Midnightar commited on
Commit
d6ca5c8
·
verified ·
1 Parent(s): 9935d63

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +65 -0
app.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py
2
+ import base64
3
+ import cv2
4
+ import numpy as np
5
+ import requests
6
+ from fastapi import FastAPI
7
+ from pydantic import BaseModel
8
+ import insightface
9
+
10
+ # Load Face Detector + Recognition Model (first import may download weights)
11
+ model = insightface.app.FaceAnalysis(name="buffalo_l")
12
+ model.prepare(ctx_id=0, det_size=(640, 640))
13
+
14
+ app = FastAPI(title="Face Compare API")
15
+
16
+ class CompareRequest(BaseModel):
17
+ image1: str | None = None # base64
18
+ image2: str | None = None # base64
19
+ image1_url: str | None = None # URL
20
+ image2_url: str | None = None # URL
21
+
22
+ def b64_to_img(b64_string: str):
23
+ try:
24
+ img_data = base64.b64decode(b64_string)
25
+ arr = np.frombuffer(img_data, np.uint8)
26
+ img = cv2.imdecode(arr, cv2.IMREAD_COLOR)
27
+ return img
28
+ except Exception:
29
+ return None
30
+
31
+ def url_to_img(url: str):
32
+ try:
33
+ resp = requests.get(url, timeout=10)
34
+ arr = np.frombuffer(resp.content, np.uint8)
35
+ img = cv2.imdecode(arr, cv2.IMREAD_COLOR)
36
+ return img
37
+ except Exception:
38
+ return None
39
+
40
+ def get_embedding(img):
41
+ faces = model.get(img)
42
+ if len(faces) == 0:
43
+ return None
44
+ return faces[0].embedding
45
+
46
+ @app.post("/compare")
47
+ async def compare_faces(req: CompareRequest):
48
+ # Load images (prefer raw base64, else url)
49
+ img1 = b64_to_img(req.image1) if req.image1 else (url_to_img(req.image1_url) if req.image1_url else None)
50
+ img2 = b64_to_img(req.image2) if req.image2 else (url_to_img(req.image2_url) if req.image2_url else None)
51
+
52
+ if img1 is None or img2 is None:
53
+ return {"error": "Invalid image data or URL."}
54
+
55
+ emb1 = get_embedding(img1)
56
+ emb2 = get_embedding(img2)
57
+
58
+ if emb1 is None or emb2 is None:
59
+ return {"error": "No face detected in one or both images."}
60
+
61
+ # cosine similarity
62
+ similarity = float(np.dot(emb1, emb2) / (np.linalg.norm(emb1) * np.linalg.norm(emb2)))
63
+ matched = similarity > 0.55
64
+
65
+ return {"similarity": similarity, "match": matched}