File size: 31,752 Bytes
8966134 1805880 8966134 77844f2 8f78162 1805880 99cd3b7 8f78162 b7ce5d6 1805880 a127a50 bc4eaf5 1805880 99cd3b7 1805880 8966134 99cd3b7 8966134 da9ad0b 99cd3b7 8f78162 667780f 8f78162 99cd3b7 8f78162 99cd3b7 8f78162 99cd3b7 8f78162 99cd3b7 da9ad0b 8f78162 667780f 8f78162 a127a50 8f78162 99cd3b7 8f78162 667780f 8f78162 667780f 8f78162 667780f 8f78162 667780f 8f78162 b7ce5d6 667780f a127a50 b7ce5d6 a127a50 1805880 a127a50 99cd3b7 a127a50 99cd3b7 a127a50 da9ad0b a127a50 99cd3b7 63f2b64 99cd3b7 a127a50 da9ad0b 63f2b64 da9ad0b 8966134 b7ce5d6 1805880 b7ce5d6 1805880 a127a50 99cd3b7 a127a50 8966134 a127a50 b7ce5d6 1805880 a127a50 b7ce5d6 8f78162 a127a50 b7ce5d6 a127a50 b7ce5d6 1805880 b7ce5d6 a127a50 1805880 2a20a48 1805880 a127a50 667780f 8f78162 667780f 8f78162 1805880 8966134 b7ce5d6 8966134 667780f 99cd3b7 8966134 a127a50 99cd3b7 8f78162 a127a50 8f78162 a127a50 99cd3b7 a127a50 8f78162 a127a50 8f78162 a127a50 1805880 da9ad0b 667780f 8f78162 667780f 8f78162 a127a50 8f78162 667780f 1805880 8966134 e8ef287 667780f a127a50 667780f 8f78162 a127a50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 |
#!/usr/bin/env python3
import os
import re
import gc
import json
import logging
import fitz
import boto3
import base64
import time
import asyncio
import tempfile
import requests
from io import BytesIO
from typing import List, Dict, Any
import torch
import cv2
import numpy as np
from google import genai
from google.genai import types
from magic_pdf.data.dataset import PymuDocDataset
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
from magic_pdf.data.data_reader_writer.base import DataWriter
from table_row_extraction import TableExtractor
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
file_handler = logging.FileHandler("topic_extraction.log")
file_handler.setFormatter(logging.Formatter("%(asctime)s [%(levelname)s] %(name)s - %(message)s"))
logger.addHandler(file_handler)
_GEMINI_CLIENT = None
def unify_whitespace(text: str) -> str:
return re.sub(r"\s+", " ", text).strip()
def find_all_occurrences(pdf_bytes: bytes, search_text: str) -> List[int]:
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
st_norm = unify_whitespace(search_text)
found = []
for i in range(doc.page_count):
raw = doc[i].get_text("raw")
norm = unify_whitespace(raw)
if st_norm in norm:
found.append(i)
doc.close()
return sorted(found)
def create_subset_pdf(original_pdf_bytes: bytes, page_indices: List[int]) -> bytes:
if not page_indices:
raise ValueError("No page indices provided for subset creation.")
doc = fitz.open(stream=original_pdf_bytes, filetype="pdf")
new_doc = fitz.open()
for p in sorted(set(page_indices)):
if 0 <= p < doc.page_count:
new_doc.insert_pdf(doc, from_page=p, to_page=p)
else:
logger.error(f"Page index {p} out of range (0..{doc.page_count - 1}).")
raise ValueError(f"Page index {p} out of range.")
