split('|')[1] if len(caption.split('|')) > 1 else "none"
|
| 187 |
+
caption_line = ([line[all_maps[c]] for c in captions], operation)
|
| 188 |
+
else:
|
| 189 |
+
caption_line = (line[all_maps['file']].split('/')[-2], "none") # use folder name as caption
|
| 190 |
+
|
| 191 |
+
items = {'tar': line[all_maps['tar']], 'file': line[all_maps['file']], 'caption': caption_line,
|
| 192 |
+
'image_bucket': line[all_maps['image_bucket']] if 'image_bucket' in all_maps else "1:1"}
|
| 193 |
+
|
| 194 |
+
if "camera_file" in all_maps: # dl3dv data
|
| 195 |
+
items["camera_file"] = line[all_maps["camera_file"]]
|
| 196 |
+
|
| 197 |
+
if "force_caption" in all_maps: # force dataset
|
| 198 |
+
items["force_caption"] = line[all_maps["force_caption"]]
|
| 199 |
+
if "wind_speed" in all_maps: # wind force
|
| 200 |
+
items["wind_speed"] = line[all_maps["wind_speed"]]
|
| 201 |
+
items["wind_angle"] = line[all_maps["wind_angle"]]
|
| 202 |
+
elif "force" in all_maps: # point-wise
|
| 203 |
+
items["force"] = line[all_maps["force"]]
|
| 204 |
+
items["angle"] = line[all_maps["angle"]]
|
| 205 |
+
items["coordx"] = line[all_maps["coordx"]]
|
| 206 |
+
items["coordy"] = line[all_maps["coordy"]]
|
| 207 |
+
|
| 208 |
+
if edit:
|
| 209 |
+
if line[all_maps['visual_file']] != 'none': continue # TODO: for now, we only support one image, no visual clue
|
| 210 |
+
items['edit_instruction'] = line[all_maps['edit_instruction']]
|
| 211 |
+
items['edited_file'] = line[all_maps['edited_file']]
|
| 212 |
+
all_lines.append(items)
|
| 213 |
+
|
| 214 |
+
except Exception as e:
|
| 215 |
+
skipped += 1; continue
|
| 216 |
+
|
| 217 |
+
image_bucket = all_lines[-1]['image_bucket']
|
| 218 |
+
self.image_buckets[image_bucket] += 1
|
| 219 |
+
if all_lines[-1]['tar'] not in self.buckets:
|
| 220 |
+
self.buckets[all_lines[-1]['tar']] = bucket
|
| 221 |
+
|
| 222 |
+
if "force_caption" in all_lines[0]:
|
| 223 |
+
wind_forces = [l["wind_speed"] for l in all_lines] if "wind_speed" in all_lines[0] else [l["force"] for l in all_lines]
|
| 224 |
+
self.min_wind_force = min(wind_forces)
|
| 225 |
+
self.max_wind_force = max(wind_forces)
|
| 226 |
+
|
| 227 |
+
self.use_image_bucket = use_image_bucket
|
| 228 |
+
self.all_lines = all_lines[rank:][::world_size] # all lines is sorted by tar file
|
| 229 |
+
self.num_samples_per_rank = None
|
| 230 |
+
self.image_size = image_size
|
| 231 |
+
self.multiple = multiple
|
| 232 |
+
self.temporal_size = tuple(map(int, temporal_size.split(':'))) if isinstance(temporal_size, str) else None
|
| 233 |
+
self.edit_mode = edit
|
| 234 |
+
|
| 235 |
+
def center_crop_resize(img, ratio="1:1", target_size: int = 256, multiple: int = 8):
|
| 236 |
+
"""
|
| 237 |
+
1. Center crop `img` to the largest window with aspect ratio = ratio.
|
| 238 |
+
2. Resize so HxW ≈ target_size² (each side a multiple of `multiple`).
|
| 239 |
+
|
| 240 |
+
Args
|
| 241 |
+
----
|
| 242 |
+
img : PIL Image or torch tensor (CHW/HWC)
|
| 243 |
+
ratio : "3:2", (3,2), "1:1", etc.
