Spaces:
Sleeping
Sleeping
Commit
·
7995d4a
1
Parent(s):
8a74c03
Update project incl. ontology evaluation + triples test
Browse files- ontology_eval.py +227 -0
- test_ontology_triples.py +31 -0
ontology_eval.py
ADDED
|
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ontology_eval.py
|
| 2 |
+
from __future__ import annotations
|
| 3 |
+
from dataclasses import dataclass, field
|
| 4 |
+
from enum import Enum, IntEnum
|
| 5 |
+
from typing import Dict, List, Optional, Tuple
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
|
| 8 |
+
# ============================================================================
|
| 9 |
+
# ONTOLOGIE-ANBINDUNG (an die in deiner Grafik gezeigten Klassen/Properties)
|
| 10 |
+
# --------------------------------------------------------------------------
|
| 11 |
+
# Klassen (Auszug): ex:Person, ex:Gleis, ex:Bahnsteig, ex:Zug, ex:Gefahr,
|
| 12 |
+
# ex:Videoüberwachung, ex:Sensor, ex:Alarmsystem, ex:Maßnahme
|
| 13 |
+
# Objekt-Properties: ex:befindetSichIn, ex:erkennt, ex:stehtAuf, ex:löstAus,
|
| 14 |
+
# ex:überwacht, ex:beobachtet, ex:meldet, ex:führtZu
|
| 15 |
+
# Daten-Properties : ex:hatKonfidenz (xsd:float), ex:hatZeitstempel (xsd:dateTime),
|
| 16 |
+
# ex:hatPosition (xsd:string), ex:hatBeschreibung (xsd:string)
|
| 17 |
+
# ============================================================================
|
| 18 |
+
|
| 19 |
+
EX = "ex:" # einfacher Prefix (du kannst z.B. "http://example.org/rail#" verwenden)
|
| 20 |
+
|
| 21 |
+
class Severity(IntEnum):
|
| 22 |
+
NONE = 0
|
| 23 |
+
LOW = 1
|
| 24 |
+
MEDIUM = 2
|
| 25 |
+
HIGH = 3
|
| 26 |
+
CRITICAL = 4
|
| 27 |
+
|
| 28 |
+
class HazardLabel(str, Enum):
|
| 29 |
+
PERSON_ON_TRACK = "PersonOnTrack" # ex:Person befindetSichIn ex:Gleis
|
| 30 |
+
NEAR_EDGE_TRAIN = "NearEdgeWithTrain" # ex:Person stehtAuf ex:BahnsteigKante ∧ ex:Zug in Szene
|
| 31 |
+
FALLEN_PERSON = "FallenPersonNearTrack" # ex:Person liegt/gestürzt nahe Gleis
|
| 32 |
+
OBJECT_ON_TRACK = "ObjectOnTrack" # ex:Objekt befindetSichIn ex:Gleis
|
| 33 |
+
SMOKE_FIRE = "SmokeOrFire" # ex:Rauch/Feuer als Gefahr
|
| 34 |
+
CROWD_OVERFLOW = "CrowdOverflowOnTrack" # ex:Menschenmenge im Gleisbereich
|
| 35 |
+
|
| 36 |
+
@dataclass
|
| 37 |
+
class Observation:
|
| 38 |
+
"""Beobachtungen/Signale für eine Szene (alle Werte ∈ [0,1] sind Konfidenzen)."""
