Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -12,7 +12,7 @@ from typing import Optional, List, Union
|
|
| 12 |
from model import (
|
| 13 |
summarize_review, smart_summarize, detect_industry,
|
| 14 |
detect_product_category, detect_emotion, answer_followup, answer_only,
|
| 15 |
-
assess_churn_risk # β
|
| 16 |
)
|
| 17 |
|
| 18 |
app = FastAPI(
|
|
@@ -34,7 +34,7 @@ app.add_middleware(
|
|
| 34 |
|
| 35 |
logging.basicConfig(level=logging.INFO)
|
| 36 |
VALID_API_KEY = "my-secret-key"
|
| 37 |
-
log_store = []
|
| 38 |
|
| 39 |
@app.get("/", response_class=HTMLResponse)
|
| 40 |
def root():
|
|
@@ -100,52 +100,45 @@ async def analyze(data: ReviewInput, x_api_key: str = Header(None)):
|
|
| 100 |
if len(data.text.split()) < 20:
|
| 101 |
raise HTTPException(status_code=400, detail="β οΈ Review too short for analysis (min. 20 words).")
|
| 102 |
|
| 103 |
-
|
| 104 |
-
response = {}
|
| 105 |
-
|
| 106 |
-
if not data.follow_up:
|
| 107 |
-
summary = (
|
| 108 |
-
summarize_review(data.text, max_len=40, min_len=8)
|
| 109 |
-
if data.verbosity.lower() == "brief"
|
| 110 |
-
else smart_summarize(data.text, n_clusters=2 if data.intelligence else 1)
|
| 111 |
-
)
|
| 112 |
-
|
| 113 |
-
sentiment_pipeline = pipeline("sentiment-analysis", model=data.model)
|
| 114 |
-
sentiment = sentiment_pipeline(data.text)[0]
|
| 115 |
-
emotion_raw = detect_emotion(data.text)
|
| 116 |
-
emotion = emotion_raw["label"] if isinstance(emotion_raw, dict) and "label" in emotion_raw else str(emotion_raw)
|
| 117 |
-
churn_risk = assess_churn_risk(sentiment["label"], emotion)
|
| 118 |
-
|
| 119 |
-
# Log churn risk analysis
|
| 120 |
-
log_entry = {
|
| 121 |
-
"timestamp": datetime.now(),
|
| 122 |
-
"product": data.product_category or "Generic",
|
| 123 |
-
"churn_risk": churn_risk,
|
| 124 |
-
"user_id": str(uuid.uuid4()) # Optional
|
| 125 |
-
}
|
| 126 |
-
log_store.append(log_entry)
|
| 127 |
-
if len(log_store) > 1000:
|
| 128 |
-
log_store = log_store[-1000:] # keep latest 1000 entries
|
| 129 |
-
|
| 130 |
-
pain_points = []
|
| 131 |
-
if data.aspects:
|
| 132 |
-
from model import extract_pain_points # π Import inline if not already
|
| 133 |
-
pain_points = extract_pain_points(data.text)
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
"emotion": emotion,
|
| 142 |
-
"product_category": product_category,
|
| 143 |
-
"device": "Web",
|
| 144 |
-
"industry": industry,
|
| 145 |
-
"churn_risk": churn_risk,
|
| 146 |
-
"pain_points": pain_points
|
| 147 |
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
if data.follow_up:
|
| 151 |
response["follow_up"] = answer_followup(data.text, data.follow_up, verbosity=data.verbosity)
|
|
@@ -154,22 +147,19 @@ async def analyze(data: ReviewInput, x_api_key: str = Header(None)):
|
|
| 154 |
|
| 155 |
except Exception as e:
|
| 156 |
logging.error(f"π₯ Unexpected analysis failure: {traceback.format_exc()}")
|
| 157 |
-
raise HTTPException(status_code=500, detail="Internal Server Error during analysis.
|
| 158 |
|
| 159 |
@app.post("/followup/")
|
| 160 |
async def followup(request: FollowUpRequest, x_api_key: str = Header(None)):
|
| 161 |
if x_api_key and x_api_key != VALID_API_KEY:
|
| 162 |
raise HTTPException(status_code=401, detail="Invalid API key")
|
| 163 |
-
|
| 164 |
-
if not request.question or len(request.text.split()) < 10:
|
| 165 |
-
raise HTTPException(status_code=400, detail="Question or text is too short.")