|
| 244 |
+
target_size : reference side length (area = target_size²)
|
| 245 |
+
multiple : force each output side to be a multiple of this number
|
| 246 |
+
"""
|
| 247 |
+
# --- parse ratio ----------------------------------------------------------
|
| 248 |
+
if isinstance(ratio, str):
|
| 249 |
+
rw, rh = map(int, ratio.split(':'))
|
| 250 |
+
else: # already a tuple/list
|
| 251 |
+
rw, rh = ratio
|
| 252 |
+
R = rw / rh # width / height
|
| 253 |
+
|
| 254 |
+
# --- crop to that aspect ratio -------------------------------------------
|
| 255 |
+
w, h = img.size if hasattr(img, "size") else (img.shape[-1], img.shape[-2])
|
| 256 |
+
if w / h > R: # image too wide → trim width
|
| 257 |
+
crop_h, crop_w = h, int(round(h * R))
|
| 258 |
+
else: # image too tall → trim height
|
| 259 |
+
crop_w, crop_h = w, int(round(w / R))
|
| 260 |
+
img = transforms.functional.center_crop(img, (crop_h, crop_w))
|
| 261 |
+
|
| 262 |
+
# --- compute output dimensions -------------------------------------------
|
| 263 |
+
area = target_size ** 2
|
| 264 |
+
out_h = _nearest_multiple(math.sqrt(area / R), multiple)
|
| 265 |
+
out_w = _nearest_multiple(math.sqrt(area * R), multiple)
|
| 266 |
+
|
| 267 |
+
# --- resize & return ------------------------------------------------------
|
| 268 |
+
return transforms.functional.resize(img, (out_h, out_w), antialias=True)
|
| 269 |
+
|
| 270 |
+
self.transforms = {}
|
| 271 |
+
self.size_bucket_maps = {}
|
| 272 |
+
self.bucket_size_maps = {}
|
| 273 |
+
for bucket in self.image_buckets:
|
| 274 |
+
trans = [transforms.Lambda(lambda img, r=bucket: center_crop_resize(img, ratio=r, target_size=image_size, multiple=multiple))]
|
| 275 |
+
if not no_flip:
|
| 276 |
+
trans.append(transforms.RandomHorizontalFlip())
|
| 277 |
+
trans.extend([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
|
| 278 |
+
self.transforms[bucket] = transforms.Compose(trans)
|
| 279 |
+
|
| 280 |
+
w, h = map(int, bucket.split(':'))
|
| 281 |
+
out_h, out_w = aspect_ratio_to_image_size(image_size, w / h, multiple=multiple)
|
| 282 |
+
self.size_bucket_maps[(out_h, out_w)] = bucket
|
| 283 |
+
self.bucket_size_maps[bucket] = (out_h, out_w)
|
| 284 |
+
|
| 285 |
+
self.transform = self.transforms['1:1'] # default transform
|
| 286 |
+
print(f"Rank0 -- Loading {len(self.all_lines)} lines of data | {skipped} lines are skipped due to size or error")
|
| 287 |
+
|
| 288 |
+
def __len__(self):
|
| 289 |
+
if self.num_samples_per_rank is not None:
|
| 290 |
+
return self.num_samples_per_rank
|
| 291 |
+
return len(self.all_lines)
|
| 292 |
+
|
| 293 |
+
def __getitem__(self, idx):
|
| 294 |
+
image_item = self.all_lines[idx]
|
| 295 |
+
tar_file = image_item['tar']
|
| 296 |
+
img_file = image_item['file']
|
| 297 |
+
img_bucket = image_item['image_bucket']
|
| 298 |
+
try:
|
| 299 |
+
with tarfile.open(tar_file, mode='r') as tar:
|
| 300 |
+
img = self._read_image(tar, img_file, img_bucket)
|
| 301 |
+
H0, W0 = img.size
|
| 302 |
+
scale = self.image_size / min(H0, W0)
|
| 303 |
+
state = np.array([scale, H0, W0])
|
| 304 |
+
except Exception as e:
|
| 305 |
+
print(f'Reading data error {e}')
|
| 306 |
+
sample = image_item.copy()
|
| 307 |
+
sample.update(image=img, state=state)
|
| 308 |
+
return sample
|
| 309 |
+
|
| 310 |
+
def _read_image(self, tar, img_file, img_bucket):
|
| 311 |
+
|
| 312 |
+
def _transform(img):
|
| 313 |
+
if not self.use_image_bucket:
|
| 314 |
+
return self.transform(img)
|
| 315 |
+
else:
|
| 316 |
+
return self.transforms[img_bucket](img)
|
| 317 |
+
|
| 318 |
+
x_shape = aspect_ratio_to_image_size(self.image_size, img_bucket, multiple=self.multiple)
|
| 319 |
+
if self.temporal_size is not None: # read video
|
| 320 |
+
num_frames, out_fps = self.temporal_size[0], self.temporal_size[1:]
|
| 321 |
+
if len(out_fps) == 1:
|
| 322 |
+
out_fps = out_fps[0]
|
| 323 |
+
else:
|
| 324 |
+
out_fps = random.choice(out_fps) # randomly choose one fps from the list
|
| 325 |
+
assert img_file.endswith('.mp4'), "Only support mp4 video for now"
|
| 326 |
+
try:
|
| 327 |
+
with tar.extractfile(img_file) as video_data:
|
| 328 |
+
with ram_temp_file(video_data.read()) as tmp_path:
|
| 329 |
+
frames, frame_inds = sample_clip(tmp_path, num_frames=num_frames, out_fps=out_fps)
|
| 330 |
+
frames = frames.asnumpy()
|
| 331 |
+
except Exception as e:
|
| 332 |
+
print(f'Reading data error {e} {img_file}')
|
| 333 |
+
frames = np.zeros((num_frames, x_shape[0], x_shape[1], 3), dtype=np.uint8)
|
| 334 |
+
return torch.stack([_transform(Image.fromarray(frame)) for frame in frames]), out_fps, frame_inds
|
| 335 |
