Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,21 +8,19 @@ import numpy as np
|
|
| 8 |
import gradio as gr
|
| 9 |
from huggingface_hub import hf_hub_download
|
| 10 |
|
| 11 |
-
# ================== 必须最早 import spaces ==================
|
| 12 |
try:
|
| 13 |
-
import spaces
|
| 14 |
gpu_decorator = spaces.GPU
|
| 15 |
except Exception:
|
| 16 |
gpu_decorator = lambda f: f
|
| 17 |
|
| 18 |
-
|
| 19 |
-
# 适配:无论你从哪里启动 python app.py,都能找到项目根目录
|
| 20 |
PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__))
|
| 21 |
sys.path.append(PROJECT_ROOT)
|
| 22 |
|
| 23 |
from networks.models import make # noqa: E402
|
| 24 |
|
| 25 |
-
|
| 26 |
WEIGHTS_REPO = "Insta360-Research/DAP-weights"
|
| 27 |
WEIGHTS_FILE = "model.pth"
|
| 28 |
CONFIG_PATH = os.path.join(PROJECT_ROOT, "config", "infer.yaml")
|
|
@@ -30,7 +28,7 @@ CONFIG_PATH = os.path.join(PROJECT_ROOT, "config", "infer.yaml")
|
|
| 30 |
model = None
|
| 31 |
device = "cpu"
|
| 32 |
|
| 33 |
-
|
| 34 |
import matplotlib
|
| 35 |
|
| 36 |
def colorize_depth_fixed(depth_u8: np.ndarray, cmap: str = "Spectral") -> np.ndarray:
|
|
@@ -43,7 +41,7 @@ def colorize_depth_fixed(depth_u8: np.ndarray, cmap: str = "Spectral") -> np.nda
|
|
| 43 |
colored = (colored * 255).astype(np.uint8)
|
| 44 |
return np.ascontiguousarray(colored)
|
| 45 |
|
| 46 |
-
|
| 47 |
def load_model(config_path: str):
|
| 48 |
import torch
|
| 49 |
import torch.nn as nn
|
|
@@ -77,17 +75,17 @@ def load_model(config_path: str):
|
|
| 77 |
print("✅ Model loaded.")
|
| 78 |
return m
|
| 79 |
|
| 80 |
-
|
| 81 |
model = load_model(CONFIG_PATH)
|
| 82 |
|
| 83 |
-
|
| 84 |
COLORBAR_DIR = os.path.join(PROJECT_ROOT, "colorbars")
|
| 85 |
colorbar_100m_color = cv2.imread(os.path.join(COLORBAR_DIR, "colorbar_100m_color.png"))
|
| 86 |
colorbar_100m_gray = cv2.imread(os.path.join(COLORBAR_DIR, "colorbar_100m_gray.png"))
|
| 87 |
colorbar_10m_color = cv2.imread(os.path.join(COLORBAR_DIR, "colorbar_10m_color.png"))
|
| 88 |
colorbar_10m_gray = cv2.imread(os.path.join(COLORBAR_DIR, "colorbar_10m_gray.png"))
|
| 89 |
|
| 90 |
-
|
| 91 |
if colorbar_100m_color is not None:
|
| 92 |
colorbar_100m_color = cv2.cvtColor(colorbar_100m_color, cv2.COLOR_BGR2RGB)
|
| 93 |
if colorbar_100m_gray is not None:
|
|
@@ -97,7 +95,7 @@ if colorbar_10m_color is not None:
|
|
| 97 |
if colorbar_10m_gray is not None:
|
| 98 |
colorbar_10m_gray = cv2.cvtColor(colorbar_10m_gray, cv2.COLOR_BGR2RGB)
|
| 99 |
|
| 100 |
-
|
| 101 |
@gpu_decorator
|
| 102 |
def infer_raw(img_rgb: np.ndarray):
|
| 103 |
if img_rgb is None:
|
|
@@ -105,7 +103,6 @@ def infer_raw(img_rgb: np.ndarray):
|
|
| 105 |
|
| 106 |
import torch
|
| 107 |
|
| 108 |
-
# 保持你原逻辑:不 resize,直接喂入
|
| 109 |
img = img_rgb.astype(np.float32) / 255.0