|
| 166 |
-
|
| 167 |
try:
|
| 168 |
-
|
| 169 |
-
|
|
|
|
| 170 |
except Exception as e:
|
| 171 |
logging.error(f"β Follow-up failed: {traceback.format_exc()}")
|
| 172 |
-
raise HTTPException(status_code=500, detail="
|
| 173 |
|
| 174 |
@app.get("/log/")
|
| 175 |
async def get_churn_log(x_api_key: str = Header(None)):
|
|
@@ -177,12 +167,13 @@ async def get_churn_log(x_api_key: str = Header(None)):
|
|
| 177 |
raise HTTPException(status_code=401, detail="Unauthorized")
|
| 178 |
return {"log": log_store}
|
| 179 |
|
| 180 |
-
|
| 181 |
@app.post("/bulk/")
|
| 182 |
async def bulk_analyze(data: BulkReviewInput, token: str = Query(None)):
|
| 183 |
if token != VALID_API_KEY:
|
| 184 |
raise HTTPException(status_code=401, detail="β Unauthorized: Invalid API token")
|
| 185 |
|
|
|
|
|
|
|
| 186 |
try:
|
| 187 |
results = []
|
| 188 |
sentiment_pipeline = pipeline("sentiment-analysis", model=data.model)
|
|
@@ -198,22 +189,9 @@ async def bulk_analyze(data: BulkReviewInput, token: str = Query(None)):
|
|
| 198 |
summary = smart_summarize(review_text, n_clusters=2 if data.intelligence else 1)
|
| 199 |
sentiment = sentiment_pipeline(review_text)[0]
|
| 200 |
emotion = detect_emotion(review_text)
|
| 201 |
-
|
| 202 |
churn = assess_churn_risk(sentiment["label"], emotion)
|
| 203 |
pain = extract_pain_points(review_text) if data.aspects else []
|
| 204 |
|
| 205 |
-
# π Log churn data
|
| 206 |
-
log_entry = {
|
| 207 |
-
"timestamp": datetime.now(),
|
| 208 |
-
"product": prod,
|
| 209 |
-
"churn_risk": churn,
|
| 210 |
-
"user_id": str(uuid.uuid4())
|
| 211 |
-
}
|
| 212 |
-
log_store.append(log_entry)
|
| 213 |
-
if len(log_store) > 1000:
|
| 214 |
-
log_store = log_store[-1000:]
|
| 215 |
-
|
| 216 |
-
|
| 217 |
ind = auto_fill(data.industry[i] if data.industry else None, detect_industry(review_text))
|
| 218 |
prod = auto_fill(data.product_category[i] if data.product_category else None, detect_product_category(review_text))
|
| 219 |
dev = auto_fill(data.device[i] if data.device else None, "Web")
|
|
@@ -235,11 +213,21 @@ async def bulk_analyze(data: BulkReviewInput, token: str = Query(None)):
|
|
| 235 |
follow_q = data.follow_up[i]
|
| 236 |
result["follow_up"] = answer_followup(review_text, follow_q)
|
| 237 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
results.append(result)
|
| 239 |
|
|
|
|
|
|
|
|
|
|
| 240 |
return {"results": results}
|
| 241 |
|
| 242 |
except Exception as e:
|
| 243 |
logging.error(f"π₯ Bulk processing failed: {traceback.format_exc()}")
|
| 244 |
raise HTTPException(status_code=500, detail="Failed to analyze bulk reviews")
|
| 245 |
-
|
|
|
|
| 12 |
from model import (
|
| 13 |
summarize_review, smart_summarize, detect_industry,
|
| 14 |
detect_product_category, detect_emotion, answer_followup, answer_only,
|
| 15 |
+
assess_churn_risk, extract_pain_points # β
Added extract_pain_points
|
| 16 |
)
|
| 17 |
|
| 18 |
app = FastAPI(
|
|
|
|
| 34 |
|
| 35 |
logging.basicConfig(level=logging.INFO)
|
| 36 |
VALID_API_KEY = "my-secret-key"
|
| 37 |
+
log_store = [] # β
Shared in-memory churn log
|
| 38 |
|
| 39 |
@app.get("/", response_class=HTMLResponse)
|
| 40 |
def root():
|
|
|
|
| 100 |
if len(data.text.split()) < 20:
|
| 101 |
raise HTTPException(status_code=400, detail="β οΈ Review too short for analysis (min. 20 words).")
