Spaces:
Running
Running
Upload main.py
Browse files
main.py
ADDED
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, Request, Header, HTTPException, Query
|
| 2 |
+
from fastapi.responses import HTMLResponse, JSONResponse
|
| 3 |
+
from fastapi.openapi.docs import get_swagger_ui_html
|
| 4 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 5 |
+
from pydantic import BaseModel
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
import logging, traceback
|
| 8 |
+
from typing import Optional, List, Union
|
| 9 |
+
|
| 10 |
+
from model import (
|
| 11 |
+
summarize_review, smart_summarize, detect_industry,
|
| 12 |
+
detect_product_category, detect_emotion, answer_followup, answer_only
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
app = FastAPI(
|
| 16 |
+
title="π§ NeuroPulse AI",
|
| 17 |
+
description="Multilingual GenAI for smarter feedback β summarization, sentiment, emotion, aspects, Q&A and tags.",
|
| 18 |
+
version="2025.1.0",
|
| 19 |
+
openapi_url="/openapi.json",
|
| 20 |
+
docs_url=None,
|
| 21 |
+
redoc_url="/redoc"
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
app.add_middleware(
|
| 25 |
+
CORSMiddleware,
|
| 26 |
+
allow_origins=["*"],
|
| 27 |
+
allow_credentials=True,
|
| 28 |
+
allow_methods=["*"],
|
| 29 |
+
allow_headers=["*"],
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
logging.basicConfig(level=logging.INFO)
|
| 33 |
+
VALID_API_KEY = "my-secret-key"
|
| 34 |
+
|
| 35 |
+
@app.get("/", response_class=HTMLResponse)
|
| 36 |
+
def root():
|
| 37 |
+
return "<h1>NeuroPulse AI Backend is Running</h1>"
|
| 38 |
+
|
| 39 |
+
@app.get("/docs", include_in_schema=False)
|
| 40 |
+
def custom_swagger_ui():
|
| 41 |
+
return get_swagger_ui_html(
|
| 42 |
+
openapi_url=app.openapi_url,
|
| 43 |
+
title="π§ Swagger UI - NeuroPulse AI",
|
| 44 |
+
swagger_favicon_url="https://cdn-icons-png.flaticon.com/512/3794/3794616.png",
|
| 45 |
+
swagger_js_url="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui-bundle.js",
|
| 46 |
+
swagger_css_url="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui.css",
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
@app.exception_handler(Exception)
|
| 50 |
+
async def exception_handler(request: Request, exc: Exception):
|
| 51 |
+
logging.error(f"Unhandled Exception: {traceback.format_exc()}")
|
| 52 |
+
return JSONResponse(status_code=500, content={"detail": "Internal Server Error. Please contact support."})
|
| 53 |
+
|
| 54 |
+
# ==== SCHEMAS ====
|
| 55 |
+
|
| 56 |
+
class ReviewInput(BaseModel):
|
| 57 |
+
text: str
|
| 58 |
+
model: str = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 59 |
+
industry: Optional[str] = None
|
| 60 |
+
aspects: bool = False
|
| 61 |
+
follow_up: Optional[Union[str, List[str]]] = None
|
| 62 |
+
product_category: Optional[str] = None
|
| 63 |
+
device: Optional[str] = None
|
| 64 |
+
intelligence: Optional[bool] = False
|
| 65 |
+
verbosity: Optional[str] = "detailed"
|
| 66 |
+
|
| 67 |
+
class BulkReviewInput(BaseModel):
|
| 68 |
+
reviews: List[str]
|
| 69 |
+
model: str = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 70 |
+
industry: Optional[List[str]] = None
|
| 71 |
+
aspects: bool = False
|
| 72 |
+
product_category: Optional[List[str]] = None
|
| 73 |
+
device: Optional[List[str]] = None
|
| 74 |
+
follow_up: Optional[List[Union[str, List[str]]]] = None
|
| 75 |
+
intelligence: Optional[bool] = False
|
| 76 |
+
|
| 77 |
+
class FollowUpRequest(BaseModel):
|
| 78 |
+
text: str
|
| 79 |
+
question: str
|
| 80 |
+
verbosity: Optional[str] = "brief"
|
| 81 |
+
|
| 82 |
+
# ==== HELPERS ====
|
| 83 |
+
|
| 84 |
+
def auto_fill(value: Optional[str], fallback: str) -> str:
|
| 85 |
+
if not value or value.lower() == "auto-detect":
|
| 86 |
+
return fallback
|
| 87 |
+
return value
|
| 88 |
+
|
| 89 |
+
# ==== ENDPOINTS ====
|
| 90 |
+
|
| 91 |
+
@app.post("/analyze/")
|
| 92 |
+
async def analyze(data: ReviewInput, x_api_key: str = Header(None)):
|
| 93 |
+
if x_api_key and x_api_key != VALID_API_KEY:
|
| 94 |
+
raise HTTPException(status_code=401, detail="β Invalid API key")
|
| 95 |
+
|
| 96 |
+
if len(data.text.split()) < 20:
|
| 97 |
+
raise HTTPException(status_code=400, detail="β οΈ Review too short for analysis (min. 20 words).")