subset_bytes = new_doc.tobytes()
new_doc.close()
doc.close()
return subset_bytes
class s3Writer:
def __init__(self, ak: str, sk: str, bucket: str, endpoint_url: str):
self.bucket = bucket
self.client = boto3.client(
's3',
aws_access_key_id=ak,
aws_secret_access_key=sk,
endpoint_url=endpoint_url
)
def write(self, path: str, data: bytes) -> None:
"""Upload data to S3 using proper keyword arguments"""
try:
file_obj = BytesIO(data)
self.client.upload_fileobj(
file_obj,
self.bucket,
path
)
logger.info(f"Uploaded to S3: {path}")
except Exception as e:
logger.error(f"Failed to upload to S3: {str(e)}")
raise
def preprocess_image(image_data: bytes, max_dim: int = 600, quality: int = 60) -> bytes:
arr = np.frombuffer(image_data, np.uint8)
img = cv2.imdecode(arr, cv2.IMREAD_COLOR)
if img is not None:
h, w, _ = img.shape
if max(h, w) > max_dim:
scale = max_dim / float(max(h, w))
new_w = int(w * scale)
new_h = int(h * scale)
img = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_AREA)
encode_params = [int(cv2.IMWRITE_JPEG_QUALITY), quality]
success, enc = cv2.imencode(".jpg", img, encode_params)
if success:
return enc.tobytes()
return image_data
def call_gemini_for_table_classification(image_data: bytes, api_key: str, max_retries: int = 1) -> str:
for attempt in range(max_retries + 1):
try:
prompt = """You are given an image. Determine if it shows a table that has exactly 2 or 3 columns.
The three-column 'table' image include such key features:
- Three columns header columns
- Headers like 'Topics', 'Content', 'Guidelines'
- Numbered sections (e.g., 8.4, 9.1)
- Educational curriculum-style structure
The two-column 'table' image include such key features:
- Two columns header columns
- Headers like 'Subject content' and 'Additional information'
- Numbered sections (e.g., 2.1, 3.4)
- Educational curriculum-style structure
- Bullet description in 'Additional information'
If the image is a relevant table with 2 columns, respond with 'TWO_COLUMN'.
If the image is a relevant table with 3 columns, respond with 'THREE_COLUMN'.
If the image does not show a table at all, respond with 'NO_TABLE'.
Return only one of these exact labels.
"""
global _GEMINI_CLIENT
client = _GEMINI_CLIENT
resp = client.models.generate_content(
model="gemini-2.0-flash",
contents=[
{
"parts": [
{"text": prompt},
{
"inline_data": {
"mime_type": "image/jpeg",
"data": base64.b64encode(image_data).decode('utf-8')
}
}
]
}
],
config=types.GenerateContentConfig(temperature=0.)
)
if resp and resp.text:
classification = resp.text.strip().upper()
if "THREE" in classification:
return "THREE_COLUMN"
elif "TWO" in classification:
return "TWO_COLUMN"
return "NO_TABLE"
except Exception as e:
logger.error(f"Gemini table classification error: {e}")
if "503" in str(e):
return "NO_TABLE"
if attempt < max_retries:
time.sleep(0.5)
else:
return "NO_TABLE"
async def classify_image_async(image_data: bytes, api_key: str, max_retries: int = 1) -> str:
loop = asyncio.get_event_loop()
preprocessed = preprocess_image(image_data)
return await loop.run_in_executor(None, call_gemini_for_table_classification, preprocessed, api_key, max_retries)
class S3ImageWriter(DataWriter):
def __init__(self, s3_writer: s3Writer, base_path: str, gemini_api_key: str):
self.s3_writer = s3_writer
# Use the provided base_path (which can be based on the PDF file name)
self.base_path = base_path if base_path.endswith("/") else base_path + "/"
self.gemini_api_key = gemini_api_key
self.descriptions = {}
self._img_count = 0
def write(self, path: str, data: bytes) -> None:
self._img_count += 1
unique_id = f"img_{self._img_count}.jpg"
s3_key = f"{self.base_path}{unique_id}"
self.s3_writer.write(s3_key, data)
self.descriptions[path] = {
"data": data,
"s3_path": s3_key,
"table_classification": "NO_TABLE",
"final_alt": ""
}
async def post_process_async(self, key: str, md_content: str) -> str:
logger.info("Classifying images to detect tables.")