|
| 110 |
tensor = torch.from_numpy(img.transpose(2, 0, 1)).unsqueeze(0).to(device)
|
| 111 |
|
|
@@ -119,7 +116,6 @@ def infer_raw(img_rgb: np.ndarray):
|
|
| 119 |
outputs["pred_depth"][~mask] = 1
|
| 120 |
pred = outputs["pred_depth"][0].cpu().squeeze().numpy()
|
| 121 |
else:
|
| 122 |
-
# 保持你原逻辑的 fallback
|
| 123 |
pred = outputs[0].cpu().squeeze().numpy()
|
| 124 |
|
| 125 |
return pred.astype(np.float32)
|
|
@@ -152,11 +148,10 @@ def visualize_10m(pred: np.ndarray):
|
|
| 152 |
|
| 153 |
@gpu_decorator
|
| 154 |
def infer_and_vis_100m(img_rgb: np.ndarray):
|
| 155 |
-
pred = infer_raw(img_rgb)
|
| 156 |
-
color, gray, npy, cbar_color, cbar_gray = visualize_100m(pred)
|
| 157 |
return pred, color, gray, npy, cbar_color, cbar_gray
|
| 158 |
|
| 159 |
-
# ================== Gradio UI ==================
|
| 160 |
example_paths = [
|
| 161 |
"hfdemo/01.jpg",
|
| 162 |
"hfdemo/02.jpg",
|
|
@@ -196,12 +191,10 @@ with gr.Blocks() as demo:
|
|
| 196 |
)
|
| 197 |
gr.Markdown("# Official Depth Prediction demo for **[DAP](https://insta360-research-team.github.io/DAP_website/)**")
|
| 198 |
|
| 199 |
-
raw_depth = gr.State()
|
| 200 |
|
| 201 |
with gr.Row():
|
| 202 |
|
| 203 |
-
# ========== Left ==========
|
| 204 |
-
# 左侧列(Input Image)
|
| 205 |
with gr.Column(scale=10):
|
| 206 |
inp = gr.Image(
|
| 207 |
type="numpy",
|
|
@@ -231,29 +224,23 @@ with gr.Blocks() as demo:
|
|
| 231 |
elem_id="vis_hint",
|
| 232 |
)
|
| 233 |
|
| 234 |
-
# ========== Right ==========
|
| 235 |
-
# 右侧整体(包含 中间列 + colorbar 列)
|
| 236 |
with gr.Column(scale=11):
|
| 237 |
|
| 238 |
# -------- Row 1: Color Depth --------
|
| 239 |
with gr.Row():
|
| 240 |
-
# 中间列(必须和左侧等宽)
|
| 241 |
with gr.Column(scale=10):
|
| 242 |
out_color = gr.Image(
|
| 243 |
label="Depth (Color)",
|
| 244 |
height=260
|
| 245 |
)
|
| 246 |
|
| 247 |
-
# colorbar 列(很窄)
|
| 248 |
with gr.Column(scale=1, min_width=80):
|
| 249 |
colorbar_color = gr.Image(
|
| 250 |
label="Scale",
|
| 251 |
height=260,
|
| 252 |
-
show_label=False
|
| 253 |
-
show_download_button=False
|
| 254 |
)
|
| 255 |
|
| 256 |
-
# -------- Row 2: Gray Depth --------
|
| 257 |
with gr.Row():
|
| 258 |
with gr.Column(scale=10):
|
| 259 |
out_gray = gr.Image(
|
|
@@ -265,28 +252,24 @@ with gr.Blocks() as demo:
|
|
| 265 |
colorbar_gray = gr.Image(
|
| 266 |
label="Scale",
|
| 267 |
height=260,
|
| 268 |
-
show_label=False
|
| 269 |
-
show_download_button=False
|
| 270 |
)
|
| 271 |
|
| 272 |
out_npy = gr.File(label="Depth (.npy)")
|
| 273 |
|
| 274 |
|
| 275 |
-
# 1️⃣ 跑模型
|
| 276 |
btn_infer.click(
|
| 277 |
fn=infer_and_vis_100m,
|
| 278 |
inputs=inp,
|
| 279 |
outputs=[raw_depth, out_color, out_gray, out_npy, colorbar_color, colorbar_gray],
|
| 280 |
)
|
| 281 |
|