|
| 102 |
|
| 103 |
+
global log_store # β
Needed for logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
+
try:
|
| 106 |
+
summary = (
|
| 107 |
+
summarize_review(data.text, max_len=40, min_len=8)
|
| 108 |
+
if data.verbosity.lower() == "brief"
|
| 109 |
+
else smart_summarize(data.text, n_clusters=2 if data.intelligence else 1)
|
| 110 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
+
sentiment_pipeline = pipeline("sentiment-analysis", model=data.model)
|
| 113 |
+
sentiment = sentiment_pipeline(data.text)[0]
|
| 114 |
+
emotion_raw = detect_emotion(data.text)
|
| 115 |
+
emotion = emotion_raw["label"] if isinstance(emotion_raw, dict) and "label" in emotion_raw else str(emotion_raw)
|
| 116 |
+
churn_risk = assess_churn_risk(sentiment["label"], emotion)
|
| 117 |
+
industry = detect_industry(data.text) if not data.industry or "auto" in data.industry.lower() else data.industry
|
| 118 |
+
product_category = detect_product_category(data.text) if not data.product_category or "auto" in data.product_category.lower() else data.product_category
|
| 119 |
+
|
| 120 |
+
pain_points = extract_pain_points(data.text) if data.aspects else []
|
| 121 |
+
|
| 122 |
+
# β
Log churn entry
|
| 123 |
+
log_store.append({
|
| 124 |
+
"timestamp": datetime.now(),
|
| 125 |
+
"product": product_category,
|
| 126 |
+
"churn_risk": churn_risk,
|
| 127 |
+
"user_id": str(uuid.uuid4())
|
| 128 |
+
})
|
| 129 |
+
if len(log_store) > 1000:
|
| 130 |
+
log_store = log_store[-1000:]
|
| 131 |
+
|
| 132 |
+
response = {
|
| 133 |
+
"summary": summary,
|
| 134 |
+
"sentiment": sentiment,
|
| 135 |
+
"emotion": emotion,
|
| 136 |
+
"product_category": product_category,
|
| 137 |
+
"device": "Web",
|
| 138 |
+
"industry": industry,
|
| 139 |
+
"churn_risk": churn_risk,
|
| 140 |
+
"pain_points": pain_points
|
| 141 |
+
}
|
| 142 |
|
| 143 |
if data.follow_up:
|
| 144 |
response["follow_up"] = answer_followup(data.text, data.follow_up, verbosity=data.verbosity)
|
|
|
|
| 147 |
|
| 148 |
except Exception as e:
|
| 149 |
logging.error(f"π₯ Unexpected analysis failure: {traceback.format_exc()}")
|
| 150 |
+
raise HTTPException(status_code=500, detail="Internal Server Error during analysis.")
|
| 151 |
|
| 152 |
@app.post("/followup/")
|
| 153 |
async def followup(request: FollowUpRequest, x_api_key: str = Header(None)):
|
| 154 |
if x_api_key and x_api_key != VALID_API_KEY:
|
| 155 |
raise HTTPException(status_code=401, detail="Invalid API key")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
try:
|
| 157 |
+
if not request.question or len(request.text.split()) < 10:
|
| 158 |
+
raise HTTPException(status_code=400, detail="Question or text is too short.")
|
| 159 |
+
return {"answer": answer_only(request.text, request.question)}
|
| 160 |
except Exception as e:
|
| 161 |
logging.error(f"β Follow-up failed: {traceback.format_exc()}")
|
| 162 |
+
raise HTTPException(status_code=500, detail="Follow-up generation failed.")
|
| 163 |
|
| 164 |
@app.get("/log/")
|
| 165 |
async def get_churn_log(x_api_key: str = Header(None)):
|
|
|
|
| 167 |
raise HTTPException(status_code=401, detail="Unauthorized")
|
| 168 |
return {"log": log_store}
|
| 169 |
|
|
|
|
| 170 |
@app.post("/bulk/")
|
| 171 |
async def bulk_analyze(data: BulkReviewInput, token: str = Query(None)):
|
| 172 |
if token != VALID_API_KEY:
|
| 173 |
raise HTTPException(status_code=401, detail="β Unauthorized: Invalid API token")
|
| 174 |
|
| 175 |
+
global log_store # β
Needed to log bulk churn
|
| 176 |
+
|
| 177 |
try:
|
| 178 |
results = []
|
| 179 |
sentiment_pipeline = pipeline("sentiment-analysis", model=data.model)
|
|
|
|
| 189 |
summary = smart_summarize(review_text, n_clusters=2 if data.intelligence else 1)
|
| 190 |
sentiment = sentiment_pipeline(review_text)[0]
|
| 191 |
emotion = detect_emotion(review_text)
|
|
|
|
| 192 |
churn = assess_churn_risk(sentiment["label"], emotion)
|
| 193 |
pain = extract_pain_points(review_text) if data.aspects else []
|
| 194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
ind = auto_fill(data.industry[i] if data.industry else None, detect_industry(review_text))
|
| 196 |
prod = auto_fill(data.product_category[i] if data.product_category else None, detect_product_category(review_text))
|
| 197 |
dev = auto_fill(data.device[i] if data.device else None, "Web")
|
|
|
|
| 213 |
follow_q = data.follow_up[i]
|
| 214 |
result["follow_up"] = answer_followup(review_text, follow_q)
|
| 215 |
|
| 216 |
+
# β
Log churn
|
| 217 |
+
log_store.append({
|
| 218 |
+
"timestamp": datetime.now(),
|
| 219 |
+
"product": prod,
|
| 220 |
+
"churn_risk": churn,
|
| 221 |
+
"user_id": str(uuid.uuid4())
|
| 222 |
+
})
|
| 223 |
+
|
| 224 |
results.append(result)
|
| 225 |
|
| 226 |
+
if len(log_store) > 1000:
|
| 227 |
+
log_store = log_store[-1000:]
|
| 228 |
+
|
| 229 |
return {"results": results}
|
| 230 |
|
| 231 |
except Exception as e:
|
| 232 |
logging.error(f"π₯ Bulk processing failed: {traceback.format_exc()}")
|
| 233 |
raise HTTPException(status_code=500, detail="Failed to analyze bulk reviews")
|
|
|