tasks = []
for p, info in self.descriptions.items():
tasks.append((p, classify_image_async(info["data"], self.gemini_api_key)))
for p, task in tasks:
try:
classification = await task
self.descriptions[p]['table_classification'] = classification
except Exception as e:
logger.error(f"Table classification error: {e}")
self.descriptions[p]['table_classification'] = "NO_TABLE"
for p, info in self.descriptions.items():
cls = info['table_classification']
if cls == "TWO_COLUMN":
info['final_alt'] = "HAS TO BE PROCESSED - two column table"
elif cls == "THREE_COLUMN":
info['final_alt'] = "HAS TO BE PROCESSED - three column table"
else:
info['final_alt'] = "NO_TABLE image"
md_content = md_content.replace(f"", f"![{info['final_alt']}]({info['s3_path']})")
md_content = await self._process_table_images_in_markdown(key, md_content)
final_lines = []
for line in md_content.split("\n"):
if re.match(r"^\!\[.*\]\(.*\)", line.strip()):
final_lines.append(line.strip())
return "\n".join(final_lines)
async def _process_table_images_in_markdown(self, key: str, md_content: str) -> str:
pat = r"!\[HAS TO BE PROCESSED - (two|three) column table\]\(([^)]+)\)"
matches = re.findall(pat, md_content, flags=re.IGNORECASE)
if not matches:
return md_content
for (col_type, s3_key) in matches:
logger.info(f"Processing table image: {s3_key}, columns={col_type}")
img_data = None
for desc in self.descriptions.values():
if desc.get("s3_path") == s3_key:
img_data = desc.get("data")
break
if img_data is None:
logger.warning(f"No image data found for S3 key {s3_key}. Skipping.")
continue
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
temp_file.write(img_data)
temp_path = temp_file.name
try:
if col_type.lower() == 'two':
extractor = TableExtractor(
skip_header=True,
merge_two_col_rows=True,
enable_subtopic_merge=True,
subtopic_threshold=0.2
)
else:
extractor = TableExtractor(
skip_header=True,
merge_two_col_rows=False,
enable_subtopic_merge=False,
subtopic_threshold=0.2
)
row_boxes = extractor.process_image(temp_path)
snippet = ["**Extracted table cells:**"]
for i, row in enumerate(row_boxes):
for j, _ in enumerate(row):
cell_unique_key = f"{self.base_path}cells/{os.path.basename(s3_key).split('.')[0]}_row{i}_col{j}.jpg"
self.s3_writer.write(cell_unique_key, img_data)
snippet.append(f"")
new_snip = "\n".join(snippet)
old_line = f""
md_content = md_content.replace(old_line, new_snip)
except Exception as e:
logger.error(f"Error processing table image {s3_key}: {e}")
finally:
try:
os.remove(temp_path)
except Exception:
pass
return md_content
def post_process(self, key: str, md_content: str) -> str:
return asyncio.run(self.post_process_async(key, md_content))
class LocalImageWriter(DataWriter):
def __init__(self, output_folder: str, gemini_api_key: str):
self.output_folder = output_folder
os.makedirs(self.output_folder, exist_ok=True)
self.descriptions = {}
self._img_count = 0
self.gemini_api_key = gemini_api_key
# New mapping to store extracted table cell image paths for testing.
self.extracted_tables = {}
def write(self, path: str, data: bytes) -> None:
self._img_count += 1
unique_id = f"img_{self._img_count}.jpg"
self.descriptions[path] = {
"data": data,
"relative_path": unique_id,
"table_classification": "NO_TABLE",
"final_alt": ""
}
# Also save the original image locally for testing.
image_path = os.path.join(self.output_folder, unique_id)
with open(image_path, "wb") as f:
f.write(data)
async def post_process_async(self, key: str, md_content: str) -> str:
logger.info("Classifying images to detect tables.")
