File size: 13,810 Bytes
1643511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
941f17c
 
 
 
1643511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
941f17c
1643511
 
 
 
 
 
 
 
 
 
 
 
 
941f17c
 
 
 
 
 
 
 
 
 
1643511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ce56e4
1643511
 
1ce56e4
1643511
 
 
 
1ce56e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1643511
 
1ce56e4
 
1643511
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
"""Financial Data Analysis Module"""

from EasyReportDataMCP.edgar_client import EdgarDataClient
from datetime import datetime
from functools import lru_cache
import json


class FinancialAnalyzer:
    def __init__(self, user_agent="Juntao Peng Financial Report Metrics App ([email protected])"):
        """

        Initialize financial analyzer

        

        Args:

            user_agent (str): User agent string for identifying request source

        """
        self.edgar_client = EdgarDataClient(user_agent)
        # 新增:实例级缓存,进一步提升性能
        self._search_cache = {}
        self._extract_metrics_cache = {}  # 缓存 extract_financial_metrics 结果
        
    def search_company(self, company_input):
        """

        Search company information (by name or CIK) - Optimized version

        

        Args:

            company_input (str): Company name or CIK

            

        Returns:

            dict: Company information

        """
        # 实例级缓存检查
        if company_input in self._search_cache:
            return self._search_cache[company_input]
        
        # If input is numeric, assume it's a CIK
        if company_input.isdigit() and len(company_input) >= 8:
            # Get company information from cache (will use @lru_cache)
            company_info = self.edgar_client.get_company_info(company_input)
            if company_info:
                self._search_cache[company_input] = company_info
                return company_info
            else:
                return {"error": "Company not found for specified CIK"}
        else:
            # Search company by name/ticker (uses cached company_tickers.json)
            company = self.edgar_client.search_company_by_name(company_input)
            if company:
                # ✅ OPTIMIZATION: Return basic info directly without calling get_company_info
                # search_company_by_name already returns: cik, name, ticker
                # Only call get_company_info if we need SIC code or description
                
                # For basic searches, the ticker data is sufficient
                # This eliminates the 3-5 second delay from get_company_info
                result = {
                    "cik": company['cik'],
                    "name": company['name'],
                    "tickers": [company['ticker']] if company.get('ticker') else [],
                    "_source": "company_tickers_cache"  # Debug info
                }
                self._search_cache[company_input] = result
                return result
            else:
                return {"error": "No matching company found"}
    
    def get_company_filings_list(self, cik, form_types=['10-K', '10-Q']):
        """

        Get company filings list

        

        Args:

            cik (str): Company CIK

            form_types (list): List of form types

            

        Returns:

            list: Filings list

        """
        filings = self.edgar_client.get_company_filings(cik, form_types)
        return filings
    
    def extract_financial_metrics(self, cik, years=3):
        """

        Extract financial metrics for specified number of years (optimized)

        

        Args:

            cik (str): Company CIK

            years (int): Number of years to extract, default is 3 years

            

        Returns:

            list: List of financial data

        """
        # 实例级缓存检查(避免重复计算)
        cache_key = f"{cik}_{years}"
        if cache_key in self._extract_metrics_cache:
            return self._extract_metrics_cache[cache_key]
        
        financial_data = []
        
        # Step 1: Get company facts ONCE (will be cached)
        facts = self.edgar_client.get_company_facts(cik)
        if not facts:
            return []
        
        # Step 2: Get company filings ONCE to determine available years
        # Use tuple for caching compatibility
        filings_10k = self.edgar_client.get_company_filings(cik, ('10-K',))
        filings_20f = self.edgar_client.get_company_filings(cik, ('20-F',))
        all_annual_filings = filings_10k + filings_20f
        
        if not all_annual_filings:
            return []
        
        # Detect if company is a 20-F filer (foreign company)
        is_20f_filer = len(filings_20f) > 0 and len(filings_10k) == 0
        has_quarterly = False  # 20-F filers typically don't have quarterly reports
        
        # Step 3: Extract filing years from annual reports
        filing_year_map = {}  # Map: filing_year -> list of filings
        
        for filing in all_annual_filings:
            filing_date = filing.get('filing_date', '')
            if filing_date and len(filing_date) >= 4:
                try:
                    file_year = int(filing_date[:4])
                    if file_year not in filing_year_map:
                        filing_year_map[file_year] = []
                    filing_year_map[file_year].append(filing)
                except ValueError:
                    continue
        
        if not filing_year_map:
            return []
        
        # Step 4: Sort years in descending order and take the most recent N years
        sorted_years = sorted(filing_year_map.keys(), reverse=True)
        target_years = sorted_years[:years]
        
        # Step 5: Map filing years to fiscal years using facts (already fetched)
        filing_to_fiscal_year = {}  # Map: filing_year -> fiscal_year
        
        # Try to map filing years to fiscal years using Company Facts
        for data_source in ["us-gaap", "ifrs-full"]:
            if data_source in facts.get("facts", {}):
                source_data = facts["facts"][data_source]
                
                # Look for Revenue tag to get fiscal year mapping
                revenue_tags = ["Revenues", "RevenueFromContractWithCustomerExcludingAssessedTax", 
                               "Revenue", "RevenueFromContractWithCustomer"]
                
                for tag in revenue_tags:
                    if tag in source_data:
                        units = source_data[tag].get("units", {})
                        if "USD" in units:
                            for entry in units["USD"]:
                                form = entry.get("form", "")
                                fy = entry.get("fy", 0)
                                filed = entry.get("filed", "")  # Filing date
                                fp = entry.get("fp", "")
                                
