File size: 13,810 Bytes
1643511 941f17c 1643511 941f17c 1643511 941f17c 1643511 1ce56e4 1643511 1ce56e4 1643511 1ce56e4 1643511 1ce56e4 1643511 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
"""Financial Data Analysis Module"""
from EasyReportDataMCP.edgar_client import EdgarDataClient
from datetime import datetime
from functools import lru_cache
import json
class FinancialAnalyzer:
def __init__(self, user_agent="Juntao Peng Financial Report Metrics App ([email protected])"):
"""
Initialize financial analyzer
Args:
user_agent (str): User agent string for identifying request source
"""
self.edgar_client = EdgarDataClient(user_agent)
# 新增:实例级缓存,进一步提升性能
self._search_cache = {}
self._extract_metrics_cache = {} # 缓存 extract_financial_metrics 结果
def search_company(self, company_input):
"""
Search company information (by name or CIK) - Optimized version
Args:
company_input (str): Company name or CIK
Returns:
dict: Company information
"""
# 实例级缓存检查
if company_input in self._search_cache:
return self._search_cache[company_input]
# If input is numeric, assume it's a CIK
if company_input.isdigit() and len(company_input) >= 8:
# Get company information from cache (will use @lru_cache)
company_info = self.edgar_client.get_company_info(company_input)
if company_info:
self._search_cache[company_input] = company_info
return company_info
else:
return {"error": "Company not found for specified CIK"}
else:
# Search company by name/ticker (uses cached company_tickers.json)
company = self.edgar_client.search_company_by_name(company_input)
if company:
# ✅ OPTIMIZATION: Return basic info directly without calling get_company_info
# search_company_by_name already returns: cik, name, ticker
# Only call get_company_info if we need SIC code or description
# For basic searches, the ticker data is sufficient
# This eliminates the 3-5 second delay from get_company_info
result = {
"cik": company['cik'],
"name": company['name'],
"tickers": [company['ticker']] if company.get('ticker') else [],
"_source": "company_tickers_cache" # Debug info
}
self._search_cache[company_input] = result
return result
else:
return {"error": "No matching company found"}
def get_company_filings_list(self, cik, form_types=['10-K', '10-Q']):
"""
Get company filings list
Args:
cik (str): Company CIK
form_types (list): List of form types
Returns:
list: Filings list
"""
filings = self.edgar_client.get_company_filings(cik, form_types)
return filings
def extract_financial_metrics(self, cik, years=3):
"""
Extract financial metrics for specified number of years (optimized)
Args:
cik (str): Company CIK
years (int): Number of years to extract, default is 3 years
Returns:
list: List of financial data
"""
# 实例级缓存检查(避免重复计算)
cache_key = f"{cik}_{years}"
if cache_key in self._extract_metrics_cache:
return self._extract_metrics_cache[cache_key]
financial_data = []
# Step 1: Get company facts ONCE (will be cached)
facts = self.edgar_client.get_company_facts(cik)
if not facts:
return []
# Step 2: Get company filings ONCE to determine available years
# Use tuple for caching compatibility
filings_10k = self.edgar_client.get_company_filings(cik, ('10-K',))
filings_20f = self.edgar_client.get_company_filings(cik, ('20-F',))
all_annual_filings = filings_10k + filings_20f
if not all_annual_filings:
return []
# Detect if company is a 20-F filer (foreign company)
is_20f_filer = len(filings_20f) > 0 and len(filings_10k) == 0
has_quarterly = False # 20-F filers typically don't have quarterly reports
# Step 3: Extract filing years from annual reports
filing_year_map = {} # Map: filing_year -> list of filings
for filing in all_annual_filings:
filing_date = filing.get('filing_date', '')
if filing_date and len(filing_date) >= 4:
try:
file_year = int(filing_date[:4])
if file_year not in filing_year_map:
filing_year_map[file_year] = []
filing_year_map[file_year].append(filing)
except ValueError:
continue
if not filing_year_map:
return []
# Step 4: Sort years in descending order and take the most recent N years
sorted_years = sorted(filing_year_map.keys(), reverse=True)
target_years = sorted_years[:years]
# Step 5: Map filing years to fiscal years using facts (already fetched)
filing_to_fiscal_year = {} # Map: filing_year -> fiscal_year
# Try to map filing years to fiscal years using Company Facts
for data_source in ["us-gaap", "ifrs-full"]:
if data_source in facts.get("facts", {}):
source_data = facts["facts"][data_source]
# Look for Revenue tag to get fiscal year mapping
revenue_tags = ["Revenues", "RevenueFromContractWithCustomerExcludingAssessedTax",
"Revenue", "RevenueFromContractWithCustomer"]
for tag in revenue_tags:
if tag in source_data:
units = source_data[tag].get("units", {})
if "USD" in units:
for entry in units["USD"]:
form = entry.get("form", "")