tasks = []
for p, info in self.descriptions.items():
tasks.append((p, classify_image_async(info["data"], self.gemini_api_key)))
for p, task in tasks:
try:
classification = await task
self.descriptions[p]['table_classification'] = classification
except Exception as e:
logger.error(f"Table classification error: {e}")
self.descriptions[p]['table_classification'] = "NO_TABLE"
for p, info in self.descriptions.items():
cls = info['table_classification']
if cls == "TWO_COLUMN":
info['final_alt'] = "HAS TO BE PROCESSED - two column table"
elif cls == "THREE_COLUMN":
info['final_alt'] = "HAS TO BE PROCESSED - three column table"
else:
info['final_alt'] = "NO_TABLE image"
md_content = md_content.replace(f"", f"![{info['final_alt']}]({info['relative_path']})")
md_content = self._process_table_images_in_markdown(md_content)
final_lines = []
for line in md_content.split("\n"):
if re.match(r"^\!\[.*\]\(.*\)", line.strip()):
final_lines.append(line.strip())
return "\n".join(final_lines)
def _process_table_images_in_markdown(self, md_content: str) -> str:
pat = r"!\[HAS TO BE PROCESSED - (two|three) column table\]\(([^)]+)\)"
matches = re.findall(pat, md_content, flags=re.IGNORECASE)
if not matches:
return md_content
for (col_type, image_id) in matches:
logger.info(f"Processing table image => {image_id}, columns={col_type}")
temp_path = os.path.join(self.output_folder, image_id)
desc_item = None
for k, val in self.descriptions.items():
if val["relative_path"] == image_id:
desc_item = val
break
if not desc_item:
logger.warning(f"No matching image data for {image_id}, skipping extraction.")
continue
if not os.path.exists(temp_path):
with open(temp_path, "wb") as f:
f.write(desc_item["data"])
try:
if col_type.lower() == 'two':
extractor = TableExtractor(
skip_header=True,
merge_two_col_rows=True,
enable_subtopic_merge=True,
subtopic_threshold=0.2
)
else:
extractor = TableExtractor(
skip_header=True,
merge_two_col_rows=False,
enable_subtopic_merge=False,
subtopic_threshold=0.2
)
row_boxes = extractor.process_image(temp_path)
out_folder = temp_path + "_rows"
os.makedirs(out_folder, exist_ok=True)
extractor.save_extracted_cells(temp_path, row_boxes, out_folder)
# List all extracted cell images relative to the output folder.
extracted_cells = []
for root, dirs, files in os.walk(out_folder):
for file in files:
rel_path = os.path.relpath(os.path.join(root, file), self.output_folder)
extracted_cells.append(rel_path)
# Save mapping for testing.
self.extracted_tables[image_id] = extracted_cells
snippet = ["**Extracted table cells:**"]
for i, row in enumerate(row_boxes):
row_dir = os.path.join(out_folder, f"row_{i}")
for j, _ in enumerate(row):
cell_file = f"col_{j}.jpg"
cell_path = os.path.join(row_dir, cell_file)
relp = os.path.relpath(cell_path, self.output_folder)
snippet.append(f"")
new_snip = "\n".join(snippet)
old_line = f""
md_content = md_content.replace(old_line, new_snip)
except Exception as e:
logger.error(f"Error processing table image {image_id}: {e}")
finally:
if os.path.exists(temp_path):
os.remove(temp_path)
return md_content
def post_process(self, key: str, md_content: str) -> str:
return asyncio.run(self.post_process_async(key, md_content))
class GeminiTopicExtractor:
def __init__(self, api_key: str = None, num_pages: int = 14):
self.api_key = api_key or os.getenv("GEMINI_API_KEY", "")
self.num_pages = num_pages
def extract_subtopics(self, pdf_path: str) -> Dict[str, List[int]]:
first_pages_text = self._read_first_pages_raw(pdf_path, self.num_pages)
if not first_pages_text.strip():
logger.error("No text from first pages => cannot extract subtopics.")
return {}
prompt = f"""
You have the first pages of a PDF specification, including a table of contents.