|
| 39 |
+
# Kontext-Geometrie
|
| 40 |
+
distance_to_edge_m: Optional[float] = None
|
| 41 |
+
train_approaching: float = 0.0
|
| 42 |
+
# Detektor-Konfidenzen
|
| 43 |
+
on_track_person: float = 0.0
|
| 44 |
+
fallen_person: float = 0.0
|
| 45 |
+
object_on_track: float = 0.0
|
| 46 |
+
smoke_or_fire: float = 0.0
|
| 47 |
+
crowd_on_track: float = 0.0
|
| 48 |
+
# Bias (Recall-Priorisierung)
|
| 49 |
+
class_threshold_recall_bias: float = 0.35
|
| 50 |
+
# Zusatzinfos
|
| 51 |
+
notes: Dict[str, float] = field(default_factory=dict)
|
| 52 |
+
|
| 53 |
+
@dataclass
|
| 54 |
+
class HazardDecision:
|
| 55 |
+
severity: Severity
|
| 56 |
+
score_0_100: int
|
| 57 |
+
labels: List[HazardLabel]
|
| 58 |
+
explanations: List[str]
|
| 59 |
+
fired_rules: List[str]
|
| 60 |
+
|
| 61 |
+
# --------------------------- REGELWERK ---------------------------------------
|
| 62 |
+
|
| 63 |
+
def _passes(p: float, thr: float) -> bool:
|
| 64 |
+
return p >= thr
|
| 65 |
+
|
| 66 |
+
def evaluate(ob: Observation) -> HazardDecision:
|
| 67 |
+
"""Regelbasierte Bewertung mit erklärbarer Ausgabe (Ontologie-gedacht)."""
|
| 68 |
+
thr = ob.class_threshold_recall_bias
|
| 69 |
+
labels: List[HazardLabel] = []
|
| 70 |
+
explains: List[str] = []
|
| 71 |
+
fired: List[str] = []
|
| 72 |
+
score_terms: List[Tuple[Severity, float]] = []
|
| 73 |
+
|
| 74 |
+
# R1 — ex:Person ex:befindetSichIn ex:Gleis → Kritisch
|
| 75 |
+
if _passes(ob.on_track_person, thr):
|
| 76 |
+
labels.append(HazardLabel.PERSON_ON_TRACK)
|
| 77 |
+
fired.append("R1_befindetSichIn_Gleis")
|
| 78 |
+
explains.append(f"R1: Person im Gleis erkannt (p={ob.on_track_person:.2f}).")
|
| 79 |
+
score_terms.append((Severity.CRITICAL, 0.85 + 0.15 * ob.on_track_person))
|
| 80 |
+
|
| 81 |
+
# R2 — Nahe Kante + Zug → Hoch
|
| 82 |
+
if (ob.distance_to_edge_m is not None and ob.distance_to_edge_m <= 0.5) and _passes(ob.train_approaching, thr):
|
| 83 |
+
labels.append(HazardLabel.NEAR_EDGE_TRAIN)
|
| 84 |
+
fired.append("R2_stehtAuf_Bahnsteigkante_und_Zug")
|
| 85 |
+
explains.append(
|
| 86 |
+
f"R2: ≤0.5 m zur Kante (d={ob.distance_to_edge_m:.2f} m) & Zug (p={ob.train_approaching:.2f})."
|
| 87 |
+
)
|
| 88 |
+
score_terms.append((Severity.HIGH, 0.75 + 0.25 * ob.train_approaching))
|
| 89 |
+
|
| 90 |
+
# R3 — Gestürzte Person nahe Kante/auf Gleis → Hoch/Kritisch
|
| 91 |
+
if _passes(ob.fallen_person, thr):
|
| 92 |
+
if (ob.distance_to_edge_m is not None and ob.distance_to_edge_m <= 1.0) or _passes(ob.on_track_person, thr):
|
| 93 |
+
labels.append(HazardLabel.FALLEN_PERSON)
|
| 94 |
+
fired.append("R3_fallenPerson_in_Gefahrenzone")
|
| 95 |
+
explains.append(f"R3: Gestürzte Person (p={ob.fallen_person:.2f}).")