+
|
| 336 |
+
try:
|
| 337 |
+
original_img = Image.open(tar.extractfile(img_file)).convert('RGB')
|
| 338 |
+
except Exception as e:
|
| 339 |
+
print(f'Reading data error {e} {img_file}')
|
| 340 |
+
original_img = Image.new('RGB', (x_shape[0], x_shape[1]), (0, 0, 0))
|
| 341 |
+
return _transform(original_img), 0, None
|
| 342 |
+
|
| 343 |
+
def collate_fn(self, batch):
|
| 344 |
+
batch = default_collate(batch)
|
| 345 |
+
return batch
|
| 346 |
+
|
| 347 |
+
def get_batch_modes(self, x):
|
| 348 |
+
x_aspect = self.size_bucket_maps.get(x.size()[-2:], "1:1")
|
| 349 |
+
video_mode = self.temporal_size is not None
|
| 350 |
+
return x_aspect, video_mode
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
class OnlineImageTarDataset(ImageTarDataset):
|
| 354 |
+
max_retry_n = 20
|
| 355 |
+
max_read = 4096
|
| 356 |
+
tar_keys_lock = manager.Lock() if manager is not None else None
|
| 357 |
+
|
| 358 |
+
def __init__(self, dataset_tsv, image_size, batch_size=None, **kwargs):
|
| 359 |
+
super().__init__(dataset_tsv, image_size, **kwargs)
|
| 360 |
+
|
| 361 |
+
self.tar_lists = defaultdict(lambda: [])
|
| 362 |
+
self.tar_image_buckets = defaultdict(lambda: defaultdict(lambda: 0))
|
| 363 |
+
for i, line in enumerate(self.all_lines):
|
| 364 |
+
tar_file = line['tar']
|
| 365 |
+
image_bucket = line['image_bucket']
|
| 366 |
+
self.tar_lists[tar_file] += [i]
|
| 367 |
+
self.tar_image_buckets[tar_file][image_bucket] += 1
|
| 368 |
+
self.reset_tar_keys = []
|
| 369 |
+
for key in self.tar_lists.keys():
|
| 370 |
+
repeat = int(self.weights.get(key, 1))
|
| 371 |
+
self.reset_tar_keys.extend([key] * repeat)
|
| 372 |
+
self.tar_keys = manager.list(self.reset_tar_keys) if manager is not None else list(self.reset_tar_keys)
|
| 373 |
+
|
| 374 |
+
# Use more workers for better prefetching, but limit to reasonable number
|
| 375 |
+
self.worker_executors = {}
|
| 376 |
+
self.worker_caches = {} # each entry: {active:{tar,key,cnt,inner_idx}, prefetch:{future,key}}
|
| 377 |
+
self.worker_caches_lock = threading.Lock() # Protect worker_caches access
|
| 378 |
+
self.shuffle_everything()
|
| 379 |
+
if self.use_image_bucket:
|
| 380 |
+
assert batch_size, "batch_size should be set when use_image_bucket is True"
|
| 381 |
+
self.batch_size = batch_size
|
| 382 |
+
if self.temporal_size is not None:
|
| 383 |
+
assert self.temporal_size[0] > 1, "temporal_size should be greater than 1 for video data"
|
| 384 |
+
self.max_read = 512
|
| 385 |
+
|
| 386 |
+
def cleanup_worker_cache(self, wid):
|
| 387 |
+
"""Clean up worker cache entry and associated resources"""
|
| 388 |
+
with self.worker_caches_lock:
|
| 389 |
+
if wid in self.worker_caches:
|
| 390 |
+
cache_entry = self.worker_caches[wid]
|
| 391 |
+
# Cancel prefetch future if still running
|
| 392 |
+
if 'prefetch' in cache_entry and hasattr(cache_entry['prefetch'], 'cancel'):
|
| 393 |
+
cache_entry['prefetch'].cancel()
|
| 394 |
+
|
| 395 |
+
if cache_entry.get('tar') is not None:
|
| 396 |
+
tar = cache_entry['tar']
|
| 397 |
+
self._close_tar(tar)
|
| 398 |
+
cache_entry['tar'] = None
|
| 399 |
+
# Remove the entire cache entry
|
| 400 |
+
del self.worker_caches[wid]
|
| 401 |
+
gc.collect()
|
| 402 |
+
|
| 403 |
+
def _s3(self):
|
| 404 |
+
raise NotImplementedError("Please implement your own _s3() method to return a boto3 session/client")
|
| 405 |
+
|
| 406 |
+
def shuffle_everything(self):
|
| 407 |
+
for key in tqdm.tqdm(self.tar_keys):
|
| 408 |
+
random.shuffle(self.tar_lists[key])
|
| 409 |
+
random.shuffle(self.tar_keys)
|
| 410 |
+
print("shuffle everything done!")
|
| 411 |
+
|
| 412 |
+
def download_tar(self, prefetch=True, wid=None):
|
| 413 |
+
i = 0
|
| 414 |
+
file_stream = None
|
| 415 |
+
tar_file = None
|
| 416 |
+
download = f'prefetch {wid}' if prefetch else 'just download'
|
| 417 |
+
while True:
|
| 418 |
+
if i % self.max_retry_n == 0: # retry a different tar file
|
| 419 |
+
tar_file = self._get_next_key() # get the next tar file key
|
| 420 |
+
file_stream = None
|
| 421 |
+
try:
|
| 422 |
+
file_stream = io.BytesIO()
|
| 423 |
+
self._s3().download_fileobj(self.buckets[tar_file], tar_file, file_stream) # hard-coded
|
| 424 |
+
file_stream.seek(0)
|
| 425 |
+
tar = tarfile.open(fileobj=file_stream, mode='r')
|
| 426 |
+
# Store the file_stream reference so it can be closed later
|
| 427 |
+
tar._file_stream = file_stream
|
| 428 |
+
xprint(f'[INFO] {download} tar file: {tar_file}')
|
| 429 |
+
return tar, tar_file
|
| 430 |
+
except Exception as e:
|
| 431 |
+
xprint(f'[ERROR] {download} tar file {tar_file} failed: {e}')
|
| 432 |
+
i += 1
|