fy = entry.get("fy", 0)
filed = entry.get("filed", "") # Filing date
fp = entry.get("fp", "")
# Map filing year to fiscal year
if form in ["10-K", "20-F"] and fy > 0 and filed and (fp == "FY" or not fp):
if len(filed) >= 10: # Format: YYYY-MM-DD
try:
file_year = int(filed[:4])
# Store the mapping: filing_year -> fiscal_year
if file_year not in filing_to_fiscal_year:
filing_to_fiscal_year[file_year] = fy
except ValueError:
continue
break # Found revenue tag, no need to check more
# Step 6: Generate period list for target years
# For each year: FY -> Q4 -> Q3 -> Q2 -> Q1 (descending order)
# For 20-F filers: only FY (no quarterly data)
periods = []
for file_year in target_years:
# Try to get fiscal year from mapping, otherwise use filing year
fiscal_year = filing_to_fiscal_year.get(file_year, file_year)
# First add annual data for this fiscal year
periods.append({
'period': str(fiscal_year),
'type': 'annual',
'fiscal_year': fiscal_year,
'filing_year': file_year
})
# Only add quarterly data for 10-K filers (not for 20-F filers)
if not is_20f_filer:
# Then add quarterly data in descending order: Q4, Q3, Q2, Q1
for quarter in range(4, 0, -1):
periods.append({
'period': f"{fiscal_year}Q{quarter}",
'type': 'quarterly',
'fiscal_year': fiscal_year,
'filing_year': file_year
})
# Step 7: Get financial data for each period
for idx, period_info in enumerate(periods):
period = period_info['period']
fiscal_year = period_info['fiscal_year']
data = self.edgar_client.get_financial_data_for_period(cik, period)
if data and "period" in data:
# Add fiscal year prefix for annual data
if period_info['type'] == 'annual':
data["period"] = f"FY{fiscal_year}"
# Add sequence number to maintain order
data["_sequence"] = idx
financial_data.append(data)
# 缓存结果
if financial_data:
self._extract_metrics_cache[cache_key] = financial_data
return financial_data
def get_latest_financial_data(self, cik):
"""
Get latest financial data (optimized)
Args:
cik (str): Company CIK
Returns:
dict: Latest financial data
"""
# Get latest filing year (supports 10-K and 20-F)
# Use tuple for caching
filings_10k = self.edgar_client.get_company_filings(cik, ('10-K',))
filings_20f = self.edgar_client.get_company_filings(cik, ('20-F',))
filings = filings_10k + filings_20f
if not filings:
return {}
# Get latest filing year
latest_filing_year = None
for filing in filings:
if 'filing_date' in filing and filing['filing_date']:
try:
filing_year = int(filing['filing_date'][:4])
if latest_filing_year is None or filing_year > latest_filing_year:
latest_filing_year = filing_year
except ValueError:
continue
if latest_filing_year is None:
return {}
# Get financial data for latest year
return self.edgar_client.get_financial_data_for_period(cik, str(latest_filing_year))
def format_financial_data(self, financial_data):
"""
Format financial data for display
Args:
financial_data (dict or list): Financial data
Returns:
dict or list: Formatted financial data
"""
if isinstance(financial_data, list):
# Sort by _sequence to maintain correct order (FY -> Q4 -> Q3 -> Q2 -> Q1)
sorted_data = sorted(financial_data, key=lambda x: x.get("_sequence", 999))
formatted_data = []
for data in sorted_data:
formatted_data.append(self._format_single_financial_data(data))
return formatted_data
else:
return self._format_single_financial_data(financial_data)
def _format_single_financial_data(self, data):
"""
Format single financial data entry - optimized structure
Args:
data (dict): Financial data with new optimized structure
Returns:
dict: Formatted financial data
"""
formatted = {
"period": data.get("period"),
"_sequence": data.get("_sequence")
}
# Handle new optimized structure with metrics
if "metrics" in data and isinstance(data["metrics"], dict):
# Extract metrics to top level for backward compatibility
for metric_key, metric_data in data["metrics"].items():
if isinstance(metric_data, dict):
formatted[metric_key] = metric_data.get("value")
else:
# Fallback for old format
formatted[metric_key] = metric_data
# Add metadata to top level
if "_metadata" in data:
metadata = data["_metadata"]
formatted["source_url"] = metadata.get("source_url")
formatted["source_form"] = metadata.get("form")
formatted["data_source"] = metadata.get("data_source")
else:
# Fallback: old format compatibility
formatted.update(data)
# Ensure all key fields exist, even if None
key_fields = ['total_revenue', 'net_income', 'earnings_per_share',
'operating_expenses', 'operating_cash_flow', 'source_url', 'source_form']
for key in key_fields:
if key not in formatted:
formatted[key] = None
# Format EPS, keep two decimal places
if 'earnings_per_share' in formatted and isinstance(formatted['earnings_per_share'], (int, float)):
formatted['earnings_per_share'] = round(formatted['earnings_per_share'], 2)
return formatted
|