| 282 |
-
# 2️⃣ 100m
|
| 283 |
btn_100m.click(
|
| 284 |
fn=visualize_100m,
|
| 285 |
inputs=raw_depth,
|
| 286 |
outputs=[out_color, out_gray, out_npy, colorbar_color, colorbar_gray],
|
| 287 |
)
|
| 288 |
|
| 289 |
-
# 3️⃣ 10m
|
| 290 |
btn_10m.click(
|
| 291 |
fn=visualize_10m,
|
| 292 |
inputs=raw_depth,
|
|
@@ -298,9 +281,9 @@ if __name__ == "__main__":
|
|
| 298 |
host = os.environ.get("HOST", "0.0.0.0")
|
| 299 |
port = int(os.environ.get("PORT", "7860"))
|
| 300 |
|
| 301 |
-
demo.queue(
|
| 302 |
-
max_size=32,
|
| 303 |
-
default_concurrency_limit=1,
|
| 304 |
).launch(
|
| 305 |
server_name=host,
|
| 306 |
server_port=port,
|
|
|
|
| 8 |
import gradio as gr
|
| 9 |
from huggingface_hub import hf_hub_download
|
| 10 |
|
|
|
|
| 11 |
try:
|
| 12 |
+
import spaces
|
| 13 |
gpu_decorator = spaces.GPU
|
| 14 |
except Exception:
|
| 15 |
gpu_decorator = lambda f: f
|
| 16 |
|
| 17 |
+
|
|
|
|
| 18 |
PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__))
|
| 19 |
sys.path.append(PROJECT_ROOT)
|
| 20 |
|
| 21 |
from networks.models import make # noqa: E402
|
| 22 |
|
| 23 |
+
|
| 24 |
WEIGHTS_REPO = "Insta360-Research/DAP-weights"
|
| 25 |
WEIGHTS_FILE = "model.pth"
|
| 26 |
CONFIG_PATH = os.path.join(PROJECT_ROOT, "config", "infer.yaml")
|
|
|
|
| 28 |
model = None
|
| 29 |
device = "cpu"
|
| 30 |
|
| 31 |
+
|
| 32 |
import matplotlib
|
| 33 |
|
| 34 |
def colorize_depth_fixed(depth_u8: np.ndarray, cmap: str = "Spectral") -> np.ndarray:
|
|
|
|
| 41 |
colored = (colored * 255).astype(np.uint8)
|
| 42 |
return np.ascontiguousarray(colored)
|
| 43 |
|
| 44 |
+
|
| 45 |
def load_model(config_path: str):
|
| 46 |
import torch
|
| 47 |
import torch.nn as nn
|
|
|
|
| 75 |
print("✅ Model loaded.")
|
| 76 |
return m
|
| 77 |
|
| 78 |
+
|
| 79 |
model = load_model(CONFIG_PATH)
|
| 80 |
|
| 81 |
+
|
| 82 |
COLORBAR_DIR = os.path.join(PROJECT_ROOT, "colorbars")
|
| 83 |
colorbar_100m_color = cv2.imread(os.path.join(COLORBAR_DIR, "colorbar_100m_color.png"))
|
| 84 |
colorbar_100m_gray = cv2.imread(os.path.join(COLORBAR_DIR, "colorbar_100m_gray.png"))
|
| 85 |
colorbar_10m_color = cv2.imread(os.path.join(COLORBAR_DIR, "colorbar_10m_color.png"))
|
| 86 |
colorbar_10m_gray = cv2.imread(os.path.join(COLORBAR_DIR, "colorbar_10m_gray.png"))
|
| 87 |
|
| 88 |
+
|
| 89 |
if colorbar_100m_color is not None:
|
| 90 |
colorbar_100m_color = cv2.cvtColor(colorbar_100m_color, cv2.COLOR_BGR2RGB)
|
| 91 |
if colorbar_100m_gray is not None:
|
|
|
|
| 95 |
if colorbar_10m_gray is not None:
|
| 96 |
colorbar_10m_gray = cv2.cvtColor(colorbar_10m_gray, cv2.COLOR_BGR2RGB)
|
| 97 |
|
| 98 |
+
|
| 99 |
@gpu_decorator
|
| 100 |
def infer_raw(img_rgb: np.ndarray):
|
| 101 |
if img_rgb is None:
|
|
|
|
| 103 |
|
| 104 |