| 433 |
+
if file_stream:
|
| 434 |
+
file_stream.close()
|
| 435 |
+
file_stream = None
|
| 436 |
+
time.sleep(min(i * 0.1, 5)) # Exponential backoff with cap
|
| 437 |
+
|
| 438 |
+
def _get_next_key(self):
|
| 439 |
+
with self.tar_keys_lock:
|
| 440 |
+
if not self.tar_keys or len(self.tar_keys) == 0:
|
| 441 |
+
xprint(f'[WARN] all dataset exhausted... this should not happen usually')
|
| 442 |
+
self.tar_keys.extend(list(self.reset_tar_keys)) # reset
|
| 443 |
+
random.shuffle(self.tar_keys)
|
| 444 |
+
return self.tar_keys.pop(0) # remove and return the first key
|
| 445 |
+
|
| 446 |
+
def _start_prefetch(self, wid):
|
| 447 |
+
"""Start prefetching the next tar file for the worker"""
|
| 448 |
+
# Create executor per worker process if it doesn't exist
|
| 449 |
+
if wid not in self.worker_executors:
|
| 450 |
+
self.worker_executors[wid] = ThreadPoolExecutor(max_workers=1)
|
| 451 |
+
future = self.worker_executors[wid].submit(self.download_tar, prefetch=True, wid=wid) # download tar file in a separate thread
|
| 452 |
+
self.worker_caches[wid]['prefetch'] = future
|
| 453 |
+
|
| 454 |
+
def _close_tar(self, tar):
|
| 455 |
+
# Properly close both tar and underlying file stream
|
| 456 |
+
if hasattr(tar, '_file_stream') and tar._file_stream:
|
| 457 |
+
tar._file_stream.close()
|
| 458 |
+
tar._file_stream = None
|
| 459 |
+
tar.close()
|
| 460 |
+
del tar
|
| 461 |
+
gc.collect()
|
| 462 |
+
|
| 463 |
+
def __getitem__(self, idx):
|
| 464 |
+
try:
|
| 465 |
+
wid = get_worker_info().id
|
| 466 |
+
except Exception as e:
|
| 467 |
+
wid = -1
|
| 468 |
+
|
| 469 |
+
# ─── first time this worker is used ─── #
|
| 470 |
+
if wid not in self.worker_caches:
|
| 471 |
+
tar, key = self.download_tar(prefetch=False) # download tar file
|
| 472 |
+
with self.worker_caches_lock:
|
| 473 |
+
self.worker_caches[wid] = dict(
|
| 474 |
+
active=dict(tar=tar, key=key, cnt=0, inner_idx=0), # active cache
|
| 475 |
+
)
|
| 476 |
+
self._start_prefetch(wid) # start prefetching the next tar file
|
| 477 |
+
|
| 478 |
+
cache = self.worker_caches[wid]
|
| 479 |
+
active = cache['active']
|
| 480 |
+
tar = active['tar']
|
| 481 |
+
key = active['key']
|
| 482 |
+
cnt = active['cnt']
|
| 483 |
+
inner_idx = active['inner_idx']
|
| 484 |
+
|
| 485 |
+
# handle image bucketting
|
| 486 |
+
if self.use_image_bucket:
|
| 487 |
+
if inner_idx % self.batch_size == 0:
|
| 488 |
+
# sample based on local tar file statistics in case some dataset only has one image bucket
|
| 489 |
+
tar_buckets = self.tar_image_buckets[key]
|
| 490 |
+
target_image_bucket = random.choices(
|
| 491 |
+
list(tar_buckets.keys()), weights=list(tar_buckets.values()), k=1)[0]
|
| 492 |
+
self.worker_caches[wid]['target_image_bucket'] = target_image_bucket
|
| 493 |
+
|
| 494 |
+
# scan the list to find the nearest target image bucket
|
| 495 |
+
target_image_bucket, t_cnt = self.worker_caches[wid]['target_image_bucket'], cnt
|
| 496 |
+
while self.all_lines[self.tar_lists[key][t_cnt]]['image_bucket'] != target_image_bucket:
|
| 497 |
+
t_cnt += 1
|
| 498 |
+
if t_cnt >= len(self.tar_lists[key]): t_cnt = 0
|
| 499 |
+
# sawp the image location
|
| 500 |
+
if cnt != t_cnt:
|
| 501 |
+
self.tar_lists[key][cnt], self.tar_lists[key][t_cnt] = self.tar_lists[key][t_cnt], self.tar_lists[key][cnt]
|
| 502 |
+
|
| 503 |
+
img_id = self.tar_lists[key][cnt]
|
| 504 |
+
image_item = self.all_lines[img_id]
|
| 505 |
+
sample = {key: image_item[key] for key in image_item}
|
| 506 |
+
image, fps, frame_inds = self._read_image(tar, image_item['file'], image_item['image_bucket'])
|
| 507 |
+
sample.update(image=image, fps=fps, local_idx=img_id, inner_idx=inner_idx)
|
| 508 |
+
if self.edit_mode:
|
| 509 |
+
image, fps, _ = self._read_image(tar, image_item['edited_file'], image_item['image_bucket'])
|
| 510 |
+
sample.update(edited_image=image, fps=fps, edit_instruction=image_item['edit_instruction'])
|
| 511 |
+
|
| 512 |
+
if "camera_file" in image_item: # dl3dv data
|
| 513 |
+
sample["condition"] = get_camera_condition(tar, image_item["camera_file"], width=image.shape[3], height=image.shape[2], factor=self.multiple, frame_inds=frame_inds)
|
| 514 |
+
|
| 515 |
+
if "force_caption" in image_item: # force dataset
|
| 516 |
+
if "wind_speed" in image_item: # wind force
|
| 517 |
+
sample["condition"] = get_wind_condition(image_item["wind_speed"], image_item["wind_angle"], min_force=self.min_wind_force, max_force=self.max_wind_force, num_frames=image.shape[1], width=image.shape[3], height=image.shape[2])
|
| 518 |
+
elif "force" in image_item: # point-wise
|
| 519 |
+