|
| 96 |
+
sev = Severity.CRITICAL if _passes(ob.on_track_person, thr) else Severity.HIGH
|
| 97 |
+
base = 0.80 if sev is Severity.CRITICAL else 0.70
|
| 98 |
+
score_terms.append((sev, base + 0.20 * ob.fallen_person))
|
| 99 |
+
|
| 100 |
+
# R4 — Objekt im Gleis → Mittel
|
| 101 |
+
if _passes(ob.object_on_track, thr):
|
| 102 |
+
labels.append(HazardLabel.OBJECT_ON_TRACK)
|
| 103 |
+
fired.append("R4_Objekt_im_Gleis")
|
| 104 |
+
explains.append(f"R4: Objekt im Gleis (p={ob.object_on_track:.2f}).")
|
| 105 |
+
score_terms.append((Severity.MEDIUM, 0.60 + 0.30 * ob.object_on_track))
|
| 106 |
+
|
| 107 |
+
# R5 — Rauch/Feuer → Hoch
|
| 108 |
+
if _passes(ob.smoke_or_fire, thr):
|
| 109 |
+
labels.append(HazardLabel.SMOKE_FIRE)
|
| 110 |
+
fired.append("R5_Rauch_oder_Feuer")
|
| 111 |
+
explains.append(f"R5: Rauch/Feuer (p={ob.smoke_or_fire:.2f}).")
|
| 112 |
+
score_terms.append((Severity.HIGH, 0.70 + 0.25 * ob.smoke_or_fire))
|
| 113 |
+
|
| 114 |
+
# R6 — Menschenmenge im Gleis → Kritisch
|
| 115 |
+
if _passes(ob.crowd_on_track, thr):
|
| 116 |
+
labels.append(HazardLabel.CROWD_OVERFLOW)
|
| 117 |
+
fired.append("R6_Menschenmenge_im_Gleisbereich")
|
| 118 |
+
explains.append(f"R6: Crowd im Gleis (p={ob.crowd_on_track:.2f}).")
|
| 119 |
+
score_terms.append((Severity.CRITICAL, 0.80 + 0.20 * ob.crowd_on_track))
|
| 120 |
+
|
| 121 |
+
if not score_terms:
|
| 122 |
+
return HazardDecision(
|
| 123 |
+
severity=Severity.NONE,
|
| 124 |
+
score_0_100=0,
|
| 125 |
+
labels=[],
|
| 126 |
+
explanations=["Keine Gefahrenrelation erfüllt."],
|
| 127 |
+
fired_rules=[]
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
sev_weights = {Severity.NONE:0.0, Severity.LOW:0.25, Severity.MEDIUM:0.55, Severity.HIGH:0.80, Severity.CRITICAL:1.0}
|
| 131 |
+
best = max(score_terms, key=lambda t: sev_weights[t[0]] * t[1])
|
| 132 |
+
best_sev, best_p = best
|
| 133 |
+
final_score = int(round(100 * sev_weights[best_sev] * best_p))
|
| 134 |
+
|
| 135 |
+
labels = list(dict.fromkeys(labels))
|
| 136 |
+
return HazardDecision(best_sev, final_score, labels, explains, fired)
|
| 137 |
+
|
| 138 |
+
# --------------------------- RDF/TRIPLES -------------------------------------
|
| 139 |
+
@dataclass
|
| 140 |
+
class OntologyContext:
|
| 141 |
+
"""IDs/Metadaten für Tripel (du kannst echte IRIs verwenden)."""
|
| 142 |
+
person_id: str = "person1"
|
| 143 |
+
sensor_id: str = "sensor1"
|
| 144 |
+
video_system_id: str = "videoSys1"
|
| 145 |
+
track_id: str = "gleis1"
|
| 146 |
+
platform_id: str = "bahnsteig1"
|
| 147 |
+
alarm_id: str = "alarm1"
|
| 148 |
+
measure_id: str = "massnahme1"
|
| 149 |
+
event_id: str = "event1"
|
| 150 |
+
timestamp: datetime = field(default_factory=datetime.utcnow)
|
| 151 |
+
position: Optional[str] = None # z.B. "x=123,y=45,cam=2"
|
| 152 |
+
|
| 153 |
+
def _lit(value: str, dtype: str) -> str:
|
| 154 |
+
# Turtle-ähnlicher Literal-Renderer
|
| 155 |
+
return f"\"{value}\"^^{dtype}"
|
| 156 |
+
|
| 157 |
+
def decision_to_triples(dec: HazardDecision, ob: Observation, ctx: OntologyContext) -> List[Tuple[str,str,str]]:
|
| 158 |
+
"""
|
| 159 |
+
Erzeugt RDF-ähnliche Tripel basierend auf der Ontologie aus deiner Grafik.