Instructions:
1. Identify the 'Contents' section listing all topics, subtopics, and their corresponding pages.
2. Identify the major academic subtopics (common desired topic names "Paper X", "Theme X", "Content of X", "AS Unit X", "A2 Unit X", or similar headings).
3. For each subtopic, give the range of pages [start_page, end_page] (1-based) from the table of contents.
4. Output only valid JSON of the form:
{{
"Subtopic A": [start_page, end_page],
"Subtopic B": [start_page, end_page]
}}
5. If you can't find any subtopics, return an empty JSON.
Important notes:
- The correct "end_page" must be the page number of the next topic or subtopic minus 1.
- The final output must be valid JSON only, with no extra text or code blocks.
Examples:
1. Given this table of contents:
1 Introduction β 2
Why choose Edexcel A Level Mathematics? - 2
Supporting you in planning and implementing this qualification - 3
Qualification at a glance - 5
2 Subject content and assessment information β 7
Paper 1 and Paper 2: Pure Mathematics - 11
Paper 3: Statistics and Mechanics - 30
Assessment Objectives - 40
3 Administration and general information β 42
Entries - 42
Access arrangements, reasonable adjustments, special consideration and malpractice - 42
Student recruitment and progression - 45
Appendix 1: Formulae β 49
Appendix 2: Notation β 53
Appendix 3: Use of calculators β 59
Appendix 4: Assessment Objectives β 60
Appendix 5: The context for the development of this qualification β 62
Appendix 6: Transferable skills β 64
Appendix 7: Level 3 Extended Project qualification β 65
Appendix 8: Codes β 67
The correct output should be:
{{
"Paper 1 and Paper 2: Pure Mathematics": [11, 29],
"Paper 3: Statistics and Mechanics": [30, 42]
}}
2. Given this table of contents:
Qualification at a glance β 1
Assessment Objectives and weightings - 4
Knowledge, skills and understanding β 5
Theme 1: Introduction to markets and market failure - 5
Theme 2: The UK economy β performance and policies - 11
Theme 3: Business behaviour and the labour market - 21
Theme 4: A global perspective - 29
Assessment β 39
Assessment summary - 39
Assessment objectives - 41
Assessment overview - 42
Breakdown of assessment objectives - 42
Synoptic assessment - 43
Discount code and performance tables - 43
Access arrangements, reasonable adjustments and special consideration - 44
Malpractice - 45
Equality Act 2010 and Pearson equality policy - 45
Synoptic assessment - 46
Awarding and reporting - 47
Other information β 49
Student recruitment -49
Prior learning and other requirements -49
Progression - 49
Appendix 1: Transferable skills β 53
Appendix 2: Level 3 Extended Project qualification β 55
Appendix 3: Quantitative skills β 59
Appendix 4: Codes β 61
Appendix 5: Index β 63
The correct output should be:
{{
"Theme 1: Introduction to markets and market failure": [5, 10],
"Theme 2: The UK economy β performance and policies": [11, 20],
"Theme 3: Business behaviour and the labour market": [21, 28],
"Theme 4: A global perspective": [29, 38]
}}
3. You might also see sections like:
2.1 AS Unit 1 11
2.2 AS Unit 2 18
2.3 A2 Unit 3 24
2.4 A2 Unit 4 31
In that scenario, your output might look like:
{{
"2.1 AS Unit 1": [11, 17],
"2.2 AS Unit 2": [18, 23],
"2.3 A2 Unit 3": [24, 30],
"2.4 A2 Unit 4": [31, 35]
}}
4. Another example might list subtopics:
3.1 Overarching themes 11
3.2 A: Proof 12
3.3 B: Algebra and functions 13
3.4 C: Coordinate geometry in the ( x , y ) plane 14
3.5 D: Sequences and series 15
3.6 E: Trigonometry 16
3.7 F: Exponentials and logarithms 17
3.8 G: Differentiation 18
3.9 H: Integration 19
3.10 I: Numerical methods 20
3.11 J: Vectors 20
3.12 K: Statistical sampling 21
3.13 L: Data presentation and interpretation 21
3.14 M: Probability 22
3.15 N: Statistical distributions 23
3.16 O: Statistical hypothesis testing 23
3.17 P: Quantities and units in mechanics 24
3.18 Q: Kinematics 24
3.19 R: Forces and Newtonβs laws 24
3.20 S: Moments 25
3.21 Use of data in statistics 26
Here the correct output might look like:
{{
"A: Proof": [12, 12],
"B: Algebra and functions": [13, 13],
...