sample["condition"] = get_point_condition(image_item["force"], image_item["angle"], image_item["coordx"], image_item["coordy"], min_force=self.min_wind_force, max_force=self.max_wind_force, num_frames=image.shape[1], width=image.shape[3], height=image.shape[2])
|
| 520 |
+
|
| 521 |
+
# update cnt
|
| 522 |
+
cnt, inner_idx = cnt + 1, inner_idx + 1
|
| 523 |
+
if (cnt == len(self.tar_lists[key])) or (cnt == self.max_read):
|
| 524 |
+
# -- active tar finished, switch to prefetched tar -- #
|
| 525 |
+
self._close_tar(tar) # close the current tar file
|
| 526 |
+
|
| 527 |
+
try:
|
| 528 |
+
# Wait for prefetch with timeout
|
| 529 |
+
new_tar, new_key = cache['prefetch'].result() # 5 minute timeout
|
| 530 |
+
except Exception as e:
|
| 531 |
+
xprint(f'[WARN] Prefetch failed, downloading new tar synchronously: {e}')
|
| 532 |
+
new_tar, new_key = self.download_tar(prefetch=False)
|
| 533 |
+
|
| 534 |
+
cache['active'] = dict(tar=new_tar, key=new_key, cnt=0, inner_idx=inner_idx) # update active cache
|
| 535 |
+
|
| 536 |
+
# shuffle the image list
|
| 537 |
+
random.shuffle(self.tar_lists[key]) # shuffle the list
|
| 538 |
+
with self.tar_keys_lock:
|
| 539 |
+
self.tar_keys.append(key) # return the key to the list so other workers can use it
|
| 540 |
+
|
| 541 |
+
self._start_prefetch(wid) # start prefetching the next tar file
|
| 542 |
+
else:
|
| 543 |
+
cache['active']['cnt'] = cnt
|
| 544 |
+
|
| 545 |
+
# always update inner_idx (IMPORTANT)
|
| 546 |
+
cache['active']['inner_idx'] = inner_idx
|
| 547 |
+
return sample
|
| 548 |
+
|
| 549 |
+
|
| 550 |
+
class OnlineImageCaptionDataset(OnlineImageTarDataset):
|
| 551 |
+
def __getitem__(self, idx):
|
| 552 |
+
sample = super().__getitem__(idx)
|
| 553 |
+
captions, caption_op = sample['caption']
|
| 554 |
+
if caption_op == 'none':
|
| 555 |
+
sample['caption'] = captions[0] if isinstance(captions, list) else captions
|
| 556 |
+
elif ':' in caption_op:
|
| 557 |
+
sample['caption'] = random.choices(captions, weights=[float(a) for a in caption_op.split(':')])[0]
|
| 558 |
+
else:
|
| 559 |
+
raise NotImplementedError(f"Unknown caption operation: {caption_op}")
|
| 560 |
+
return sample
|
| 561 |
+
|
| 562 |
+
def collate_fn(self, batch):
|
| 563 |
+
batch = super().collate_fn(batch)
|
| 564 |
+
image = batch['image']
|
| 565 |
+
caption = batch['caption']
|
| 566 |
+
if self.edit_mode:
|
| 567 |
+
image = torch.cat([image, batch['edited_image']], dim=0)
|
| 568 |
+
caption.extend(batch['edit_instruction'])
|
| 569 |
+
|
| 570 |
+
meta = {key: batch[key] for key in batch if key not in
|
| 571 |
+
['image', 'caption', 'edited_image', 'edit_instruction']}
|
| 572 |
+
return image, caption, meta
|
| 573 |
+
|
| 574 |
+
|
| 575 |
+
# ==== Dummy Dataset Implementation for Open Source Release ====
|
| 576 |
+
|
| 577 |
+
class DummyImageCaptionDataset(Dataset):
|
| 578 |
+
"""
|
| 579 |
+
Dummy dataset that generates synthetic image-caption pairs for training/testing.
|
| 580 |
+
Supports mixed aspect ratios and batch-wise aspect ratio consistency.
|
| 581 |
+
"""
|
| 582 |
+
|
| 583 |
+
def __init__(
|
| 584 |
+
self,
|
| 585 |
+
num_samples: int = 10000,
|
| 586 |
+
image_size: int = 256,
|
| 587 |
+
temporal_size: Optional[str] = None,
|
| 588 |
+
use_image_bucket: bool = False,
|
| 589 |
+
batch_size: Optional[int] = None,
|
| 590 |
+
multiple: int = 8,
|
| 591 |
+
no_flip: bool = False,
|
| 592 |
+
edit: bool = False
|
| 593 |
+
):
|
| 594 |
+
"""
|
| 595 |
+
Args:
|
| 596 |
+
num_samples: Number of samples in the dataset
|
| 597 |
+
image_size: Base image size for generation
|
| 598 |
+
temporal_size: Video size specification (e.g., "16:8" for frames:fps)
|
| 599 |
+
use_image_bucket: Whether to use aspect ratio bucketing
|
| 600 |
+
batch_size: Batch size for bucketing (required if use_image_bucket=True)
|
| 601 |
+
multiple: Multiple for dimension rounding
|
| 602 |
+
no_flip: Whether to disable horizontal flipping
|
| 603 |
+
edit: Whether this is an editing dataset
|
| 604 |
+
"""
|
| 605 |
+
self.num_samples = num_samples
|
| 606 |
+
self.image_size = image_size
|
| 607 |
+
self.temporal_size = temporal_size
|
| 608 |
+
self.use_image_bucket = use_image_bucket
|
| 609 |
+
self.batch_size = batch_size
|
| 610 |
+
self.multiple = multiple
|
| 611 |
+
self.no_flip = no_flip
|
| 612 |
+
self.edit_mode = edit
|
| 613 |
+
|
| 614 |
+
# Parse video parameters
|
| 615 |
+
self.is_video = temporal_size is not None
|
| 616 |
+
if self.is_video:
|
| 617 |
+
frames, fps = map(int, temporal_size.split(':'))
|
| 618 |
+
self.num_frames = frames
|
| 619 |
+
self.fps = fps
|
| 620 |
+
else:
|
