Nikman800 commited on
Commit
1ee9aec
·
verified ·
1 Parent(s): 7bd88c8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +107 -0
app.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoImageProcessor, SegformerForSemanticSegmentation, pipeline
3
+ from PIL import Image, ImageOps, ImageFilter
4
+ import numpy as np
5
+ import torch
6
+
7
+ # ----- Load models once -----
8
+ seg_model_id = "nvidia/segformer-b0-finetuned-ade-512-512"
9
+ depth_model_id = "depth-anything/Depth-Anything-V2-Base-hf"
10
+
11
+ seg_processor = AutoImageProcessor.from_pretrained(seg_model_id)
12
+ seg_model = SegformerForSemanticSegmentation.from_pretrained(seg_model_id)
13
+
14
+ depth_pipe = pipeline(
15
+ task="depth-estimation",
16
+ model=depth_model_id,
17
+ device=0 if torch.cuda.is_available() else -1,
18
+ )
19
+
20
+ # ----- Gaussian background blur using segmentation -----
21
+ def gaussian_background_blur(img: Image.Image) -> Image.Image:
22
+ img = ImageOps.fit(img.convert("RGB"), (512, 512), method=Image.BICUBIC)
23
+
24
+ inputs = seg_processor(images=img, return_tensors="pt")
25
+ with torch.no_grad():
26
+ outputs = seg_model(**inputs)
27
+
28
+ logits = outputs.logits
29
+ upsampled = torch.nn.functional.interpolate(
30
+ logits, size=(512, 512), mode="bilinear", align_corners=False
31
+ )
32
+ seg = upsampled.argmax(dim=1)[0].cpu().numpy()
33
+
34
+ id2label = seg_model.config.id2label
35
+ person_ids = [i for i, label in id2label.items() if "person" in label.lower()]
36
+ mask = np.isin(seg, person_ids).astype(np.uint8)
37
+
38
+ mask_pil = Image.fromarray(mask * 255, mode="L")
39
+ blurred_bg = img.filter(ImageFilter.GaussianBlur(radius=15))
40
+ out = Image.composite(img, blurred_bg, mask_pil)
41
+ return out
42
+
43
+ # ----- Depth-based lens blur -----
44
+ def depth_lens_blur(img: Image.Image) -> Image.Image:
45
+ img = ImageOps.fit(img.convert("RGB"), (512, 512), method=Image.BICUBIC)
46
+
47
+ depth_output = depth_pipe(img)
48
+ depth_tensor = depth_output["predicted_depth"]
49
+ depth_np = depth_tensor.squeeze().cpu().numpy()
50
+
51
+ # normalize, then invert so far = more blur, near = sharp
52
+ d_min, d_max = depth_np.min(), depth_np.max()
53
+ depth_norm = (depth_np - d_min) / (d_max - d_min + 1e-8) # [0,1]
54
+ blur_norm = 1.0 - depth_norm # near≈1 -> 0 blur, far≈0 -> 1 blur
55
+
56
+ max_radius = 15.0
57
+ num_levels = 6
58
+ radii = np.linspace(0, max_radius, num_levels)
59
+ blurred_versions = [
60
+ img.filter(ImageFilter.GaussianBlur(radius=float(r))) for r in radii
61
+ ]
62
+ blurred_np = [np.array(b) for b in blurred_versions]
63
+
64
+ level_size = 1.0 / (num_levels - 1)
65
+ blur_levels = np.floor(blur_norm / level_size).astype(np.int32)
66
+ blur_levels = np.clip(blur_levels, 0, num_levels - 1)
67
+
68
+ H, W = blur_levels.shape
69
+ out_np = np.zeros((H, W, 3), dtype=np.uint8)
70
+
71
+ for lvl in range(num_levels):
72
+ mask = blur_levels == lvl
73
+ if not np.any(mask):
74
+ continue
75
+ mask_3c = np.repeat(mask[:, :, None], 3, axis=2)
76
+ out_np[mask_3c] = blurred_np[lvl][mask_3c]
77
+
78
+ return Image.fromarray(out_np)
79
+
80
+ # ----- Gradio UI -----
81
+ def apply_effect(img, mode):
82
+ if img is None:
83
+ return None
84
+ if mode == "Gaussian background blur":
85
+ return gaussian_background_blur(img)
86
+ elif mode == "Depth-based lens blur":
87
+ return depth_lens_blur(img)
88
+ else:
89
+ return img
90
+
91
+ demo = gr.Interface(
92
+ fn=apply_effect,
93
+ inputs=[
94
+ gr.Image(type="pil", label="Upload an image"),
95
+ gr.Radio(
96
+ ["Gaussian background blur", "Depth-based lens blur"],
97
+ value="Gaussian background blur",
98
+ label="Effect",
99
+ ),
100
+ ],
101
+ outputs=gr.Image(label="Output"),
102
+ title="Gaussian & Depth-based Lens Blur Demo",
103
+ description="Upload a selfie or scene and choose Gaussian background blur or depth-based lens blur.",
104
+ )
105
+
106
+ if __name__ == "__main__":
107
+ demo.launch()