Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,7 +5,7 @@ from PIL import Image
|
|
| 5 |
|
| 6 |
import torch
|
| 7 |
import torchvision.transforms.functional as F
|
| 8 |
-
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
| 9 |
import gradio as gr
|
| 10 |
|
| 11 |
device = "cuda"
|
|
@@ -19,6 +19,16 @@ pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
| 19 |
)
|
| 20 |
pipe.to(device)
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
style_list = [
|
| 23 |
{
|
| 24 |
"name": "No Style",
|
|
@@ -81,9 +91,15 @@ def run(
|
|
| 81 |
prompt_template,
|
| 82 |
style_name,
|
| 83 |
controlnet_conditioning_scale,
|
|
|
|
| 84 |
device_type="GPU",
|
| 85 |
param_dtype="torch.float16",
|
| 86 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
if device_type == "CPU":
|
| 88 |
device = "cpu"
|
| 89 |
param_dtype = "torch.float32"
|
|
@@ -118,24 +134,28 @@ def run(
|
|
| 118 |
return output_pil
|
| 119 |
|
| 120 |
|
| 121 |
-
with gr.Blocks() as demo:
|
| 122 |
gr.Markdown("# SDXS-512-DreamShaper-Sketch")
|
| 123 |
-
gr.Markdown(
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
|
|
|
|
|
|
| 127 |
image = gr.Sketchpad(
|
| 128 |
type="pil",
|
| 129 |
image_mode="RGBA",
|
| 130 |
brush=gr.Brush(colors=["#000000"], color_mode="fixed", default_size=8),
|
| 131 |
-
crop_size=
|
| 132 |
)
|
| 133 |
|
| 134 |
-
# gr.Markdown("## Prompt", elem_id="tools_header")
|
| 135 |
prompt = gr.Textbox(label="Prompt", value="", show_label=True)
|
| 136 |
with gr.Row():
|
| 137 |
style = gr.Dropdown(
|
| 138 |
-
label="Style",
|
|
|
|
|
|
|
|
|
|
| 139 |
)
|
| 140 |
prompt_temp = gr.Textbox(
|
| 141 |
label="Prompt Style Template",
|
|
@@ -148,6 +168,15 @@ with gr.Blocks() as demo:
|
|
| 148 |
label="Control Strength", minimum=0, maximum=1, step=0.01, value=0.8
|
| 149 |
)
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
device_choices = ["GPU", "CPU"]
|
| 152 |
device_type = gr.Radio(
|
| 153 |
device_choices,
|
|
@@ -166,16 +195,19 @@ with gr.Blocks() as demo:
|
|
| 166 |
info="To save GPU memory, use torch.float16. For better quality, use torch.float32.",
|
| 167 |
)
|
| 168 |
|
| 169 |
-
with gr.Column(
|
| 170 |
-
gr.Markdown("## OUTPUT"
|
| 171 |
result = gr.Image(
|
| 172 |
label="Result",
|
| 173 |
-
height=512,
|
| 174 |
-
width=512,
|
| 175 |
-
elem_id="output_image",
|
| 176 |
show_label=False,
|
| 177 |
show_download_button=True,
|
| 178 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
inputs = [
|
| 181 |
image,
|
|
@@ -183,6 +215,7 @@ with gr.Blocks() as demo:
|
|
| 183 |
prompt_temp,
|
| 184 |
style,
|
| 185 |
controlnet_conditioning_scale,
|
|
|
|
| 186 |
device_type,
|
| 187 |
param_dtype,
|
| 188 |
]
|
|
@@ -190,9 +223,25 @@ with gr.Blocks() as demo:
|
|
| 190 |
|
| 191 |
prompt.change(fn=run, inputs=inputs, outputs=outputs)
|
| 192 |
style.change(lambda x: styles[x], inputs=[style], outputs=[prompt_temp]).then(
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
if __name__ == "__main__":
|
| 198 |
demo.queue().launch()
|
|
|
|
| 5 |
|
| 6 |
import torch
|
| 7 |
import torchvision.transforms.functional as F
|
| 8 |
+
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline, AutoencoderTiny, AutoencoderKL
|
| 9 |
import gradio as gr
|
| 10 |
|
| 11 |
device = "cuda"
|
|
|
|
| 19 |
)
|
| 20 |
pipe.to(device)
|
| 21 |
|
| 22 |
+
vae_tiny = AutoencoderTiny.from_pretrained(
|
| 23 |
+
"IDKiro/sdxs-512-dreamshaper", subfolder="vae"
|
| 24 |
+
)
|
| 25 |
+
vae_tiny.to(device, dtype=weight_type)
|
| 26 |
+
|
| 27 |
+
vae_large = AutoencoderKL.from_pretrained(
|
| 28 |
+
"IDKiro/sdxs-512-dreamshaper", subfolder="vae_large"
|
| 29 |
+
)
|
| 30 |
+
vae_tiny.to(device, dtype=weight_type)
|
| 31 |
+
|
| 32 |
style_list = [