| 621 |
+
self.num_frames = 1
|
| 622 |
+
self.fps = None
|
| 623 |
+
|
| 624 |
+
# Aspect ratios for mixed aspect ratio training
|
| 625 |
+
self.aspect_ratios = [
|
| 626 |
+
"1:1", "2:3", "3:2", "16:9", "9:16",
|
| 627 |
+
"4:5", "5:4", "21:9", "9:21"
|
| 628 |
+
] if use_image_bucket else ["1:1"]
|
| 629 |
+
|
| 630 |
+
# Generate image buckets for aspect ratios
|
| 631 |
+
self.image_buckets = {}
|
| 632 |
+
for i, ar in enumerate(self.aspect_ratios):
|
| 633 |
+
h, w = aspect_ratio_to_image_size(image_size, ar, multiple)
|
| 634 |
+
self.image_buckets[ar] = (h, w, ar)
|
| 635 |
+
|
| 636 |
+
# Sample captions for dummy data
|
| 637 |
+
self.sample_captions = [
|
| 638 |
+
"A beautiful landscape with mountains and trees",
|
| 639 |
+
"A cute cat sitting on a wooden table",
|
| 640 |
+
"A modern city skyline at sunset",
|
| 641 |
+
"A vintage car parked on a street",
|
| 642 |
+
"A delicious meal on a white plate",
|
| 643 |
+
"A person walking in a park",
|
| 644 |
+
"A colorful flower garden in bloom",
|
| 645 |
+
"A cozy living room with furniture",
|
| 646 |
+
"A stormy ocean with large waves",
|
| 647 |
+
"A peaceful forest path in autumn",
|
| 648 |
+
"A group of friends laughing together",
|
| 649 |
+
"A majestic eagle flying in the sky",
|
| 650 |
+
"A busy marketplace with vendors",
|
| 651 |
+
"A snow-covered mountain peak",
|
| 652 |
+
"A child playing with toys",
|
| 653 |
+
"A romantic candlelit dinner",
|
| 654 |
+
"A train traveling through countryside",
|
| 655 |
+
"A lighthouse on a rocky coast",
|
| 656 |
+
"A field of sunflowers under blue sky",
|
| 657 |
+
"A family having a picnic outdoors"
|
| 658 |
+
]
|
| 659 |
+
|
| 660 |
+
# Create transform pipeline
|
| 661 |
+
def center_crop_resize(img, ratio="1:1", target_size: int = 256, multiple: int = 8):
|
| 662 |
+
"""
|
| 663 |
+
1. Center crop `img` to the largest window with aspect ratio = ratio.
|
| 664 |
+
2. Resize so HxW ≈ target_size² (each side a multiple of `multiple`).
|
| 665 |
+
|
| 666 |
+
Args
|
| 667 |
+
----
|
| 668 |
+
img : PIL Image or torch tensor (CHW/HWC)
|
| 669 |
+
ratio : "3:2", (3,2), "1:1", etc.
|
| 670 |
+
target_size : reference side length (area = target_size²)
|
| 671 |
+
multiple : force each output side to be a multiple of this number
|
| 672 |
+
"""
|
| 673 |
+
# --- parse ratio ----------------------------------------------------------
|
| 674 |
+
if isinstance(ratio, str):
|
| 675 |
+
rw, rh = map(int, ratio.split(':'))
|
| 676 |
+
else: # already a tuple/list
|
| 677 |
+
rw, rh = ratio
|
| 678 |
+
R = rw / rh # width / height
|
| 679 |
+
|
| 680 |
+
# --- crop to that aspect ratio -------------------------------------------
|
| 681 |
+
w, h = img.size if hasattr(img, "size") else (img.shape[-1], img.shape[-2])
|
| 682 |
+
if w / h > R: # image too wide → trim width
|
| 683 |
+
crop_h, crop_w = h, int(round(h * R))
|
| 684 |
+
else: # image too tall → trim height
|
| 685 |
+
crop_w, crop_h = w, int(round(w / R))
|
| 686 |
+
img = transforms.functional.center_crop(img, (crop_h, crop_w))
|
| 687 |
+
|
| 688 |
+
# --- compute output dimensions -------------------------------------------
|
| 689 |
+
area = target_size ** 2
|
| 690 |
+
out_h = _nearest_multiple(math.sqrt(area / R), multiple)
|
| 691 |
+
out_w = _nearest_multiple(math.sqrt(area * R), multiple)
|
| 692 |
+
|
| 693 |
+
# --- resize & return ------------------------------------------------------
|
| 694 |
+
return transforms.functional.resize(img, (out_h, out_w), antialias=True)
|
| 695 |
+
|
| 696 |
+
self.transforms = {}
|
| 697 |
+
self.size_bucket_maps = {}
|
| 698 |
+
self.bucket_size_maps = {}
|
| 699 |
+
for bucket in self.image_buckets:
|
| 700 |
+
trans = [transforms.Lambda(lambda img, r=bucket: center_crop_resize(img, ratio=r, target_size=image_size, multiple=multiple))]
|
| 701 |
+
if not no_flip:
|
| 702 |
+
trans.append(transforms.RandomHorizontalFlip())
|
| 703 |
+
trans.extend([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
|
| 704 |
+
self.transforms[bucket] = transforms.Compose(trans)
|
| 705 |
+
|
| 706 |
+
w, h = map(int, bucket.split(':'))
|
| 707 |
+
out_h, out_w = aspect_ratio_to_image_size(image_size, w / h, multiple=multiple)
|
| 708 |
+
self.size_bucket_maps[(out_h, out_w)] = bucket
|
| 709 |
+
self.bucket_size_maps[bucket] = (out_h, out_w)
|
| 710 |
+
|
| 711 |
+
self.transform = self.transforms['1:1'] # default transform
|
| 712 |
+
|
| 713 |
+
def __len__(self) -> int:
|
| 714 |
+
return self.num_samples
|
| 715 |
+
|
| 716 |
+
def __getitem__(self, idx: int) -> dict:
|
| 717 |
+
"""Get a single sample from the dataset."""