import torch
|
| 105 |
|
|
|
|
| 106 |
img = img_rgb.astype(np.float32) / 255.0
|
| 107 |
tensor = torch.from_numpy(img.transpose(2, 0, 1)).unsqueeze(0).to(device)
|
| 108 |
|
|
|
|
| 116 |
outputs["pred_depth"][~mask] = 1
|
| 117 |
pred = outputs["pred_depth"][0].cpu().squeeze().numpy()
|
| 118 |
else:
|
|
|
|
| 119 |
pred = outputs[0].cpu().squeeze().numpy()
|
| 120 |
|
| 121 |
return pred.astype(np.float32)
|
|
|
|
| 148 |
|
| 149 |
@gpu_decorator
|
| 150 |
def infer_and_vis_100m(img_rgb: np.ndarray):
|
| 151 |
+
pred = infer_raw(img_rgb)
|
| 152 |
+
color, gray, npy, cbar_color, cbar_gray = visualize_100m(pred)
|
| 153 |
return pred, color, gray, npy, cbar_color, cbar_gray
|
| 154 |
|
|
|
|
| 155 |
example_paths = [
|
| 156 |
"hfdemo/01.jpg",
|
| 157 |
"hfdemo/02.jpg",
|
|
|
|
| 191 |
)
|
| 192 |
gr.Markdown("# Official Depth Prediction demo for **[DAP](https://insta360-research-team.github.io/DAP_website/)**")
|
| 193 |
|
| 194 |
+
raw_depth = gr.State()
|
| 195 |
|
| 196 |
with gr.Row():
|
| 197 |
|
|
|
|
|
|
|
| 198 |
with gr.Column(scale=10):
|
| 199 |
inp = gr.Image(
|
| 200 |
type="numpy",
|
|
|
|
| 224 |
elem_id="vis_hint",
|
| 225 |
)
|
| 226 |
|
|
|
|
|
|
|
| 227 |
with gr.Column(scale=11):
|
| 228 |
|
| 229 |
# -------- Row 1: Color Depth --------
|
| 230 |
with gr.Row():
|
|
|
|
| 231 |
with gr.Column(scale=10):
|
| 232 |
out_color = gr.Image(
|
| 233 |
label="Depth (Color)",
|
| 234 |
height=260
|
| 235 |
)
|
| 236 |
|
|
|
|
| 237 |
with gr.Column(scale=1, min_width=80):
|
| 238 |
colorbar_color = gr.Image(
|
| 239 |
label="Scale",
|
| 240 |
height=260,
|
| 241 |
+
show_label=False
|
|
|
|
| 242 |
)
|
| 243 |
|
|
|
|
| 244 |
with gr.Row():
|
| 245 |
with gr.Column(scale=10):
|
| 246 |
out_gray = gr.Image(
|
|
|
|
| 252 |
colorbar_gray = gr.Image(
|
| 253 |
label="Scale",
|
| 254 |
height=260,
|
| 255 |
+
show_label=False
|
|
|
|
| 256 |
)
|
| 257 |
|
| 258 |
out_npy = gr.File(label="Depth (.npy)")
|
| 259 |
|
| 260 |
|
|
|
|
| 261 |
btn_infer.click(
|
| 262 |
fn=infer_and_vis_100m,
|
| 263 |
inputs=inp,
|
| 264 |
outputs=[raw_depth, out_color, out_gray, out_npy, colorbar_color, colorbar_gray],
|
| 265 |
)
|
| 266 |
|
|
|
|
| 267 |
btn_100m.click(
|
| 268 |
fn=visualize_100m,
|
| 269 |
inputs=raw_depth,
|
| 270 |
outputs=[out_color, out_gray, out_npy, colorbar_color, colorbar_gray],
|
| 271 |
)
|
| 272 |
|
|
|
|
| 273 |
btn_10m.click(
|
| 274 |
fn=visualize_10m,
|
| 275 |
inputs=raw_depth,
|
|
|
|
| 281 |
host = os.environ.get("HOST", "0.0.0.0")
|
| 282 |
port = int(os.environ.get("PORT", "7860"))
|
| 283 |
|
| 284 |
+
demo.queue(
|
| 285 |
+
max_size=32,
|
| 286 |
+
default_concurrency_limit=1,
|
| 287 |
).launch(
|
| 288 |
server_name=host,
|
| 289 |
server_port=port,
|