|
| 160 |
+
Nur stdlib; Ausgabe als einfache (s, p, o)-Tupel (Turtle-artig).
|
| 161 |
+
"""
|
| 162 |
+
triples: List[Tuple[str,str,str]] = []
|
| 163 |
+
|
| 164 |
+
# Typisierungen (rdf:type)
|
| 165 |
+
triples += [
|
| 166 |
+
(EX+ctx.person_id, "rdf:type", EX+"Person"),
|
| 167 |
+
(EX+ctx.sensor_id, "rdf:type", EX+"Sensor"),
|
| 168 |
+
(EX+ctx.video_system_id, "rdf:type", EX+"Videoüberwachung"),
|
| 169 |
+
(EX+ctx.track_id, "rdf:type", EX+"Gleis"),
|
| 170 |
+
(EX+ctx.platform_id, "rdf:type", EX+"Bahnsteig"),
|
| 171 |
+
(EX+ctx.alarm_id, "rdf:type", EX+"Alarmsystem"),
|
| 172 |
+
(EX+ctx.measure_id, "rdf:type", EX+"Maßnahme"),
|
| 173 |
+
(EX+ctx.event_id, "rdf:type", EX+"Ereignis"),
|
| 174 |
+
(EX+"gef1", "rdf:type", EX+"Gefahr"),
|
| 175 |
+
]
|
| 176 |
+
|
| 177 |
+
# Überwachung/Beobachtungskette
|
| 178 |
+
triples += [
|
| 179 |
+
(EX+ctx.video_system_id, EX+"überwacht", EX+ctx.platform_id),
|
| 180 |
+
(EX+ctx.sensor_id, EX+"beobachtet", EX+ctx.platform_id),
|
| 181 |
+
(EX+ctx.sensor_id, EX+"erkennt", EX+ctx.person_id),
|
| 182 |
+
]
|
| 183 |
+
|
| 184 |
+
# Daten-Properties
|
| 185 |
+
triples.append((EX+ctx.event_id, EX+"hatZeitstempel", _lit(ctx.timestamp.isoformat(), "xsd:dateTime")))
|
| 186 |
+
if ctx.position:
|
| 187 |
+
triples.append((EX+ctx.person_id, EX+"hatPosition", _lit(ctx.position, "xsd:string")))
|
| 188 |
+
|
| 189 |
+
# Konfidenzen (nur wenn gesetzt)
|
| 190 |
+
def add_conf(name: str, val: float):
|
| 191 |
+
triples.append((EX+name, EX+"hatKonfidenz", _lit(f"{val:.3f}", "xsd:float")))
|
| 192 |
+
|
| 193 |
+
if ob.on_track_person: add_conf(ctx.person_id, ob.on_track_person)
|
| 194 |
+
if ob.object_on_track: triples.append((EX+"obj1", "rdf:type", EX+"Objekt")) or add_conf("obj1", ob.object_on_track)
|
| 195 |
+
if ob.smoke_or_fire: triples.append((EX+"smk1", "rdf:type", EX+"Unfall")) or add_conf("smk1", ob.smoke_or_fire)
|
| 196 |
+
|
| 197 |
+
# Ontologische Kernaussagen je nach Label
|
| 198 |
+
for lab in dec.labels:
|
| 199 |
+
if lab == HazardLabel.PERSON_ON_TRACK:
|
| 200 |
+
triples.append((EX+ctx.person_id, EX+"befindetSichIn", EX+ctx.track_id))
|
| 201 |
+
elif lab == HazardLabel.NEAR_EDGE_TRAIN:
|
| 202 |
+
# approximiert: Person steht (nahe) auf Bahnsteigkante
|
| 203 |
+
triples.append((EX+ctx.person_id, EX+"stehtAuf", EX+ctx.platform_id))
|
| 204 |
+
elif lab == HazardLabel.OBJECT_ON_TRACK:
|
| 205 |
+
triples.append((EX+"obj1", EX+"befindetSichIn", EX+ctx.track_id))
|
| 206 |
+
elif lab == HazardLabel.CROWD_OVERFLOW:
|
| 207 |
+
triples.append((EX+ctx.platform_id, EX+"istZugaenglich", _lit("false", "xsd:boolean")))
|
| 208 |
+
|
| 209 |
+
# Gefahr → löstAus → Alarm; Alarm → führtZu → Maßnahme
|
| 210 |
+
triples += [
|
| 211 |
+
(EX+"gef1", EX+"hatBeschreibung", _lit(f"Severity={dec.severity.name}; Score={dec.score_0_100}", "xsd:string")),
|
| 212 |
+
(EX+"gef1", EX+"löstAus", EX+ctx.alarm_id),
|
| 213 |
+
(EX+ctx.alarm_id, EX+"führtZu", EX+ctx.measure_id),
|
| 214 |
+
(EX+ctx.alarm_id, EX+"meldet", EX+"Polizei"), # optionaler Meldeweg
|
| 215 |
+
]
|
| 216 |
+
|
| 217 |
+
return triples
|
| 218 |
+
|
| 219 |
+
def triples_to_turtle(triples: List[Tuple[str,str,str]]) -> str:
|
| 220 |
+
"""Kleine Pretty-Printer-Hilfe für Logs/Datei-Export."""
|
| 221 |
+
lines = []
|
| 222 |
+
for s,p,o in triples:
|
| 223 |
+
if not o.startswith(EX) and not o.startswith("\""):
|
| 224 |
+
# Literale sind schon getaggt; ansonsten als Ressourcen belassen
|
| 225 |
+
o = o
|
| 226 |
+
lines.append(f"{s} {p} {o} .")
|
| 227 |
+
return "\n".join(lines)
|
test_ontology_triples.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# test_ontology_triples.py
|
| 2 |
+
from ontology_eval import Observation, evaluate, OntologyContext, decision_to_triples, triples_to_turtle
|
| 3 |
+
|
| 4 |
+
if __name__ == "__main__":
|
| 5 |
+
# Szenario: Person im Gleis + Zug naht -> kritisch
|
| 6 |
+
ob = Observation(
|
| 7 |
+
on_track_person=0.88,
|
| 8 |
+
train_approaching=0.9,
|
| 9 |
+
distance_to_edge_m=0.3
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
dec = evaluate(ob)
|
| 13 |
+
print(f"SEVERITY: {dec.severity.name} SCORE: {dec.score_0_100}")
|
| 14 |
+
for e in dec.explanations:
|
| 15 |
+
print(" -", e)
|
| 16 |
+
|
| 17 |
+
ctx = OntologyContext(
|
| 18 |
+
person_id="person42",
|
| 19 |
+
sensor_id="cam02",
|
| 20 |
+
video_system_id="videosysA",
|
| 21 |
+
track_id="gleis_3",
|
| 22 |
+
platform_id="bahnsteig_3",
|
| 23 |
+
alarm_id="alarm_4711",
|
| 24 |
+
measure_id="massnahme_stop",
|
| 25 |
+
event_id="event_2023_001",
|
| 26 |
+
position="x=123.4,y=56.7,cam=2"
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
triples = decision_to_triples(dec, ob, ctx)
|
| 30 |
+
print("\n--- Turtle ---")
|
| 31 |
+
print(triples_to_turtle(triples))
|