|
| 718 |
+
# Choose aspect ratio
|
| 719 |
+
if self.use_image_bucket:
|
| 720 |
+
bucket_name = random.choice(list(self.image_buckets.keys()))
|
| 721 |
+
h, w, aspect_ratio = self.image_buckets[bucket_name]
|
| 722 |
+
else:
|
| 723 |
+
h, w, aspect_ratio = self.image_size, self.image_size, "1:1"
|
| 724 |
+
bucket_name = aspect_ratio
|
| 725 |
+
|
| 726 |
+
# Generate dummy image
|
| 727 |
+
if self.is_video:
|
| 728 |
+
# Generate video tensor (T, C, H, W)
|
| 729 |
+
image = torch.randn(self.num_frames, 3, h, w)
|
| 730 |
+
# Normalize to [-1, 1] range
|
| 731 |
+
image = torch.tanh(image)
|
| 732 |
+
else:
|
| 733 |
+
# Generate RGB image
|
| 734 |
+
image = Image.new('RGB', (w, h), color=(
|
| 735 |
+
random.randint(50, 200),
|
| 736 |
+
random.randint(50, 200),
|
| 737 |
+
random.randint(50, 200)
|
| 738 |
+
))
|
| 739 |
+
|
| 740 |
+
# Add some random patterns for variety
|
| 741 |
+
if random.random() > 0.5:
|
| 742 |
+
# Add gradient
|
| 743 |
+
pixels = []
|
| 744 |
+
for y in range(h):
|
| 745 |
+
for x in range(w):
|
| 746 |
+
r = int(255 * x / w)
|
| 747 |
+
g = int(255 * y / h)
|
| 748 |
+
b = int(255 * (x + y) / (w + h))
|
| 749 |
+
pixels.append((r, g, b))
|
| 750 |
+
image.putdata(pixels)
|
| 751 |
+
|
| 752 |
+
image = self.transform(image)
|
| 753 |
+
|
| 754 |
+
# Generate caption
|
| 755 |
+
caption = random.choice(self.sample_captions)
|
| 756 |
+
|
| 757 |
+
# Add some variation to captions
|
| 758 |
+
if random.random() > 0.7:
|
| 759 |
+
adjectives = ["beautiful", "stunning", "amazing", "incredible", "magnificent"]
|
| 760 |
+
caption = f"{random.choice(adjectives)} {caption.lower()}"
|
| 761 |
+
|
| 762 |
+
sample = {
|
| 763 |
+
'image': image,
|
| 764 |
+
'caption': caption,
|
| 765 |
+
'image_bucket': bucket_name,
|
| 766 |
+
'aspect_ratio': aspect_ratio,
|
| 767 |
+
'idx': idx
|
| 768 |
+
}
|
| 769 |
+
|
| 770 |
+
# Add video-specific metadata
|
| 771 |
+
if self.is_video:
|
| 772 |
+
sample.update({
|
| 773 |
+
'num_frames': self.num_frames,
|
| 774 |
+
'fps': self.fps,
|
| 775 |
+
'temporal_size': self.temporal_size
|
| 776 |
+
})
|
| 777 |
+
|
| 778 |
+
# Add editing data if needed
|
| 779 |
+
if self.edit_mode:
|
| 780 |
+
# Generate slightly modified image for editing tasks
|
| 781 |
+
edited_image = image + torch.randn_like(image) * 0.1
|
| 782 |
+
edited_image = torch.clamp(edited_image, -1, 1)
|
| 783 |
+
sample.update({
|
| 784 |
+
'edited_image': edited_image,
|
| 785 |
+
'edit_instruction': f"Edit this image to make it more {random.choice(['colorful', 'bright', 'artistic', 'realistic'])}"
|
| 786 |
+
})
|
| 787 |
+
|
| 788 |
+
return sample
|
| 789 |
+
|
| 790 |
+
def collate_fn(self, batch: list) -> tuple:
|
| 791 |
+
"""Collate function for batching samples."""
|
| 792 |
+
# Group by aspect ratio if using image buckets
|
| 793 |
+
if self.use_image_bucket:
|
| 794 |
+
# Sort batch by image bucket for consistency
|
| 795 |
+
batch = sorted(batch, key=lambda x: x['image_bucket'])
|
| 796 |
+
|
| 797 |
+
# Standard collation
|
| 798 |
+
collated = {}
|
| 799 |
+
images = torch.stack([item['image'] for item in batch], dim=0)
|
| 800 |
+
captions = [item['caption'] for item in batch]
|
| 801 |
+
|
| 802 |
+
# Collect metadata
|
| 803 |
+
for key in ['image_bucket', 'aspect_ratio', 'idx']:
|
| 804 |
+
if key in batch[0]:
|
| 805 |
+
collated[key] = [item[key] for item in batch]
|
| 806 |
+
|
| 807 |
+
# Handle video metadata
|
| 808 |
+
if self.is_video:
|
| 809 |
+
for key in ['num_frames', 'fps', 'temporal_size']:
|
| 810 |
+
if key in batch[0]:
|
| 811 |
+
collated[key] = [item[key] for item in batch]
|
| 812 |
+
|
| 813 |
+
# Handle editing data
|
| 814 |
+
if self.edit_mode and 'edited_image' in batch[0]:
|
| 815 |
+
edited_images = torch.stack([item['edited_image'] for item in batch], dim=0)
|
| 816 |
+
collated['edited_image'] = edited_images
|
| 817 |
+
collated['edit_instruction'] = [item['edit_instruction'] for item in batch]
|
| 818 |
+
|
| 819 |
+
return images, captions, collated
|
| 820 |
+
|
| 821 |
+
def get_batch_modes(self, x):
|
| 822 |
+
x_aspect = self.size_bucket_maps.get(x.size()[-2:], "1:1")
|
| 823 |
+
video_mode = self.temporal_size is not None
|
| 824 |
+
return x_aspect, video_mode
|
| 825 |
+
|
| 826 |
+
|
| 827 |
+
class DummyDataLoaderWrapper:
|
| 828 |
+
"""
|
| 829 |
+
Wrapper that mimics the DataLoaderWrapper functionality.