                                # Map filing year to fiscal year
                                if form in ["10-K", "20-F"] and fy > 0 and filed and (fp == "FY" or not fp):
                                    if len(filed) >= 10:  # Format: YYYY-MM-DD
                                        try:
                                            file_year = int(filed[:4])
                                            # Store the mapping: filing_year -> fiscal_year
                                            if file_year not in filing_to_fiscal_year:
                                                filing_to_fiscal_year[file_year] = fy
                                        except ValueError:
                                            continue
                break  # Found revenue tag, no need to check more
        
        # Step 6: Generate period list for target years
        # For each year: FY -> Q4 -> Q3 -> Q2 -> Q1 (descending order)
        # For 20-F filers: only FY (no quarterly data)
        periods = []
        for file_year in target_years:
            # Try to get fiscal year from mapping, otherwise use filing year
            fiscal_year = filing_to_fiscal_year.get(file_year, file_year)
            
            # First add annual data for this fiscal year
            periods.append({
                'period': str(fiscal_year),
                'type': 'annual',
                'fiscal_year': fiscal_year,
                'filing_year': file_year
            })
            
            # Only add quarterly data for 10-K filers (not for 20-F filers)
            if not is_20f_filer:
                # Then add quarterly data in descending order: Q4, Q3, Q2, Q1
                for quarter in range(4, 0, -1):
                    periods.append({
                        'period': f"{fiscal_year}Q{quarter}",
                        'type': 'quarterly',
                        'fiscal_year': fiscal_year,
                        'filing_year': file_year
                    })
        
        # Step 7: Get financial data for each period
        for idx, period_info in enumerate(periods):
            period = period_info['period']
            fiscal_year = period_info['fiscal_year']
            
            data = self.edgar_client.get_financial_data_for_period(cik, period)
            
            if data and "period" in data:
                # Add fiscal year prefix for annual data
                if period_info['type'] == 'annual':
                    data["period"] = f"FY{fiscal_year}"
                
                # Add sequence number to maintain order
                data["_sequence"] = idx
                
                financial_data.append(data)
        
        # 缓存结果
        if financial_data:
            self._extract_metrics_cache[cache_key] = financial_data
        
        return financial_data
    
    def get_latest_financial_data(self, cik):
        """

        Get latest financial data (optimized)

        

        Args:

            cik (str): Company CIK

            

        Returns:

            dict: Latest financial data

        """
        # Get latest filing year (supports 10-K and 20-F)
        # Use tuple for caching
        filings_10k = self.edgar_client.get_company_filings(cik, ('10-K',))
        filings_20f = self.edgar_client.get_company_filings(cik, ('20-F',))
        filings = filings_10k + filings_20f
        
        if not filings:
            return {}
        
        # Get latest filing year
        latest_filing_year = None
        for filing in filings:
            if 'filing_date' in filing and filing['filing_date']:
                try:
                    filing_year = int(filing['filing_date'][:4])
                    if latest_filing_year is None or filing_year > latest_filing_year:
                        latest_filing_year = filing_year
                except ValueError:
                    continue
        
        if latest_filing_year is None:
            return {}
        
        # Get financial data for latest year
        return self.edgar_client.get_financial_data_for_period(cik, str(latest_filing_year))
    
    def format_financial_data(self, financial_data):
        """

        Format financial data for display

        

        Args:

            financial_data (dict or list): Financial data

            

        Returns:

            dict or list: Formatted financial data

        """
        if isinstance(financial_data, list):
            # Sort by _sequence to maintain correct order (FY -> Q4 -> Q3 -> Q2 -> Q1)
            sorted_data = sorted(financial_data, key=lambda x: x.get("_sequence", 999))
            formatted_data = []
            for data in sorted_data:
                formatted_data.append(self._format_single_financial_data(data))
            return formatted_data
        else:
            return self._format_single_financial_data(financial_data)
    
    def _format_single_financial_data(self, data):
        """

        Format single financial data entry - optimized structure

        

        Args:

            data (dict): Financial data with new optimized structure

            

        Returns:

            dict: Formatted financial data

        """
        formatted = {
            "period": data.get("period"),
            "_sequence": data.get("_sequence")
        }
        
        # Handle new optimized structure with metrics
        if "metrics" in data and isinstance(data["metrics"], dict):
            # Extract metrics to top level for backward compatibility
            for metric_key, metric_data in data["metrics"].items():
                if isinstance(metric_data, dict):
                    formatted[metric_key] = metric_data.get("value")
                else:
                    # Fallback for old format
                    formatted[metric_key] = metric_data
            
            # Add metadata to top level
            if "_metadata" in data:
                metadata = data["_metadata"]
                formatted["source_url"] = metadata.get("source_url")
                formatted["source_form"] = metadata.get("form")
                formatted["data_source"] = metadata.get("data_source")
        else:
            # Fallback: old format compatibility
            formatted.update(data)
        
        # Ensure all key fields exist, even if None
        key_fields = ['total_revenue', 'net_income', 'earnings_per_share', 
                     'operating_expenses', 'operating_cash_flow', 'source_url', 'source_form']
        for key in key_fields:
            if key not in formatted:
                formatted[key] = None
        
        # Format EPS, keep two decimal places
        if 'earnings_per_share' in formatted and isinstance(formatted['earnings_per_share'], (int, float)):
            formatted['earnings_per_share'] = round(formatted['earnings_per_share'], 2)
            
        return formatted