Spaces:
Running
on
Zero
Running
on
Zero
Update decoder.py
Browse files- decoder.py +60 -10
decoder.py
CHANGED
|
@@ -26,29 +26,79 @@ def load_config(config_path=None):
|
|
| 26 |
return config
|
| 27 |
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
class SketchDecoder(nn.Module):
|
| 30 |
"""
|
| 31 |
-
Autoregressive generative model
|
| 32 |
"""
|
| 33 |
-
def __init__(self, config_path=None, model_path=None, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
super().__init__()
|
| 35 |
|
| 36 |
config_data = load_config(config_path)
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
model_config = config_data.get('model', {})
|
| 39 |
-
huggingface_config = config_data.get('huggingface', {})
|
| 40 |
|
| 41 |
self.bos_token_id = model_config['bos_token_id']
|
| 42 |
self.eos_token_id = model_config['eos_token_id']
|
| 43 |
self.pad_token_id = model_config['pad_token_id']
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
| 49 |
|
|
|
|
| 50 |
if model_path is None:
|
| 51 |
-
model_path =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
config = AutoConfig.from_pretrained(
|
| 54 |
model_path,
|
|
@@ -61,7 +111,7 @@ class SketchDecoder(nn.Module):
|
|
| 61 |
self.transformer = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 62 |
model_path,
|
| 63 |
config=config,
|
| 64 |
-
torch_dtype=
|
| 65 |
attn_implementation="sdpa",
|
| 66 |
device_map="auto",
|
| 67 |
ignore_mismatched_sizes=True
|
|
@@ -70,4 +120,4 @@ class SketchDecoder(nn.Module):
|
|
| 70 |
self.transformer.resize_token_embeddings(self.vocab_size)
|
| 71 |
|
| 72 |
def forward(self, *args, **kwargs):
|
| 73 |
-
raise NotImplementedError("Forward pass not included in open-source version")
|
|
|
|
| 26 |
return config
|
| 27 |
|
| 28 |
|
| 29 |
+
def get_model_specific_value(config, model_size, *keys):
|
| 30 |
+
"""Get model-specific config value with fallback to shared config."""
|
| 31 |
+
# Try model-specific config first
|
| 32 |
+
model_cfg = config.get('models', {}).get(model_size, {})
|
| 33 |
+
value = model_cfg
|
| 34 |
+
for key in keys:
|
| 35 |
+
if isinstance(value, dict) and key in value:
|
| 36 |
+
value = value[key]
|
| 37 |
+
else:
|
| 38 |
+
value = None
|
| 39 |
+
break
|
| 40 |
+
|
| 41 |
+
# Fallback to shared config if not found
|
| 42 |
+
if value is None:
|
| 43 |
+
value = config
|
| 44 |
+
for key in keys:
|
| 45 |
+
if isinstance(value, dict) and key in value:
|
| 46 |
+
value = value[key]
|
| 47 |
+
else:
|
| 48 |
+
return None
|
| 49 |
+
|
| 50 |
+
return value
|
| 51 |
+
|
| 52 |
+
|
| 53 |
class SketchDecoder(nn.Module):
|
| 54 |
"""
|
| 55 |
+
Autoregressive generative model - supports both 8B and 4B models
|
| 56 |
"""
|
| 57 |
+
def __init__(self, config_path=None, model_path=None, model_size=None, **kwargs):
|
| 58 |
+
"""
|
| 59 |
+
Initialize SketchDecoder.
|
| 60 |
+
|
| 61 |
+
Args:
|
| 62 |
+
config_path: Path to config.yaml
|
| 63 |
+
model_path: HuggingFace model path (overrides config if provided)
|
| 64 |
+
model_size: Model size ("8B" or "4B"). If None, uses default from config.
|
| 65 |
+
**kwargs: Additional arguments (e.g., torch_dtype, pix_len, text_len)
|
| 66 |
+
"""
|
| 67 |
super().__init__()
|
| 68 |
|
| 69 |
config_data = load_config(config_path)
|
| 70 |
|
| 71 |
+
# Determine model size
|
| 72 |
+
self.model_size = model_size or config_data.get('default_model_size', '8B')
|
| 73 |
+
if self.model_size not in config_data.get('models', {}):
|
| 74 |
+
raise ValueError(f"Invalid model_size: {self.model_size}. Must be one of: {list(config_data.get('models', {}).keys())}")
|
| 75 |
+
|
| 76 |
+
print(f"[SketchDecoder] Initializing with model_size: {self.model_size}")
|
| 77 |
+
|
| 78 |
+
# Get model-specific and shared configs
|
| 79 |
model_config = config_data.get('model', {})
|
|
|
|
| 80 |
|
| 81 |
self.bos_token_id = model_config['bos_token_id']
|
| 82 |
self.eos_token_id = model_config['eos_token_id']
|
| 83 |
self.pad_token_id = model_config['pad_token_id']
|
| 84 |
|
| 85 |
+
# Get vocab_size from model-specific config
|
| 86 |
+
self.vocab_size = get_model_specific_value(config_data, self.model_size, 'model', 'vocab_size')
|
| 87 |
+
if self.vocab_size is None:
|
| 88 |
+
self.vocab_size = model_config.get(
|
| 89 |
+
'vocab_size',
|
| 90 |
+
max(self.bos_token_id, self.eos_token_id, self.pad_token_id) + 1
|
| 91 |
+
)
|
| 92 |
|
| 93 |
+
# Determine model path
|
| 94 |
if model_path is None:
|
| 95 |
+
model_path = get_model_specific_value(config_data, self.model_size, 'huggingface', 'qwen_model')
|
| 96 |
+
|
| 97 |
+
print(f"[SketchDecoder] Using Qwen model: {model_path}")
|
| 98 |
+
print(f"[SketchDecoder] Vocab size: {self.vocab_size}")
|
| 99 |
+
|
| 100 |
+
# Get torch_dtype from kwargs or use default
|
| 101 |
+
torch_dtype = kwargs.get('torch_dtype', torch.bfloat16)
|
| 102 |
|
| 103 |
config = AutoConfig.from_pretrained(
|
| 104 |
model_path,
|
|
|
|
| 111 |
self.transformer = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 112 |
model_path,
|
| 113 |
config=config,
|
| 114 |
+
torch_dtype=torch_dtype,
|
| 115 |
attn_implementation="sdpa",
|
| 116 |
device_map="auto",
|
| 117 |
ignore_mismatched_sizes=True
|
|
|
|
| 120 |
self.transformer.resize_token_embeddings(self.vocab_size)
|
| 121 |
|
| 122 |
def forward(self, *args, **kwargs):
|
| 123 |
+
raise NotImplementedError("Forward pass not included in open-source version")
|