|
| 98 |
+
|
| 99 |
+
try:
|
| 100 |
+
response = {}
|
| 101 |
+
|
| 102 |
+
if not data.follow_up:
|
| 103 |
+
summary = (
|
| 104 |
+
summarize_review(data.text, max_len=40, min_len=8)
|
| 105 |
+
if data.verbosity.lower() == "brief"
|
| 106 |
+
else smart_summarize(data.text, n_clusters=2 if data.intelligence else 1)
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
sentiment_pipeline = pipeline("sentiment-analysis", model=data.model)
|
| 110 |
+
sentiment = sentiment_pipeline(data.text)[0]
|
| 111 |
+
emotion = detect_emotion(data.text)
|
| 112 |
+
|
| 113 |
+
industry = detect_industry(data.text) if not data.industry or "auto" in data.industry.lower() else data.industry
|
| 114 |
+
product_category = detect_product_category(data.text) if not data.product_category or "auto" in data.product_category.lower() else data.product_category
|
| 115 |
+
|
| 116 |
+
response = {
|
| 117 |
+
"summary": summary,
|
| 118 |
+
"sentiment": sentiment,
|
| 119 |
+
"emotion": emotion,
|
| 120 |
+
"product_category": product_category,
|
| 121 |
+
"device": "Web",
|
| 122 |
+
"industry": industry
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
+
if data.follow_up:
|
| 126 |
+
response["follow_up"] = answer_followup(data.text, data.follow_up, verbosity=data.verbosity)
|
| 127 |
+
|
| 128 |
+
return response
|
| 129 |
+
|
| 130 |
+
except Exception as e:
|
| 131 |
+
logging.error(f"π₯ Unexpected analysis failure: {traceback.format_exc()}")
|
| 132 |
+
raise HTTPException(status_code=500, detail="Internal Server Error during analysis. Please contact support.")
|
| 133 |
+
|
| 134 |
+
@app.post("/followup/")
|
| 135 |
+
async def followup(request: FollowUpRequest, x_api_key: str = Header(None)):
|
| 136 |
+
if x_api_key and x_api_key != VALID_API_KEY:
|
| 137 |
+
raise HTTPException(status_code=401, detail="Invalid API key")
|
| 138 |
+
|
| 139 |
+
if not request.question or len(request.text.split()) < 10:
|
| 140 |
+
raise HTTPException(status_code=400, detail="Question or text is too short.")
|
| 141 |
+
|
| 142 |
+
try:
|
| 143 |
+
answer = answer_only(request.text, request.question)
|
| 144 |
+
return {"answer": answer}
|
| 145 |
+
except Exception as e:
|
| 146 |
+
logging.error(f"β Follow-up failed: {traceback.format_exc()}")
|
| 147 |
+
raise HTTPException(status_code=500, detail="Internal Server Error during follow-up.")
|
| 148 |
+
|
| 149 |
+
@app.post("/bulk/")
|
| 150 |
+
async def bulk_analyze(data: BulkReviewInput, token: str = Query(None)):
|
| 151 |
+
if token != VALID_API_KEY:
|
| 152 |
+
raise HTTPException(status_code=401, detail="β Unauthorized: Invalid API token")
|
| 153 |
+
|
| 154 |
+
try:
|
| 155 |
+
results = []
|
| 156 |
+
sentiment_pipeline = pipeline("sentiment-analysis", model=data.model)
|
| 157 |
+
|
| 158 |
+
for i, review_text in enumerate(data.reviews):
|
| 159 |
+
if len(review_text.split()) < 20:
|
| 160 |
+
results.append({
|
| 161 |
+
"review": review_text,
|
| 162 |
+
"error": "Too short to analyze"
|
| 163 |
+
})
|
| 164 |
+
continue
|
| 165 |
+
|
| 166 |
+
summary = smart_summarize(review_text, n_clusters=2 if data.intelligence else 1)
|
| 167 |
+
sentiment = sentiment_pipeline(review_text)[0]
|
| 168 |
+
emotion = detect_emotion(review_text)
|
| 169 |
+
|
| 170 |
+
ind = auto_fill(data.industry[i] if data.industry else None, detect_industry(review_text))
|
| 171 |
+
prod = auto_fill(data.product_category[i] if data.product_category else None, detect_product_category(review_text))
|
| 172 |
+
dev = auto_fill(data.device[i] if data.device else None, "Web")
|
| 173 |
+
|
| 174 |
+
result = {
|
| 175 |
+
"review": review_text,
|
| 176 |
+
"summary": summary,
|
| 177 |
+
"sentiment": sentiment["label"],
|
| 178 |
+
"score": sentiment["score"],
|
| 179 |
+
"emotion": emotion,
|
| 180 |
+
"industry": ind,
|
| 181 |
+
"product_category": prod,
|
| 182 |
+
"device": dev
|
| 183 |
+
}
|
| 184 |
+
|
| 185 |
+
if data.follow_up and i < len(data.follow_up):
|
| 186 |
+
follow_q = data.follow_up[i]
|
| 187 |
+
result["follow_up"] = answer_followup(review_text, follow_q)
|
| 188 |
+
|
| 189 |
+
results.append(result)
|
| 190 |
+
|
| 191 |
+
return {"results": results}
|
| 192 |
+
|
| 193 |
+
except Exception as e:
|
| 194 |
+
logging.error(f"π₯ Bulk processing failed: {traceback.format_exc()}")
|
| 195 |
+
raise HTTPException(status_code=500, detail="Failed to analyze bulk reviews")
|