|
| 830 |
+
Provides infinite iteration over the dataset.
|
| 831 |
+
"""
|
| 832 |
+
|
| 833 |
+
def __init__(self, dataset, batch_size=1, num_workers=0, **kwargs):
|
| 834 |
+
self.dataset = dataset
|
| 835 |
+
self.batch_size = batch_size
|
| 836 |
+
self.dataloader = DataLoader(
|
| 837 |
+
dataset,
|
| 838 |
+
batch_size=batch_size,
|
| 839 |
+
num_workers=num_workers,
|
| 840 |
+
collate_fn=dataset.collate_fn,
|
| 841 |
+
shuffle=True,
|
| 842 |
+
drop_last=True,
|
| 843 |
+
**kwargs
|
| 844 |
+
)
|
| 845 |
+
self.iterator = None
|
| 846 |
+
self.secondary_loader = None
|
| 847 |
+
|
| 848 |
+
def __iter__(self):
|
| 849 |
+
"""Infinite iteration over the dataset."""
|
| 850 |
+
while True:
|
| 851 |
+
if self.iterator is None:
|
| 852 |
+
self.iterator = iter(self.dataloader)
|
| 853 |
+
try:
|
| 854 |
+
yield next(self.iterator)
|
| 855 |
+
except StopIteration:
|
| 856 |
+
self.iterator = iter(self.dataloader)
|
| 857 |
+
yield next(self.iterator)
|
| 858 |
+
|
| 859 |
+
def __len__(self):
|
| 860 |
+
return len(self.dataloader)
|
| 861 |
+
|
| 862 |
+
|
| 863 |
+
def create_dummy_dataloader(
|
| 864 |
+
dataset_name: str,
|
| 865 |
+
img_size: int,
|
| 866 |
+
vid_size: Optional[str] = None,
|
| 867 |
+
batch_size: int = 16,
|
| 868 |
+
use_mixed_aspect: bool = False,
|
| 869 |
+
multiple: int = 8,
|
| 870 |
+
num_samples: int = 10000,
|
| 871 |
+
infinite: bool = False
|
| 872 |
+
) -> Union[DataLoader, DummyDataLoaderWrapper]:
|
| 873 |
+
"""
|
| 874 |
+
Create a dummy dataloader that mimics the original functionality.
|
| 875 |
+
|
| 876 |
+
Args:
|
| 877 |
+
dataset_name: Name of the dataset (used for deterministic seeding)
|
| 878 |
+
img_size: Base image size
|
| 879 |
+
vid_size: Video specification (e.g., "16:8")
|
| 880 |
+
batch_size: Batch size
|
| 881 |
+
use_mixed_aspect: Whether to use mixed aspect ratio training
|
| 882 |
+
multiple: Multiple for dimension rounding
|
| 883 |
+
num_samples: Number of samples in the dataset
|
| 884 |
+
infinite: Whether to create infinite dataloader
|
| 885 |
+
|
| 886 |
+
Returns:
|
| 887 |
+
DataLoader or DummyDataLoaderWrapper
|
| 888 |
+
"""
|
| 889 |
+
# Set seed based on dataset name for reproducibility
|
| 890 |
+
seed = hash(dataset_name) % (2**32 - 1)
|
| 891 |
+
random.seed(seed)
|
| 892 |
+
np.random.seed(seed)
|
| 893 |
+
|
| 894 |
+
# Create dataset
|
| 895 |
+
dataset = DummyImageCaptionDataset(
|
| 896 |
+
num_samples=num_samples,
|
| 897 |
+
image_size=img_size,
|
| 898 |
+
temporal_size=vid_size,
|
| 899 |
+
use_image_bucket=use_mixed_aspect,
|
| 900 |
+
batch_size=batch_size,
|
| 901 |
+
multiple=multiple,
|
| 902 |
+
edit='edit' in dataset_name.lower()
|
| 903 |
+
)
|
| 904 |
+
|
| 905 |
+
# Set dataset attributes expected by training code
|
| 906 |
+
dataset.total_num_samples = num_samples
|
| 907 |
+
dataset.num_samples_per_rank = num_samples
|
| 908 |
+
|
| 909 |
+
# Create dataloader
|
| 910 |
+
if infinite:
|
| 911 |
+
return DummyDataLoaderWrapper(
|
| 912 |
+
dataset,
|
| 913 |
+
batch_size=batch_size,
|
| 914 |
+
num_workers=2,
|
| 915 |
+
pin_memory=True,
|
| 916 |
+
drop_last=True,
|
| 917 |
+
persistent_workers=True
|
| 918 |
+
)
|
| 919 |
+
else:
|
| 920 |
+
return DataLoader(
|
| 921 |
+
dataset,
|
| 922 |
+
batch_size=batch_size,
|
| 923 |
+
num_workers=2,
|
| 924 |
+
pin_memory=True,
|
| 925 |
+
drop_last=True,
|
| 926 |
+
shuffle=True,
|
| 927 |
+
collate_fn=dataset.collate_fn,
|
| 928 |
+
persistent_workers=True
|
| 929 |
+
)
|