|
| 33 |
{
|
| 34 |
"name": "No Style",
|
|
|
|
| 91 |
prompt_template,
|
| 92 |
style_name,
|
| 93 |
controlnet_conditioning_scale,
|
| 94 |
+
vae_type="tiny vae",
|
| 95 |
device_type="GPU",
|
| 96 |
param_dtype="torch.float16",
|
| 97 |
):
|
| 98 |
+
if vae_type == "tiny vae":
|
| 99 |
+
pipe.vae = vae_tiny
|
| 100 |
+
elif vae_type == "large vae":
|
| 101 |
+
pipe.vae = vae_large
|
| 102 |
+
|
| 103 |
if device_type == "CPU":
|
| 104 |
device = "cpu"
|
| 105 |
param_dtype = "torch.float32"
|
|
|
|
| 134 |
return output_pil
|
| 135 |
|
| 136 |
|
| 137 |
+
with gr.Blocks(theme="monochrome") as demo:
|
| 138 |
gr.Markdown("# SDXS-512-DreamShaper-Sketch")
|
| 139 |
+
gr.Markdown(
|
| 140 |
+
"[SDXS: Real-Time One-Step Latent Diffusion Models with Image Conditions](https://arxiv.org/abs/2403.16627) | [GitHub](https://github.com/IDKiro/sdxs)"
|
| 141 |
+
)
|
| 142 |
+
with gr.Row():
|
| 143 |
+
with gr.Column():
|
| 144 |
+
gr.Markdown("## INPUT")
|
| 145 |
image = gr.Sketchpad(
|
| 146 |
type="pil",
|
| 147 |
image_mode="RGBA",
|
| 148 |
brush=gr.Brush(colors=["#000000"], color_mode="fixed", default_size=8),
|
| 149 |
+
crop_size="1:1",
|
| 150 |
)
|
| 151 |
|
|
|
|
| 152 |
prompt = gr.Textbox(label="Prompt", value="", show_label=True)
|
| 153 |
with gr.Row():
|
| 154 |
style = gr.Dropdown(
|
| 155 |
+
label="Style",
|
| 156 |
+
choices=STYLE_NAMES,
|
| 157 |
+
value=DEFAULT_STYLE_NAME,
|
| 158 |
+
scale=1,
|
| 159 |
)
|
| 160 |
prompt_temp = gr.Textbox(
|
| 161 |
label="Prompt Style Template",
|
|
|
|
| 168 |
label="Control Strength", minimum=0, maximum=1, step=0.01, value=0.8
|
| 169 |
)
|
| 170 |
|
| 171 |
+
vae_choices = ["tiny vae", "large vae"]
|
| 172 |
+
vae_type = gr.Radio(
|
| 173 |
+
vae_choices,
|
| 174 |
+
label="Image Decoder Type",
|
| 175 |
+
value=vae_choices[0],
|
| 176 |
+
interactive=True,
|
| 177 |
+
info="To save GPU memory, use tiny vae. For better quality, use large vae.",
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
device_choices = ["GPU", "CPU"]
|
| 181 |
device_type = gr.Radio(
|
| 182 |
device_choices,
|
|
|
|
| 195 |
info="To save GPU memory, use torch.float16. For better quality, use torch.float32.",
|
| 196 |
)
|
| 197 |
|
| 198 |
+
with gr.Column():
|
| 199 |
+
gr.Markdown("## OUTPUT")
|
| 200 |
result = gr.Image(
|
| 201 |
label="Result",
|
|
|
|
|
|
|
|
|
|
| 202 |
show_label=False,
|
| 203 |
show_download_button=True,
|
| 204 |
)
|
| 205 |
+
run_button = gr.Button("Run")
|
| 206 |
+
gr.Markdown("### Instructions")
|
| 207 |
+
gr.Markdown("**1**. Enter a text prompt (e.g. cat)")
|
| 208 |
+
gr.Markdown("**2**. Start sketching")
|
| 209 |
+
gr.Markdown("**3**. Change the image style using a style template")
|
| 210 |
+
gr.Markdown("**4**. Adjust the effect of sketch guidance using the slider")
|
| 211 |
|
| 212 |
inputs = [
|
| 213 |
image,
|
|
|
|
| 215 |
prompt_temp,
|
| 216 |
style,
|
| 217 |
controlnet_conditioning_scale,
|
| 218 |
+
vae_type,
|
| 219 |
device_type,
|
| 220 |
param_dtype,
|
| 221 |
]
|
|
|
|
| 223 |
|
| 224 |
prompt.change(fn=run, inputs=inputs, outputs=outputs)
|
| 225 |
style.change(lambda x: styles[x], inputs=[style], outputs=[prompt_temp]).then(
|
| 226 |
+
fn=run,
|
| 227 |
+
inputs=inputs,
|
| 228 |
+
outputs=outputs,
|
| 229 |
+
)
|
| 230 |
+
image.change(
|
| 231 |
+
run,
|
| 232 |
+
inputs=inputs,
|
| 233 |
+
outputs=outputs,
|
| 234 |
+
)
|
| 235 |
+
controlnet_conditioning_scale.change(
|
| 236 |
+
run,
|
| 237 |
+
inputs=inputs,
|
| 238 |
+
outputs=outputs,
|
| 239 |
+
)
|
| 240 |
+
run_button.click(
|
| 241 |
+
run,
|
| 242 |
+
inputs=inputs,
|
| 243 |
+
outputs=outputs,
|
| 244 |
+
)
|
| 245 |
|
| 246 |
if __name__ == "__main__":
|
| 247 |
demo.queue().launch()
|