}}
Now, extract topics from this text:
{first_pages_text}
"""
global _GEMINI_CLIENT
if _GEMINI_CLIENT is None:
_GEMINI_CLIENT = genai.Client(api_key=self.api_key)
client = _GEMINI_CLIENT
try:
response = client.models.generate_content(
model="gemini-2.0-flash",
contents=[prompt],
config=types.GenerateContentConfig(temperature=0.0)
)
if not response or not response.text:
logger.warning("No text from LLM => returning empty subtopics.")
return {}
raw_json = response.text.strip()
cleaned = raw_json.replace("```json", "").replace("```", "")
try:
data = json.loads(cleaned)
except Exception as json_err:
logger.error(f"JSON parsing error: {json_err}")
return {}
final_dict = {}
found_sub_dict = None
for k, v in data.items():
if isinstance(v, dict):
found_sub_dict = v
break
if found_sub_dict is not None:
for subk, rng in found_sub_dict.items():
if isinstance(rng, list) and len(rng) == 2:
final_dict[subk] = rng
else:
for subk, rng in data.items():
if isinstance(rng, list) and len(rng) == 2:
final_dict[subk] = rng
return final_dict
except Exception as e:
logger.error(f"Gemini subtopic extraction error: {e}")
return {}
def _read_first_pages_raw(self, pdf_path: str, num_pages: int) -> str:
text_parts = []
try:
if pdf_path.startswith("http://") or pdf_path.startswith("https://"):
response = requests.get(pdf_path)
if response.status_code != 200:
logger.error("Failed to download PDF from %s. Status code: %d", pdf_path, response.status_code)
return ""
pdf_bytes = response.content
else:
with open(pdf_path, "rb") as f:
pdf_bytes = f.read()
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
pages_to_read = min(num_pages, doc.page_count)
for i in range(pages_to_read):
raw_text = doc[i].get_text("raw")
text_parts.append(raw_text)
doc.close()
except Exception as e:
logger.error(f"Could not open PDF: {e}")
return "\n".join(text_parts)
class MineruNoTextProcessor:
def __init__(self, output_folder: str, gemini_api_key: str = None):
self.output_folder = output_folder
os.makedirs(self.output_folder, exist_ok=True)
self.layout_model = "doclayout_yolo"
self.formula_enable = True
self.table_enable = False
self.language = "en"
self.subtopic_extractor = GeminiTopicExtractor(api_key=gemini_api_key, num_pages=10)
self.gemini_api_key = gemini_api_key or os.getenv("GEMINI_API_KEY", "")
# For testing via __main__, force local saving.
if __name__ == "__main__":
logger.info("Running in test mode: using local image writer.")
self.use_s3 = False
else:
if (os.getenv("S3_ACCESS_KEY") and os.getenv("S3_SECRET_KEY") and
os.getenv("S3_BUCKET_NAME") and os.getenv("S3_ENDPOINT")):
self.use_s3 = True
self.s3_writer = s3Writer(
ak=os.getenv("S3_ACCESS_KEY"),
sk=os.getenv("S3_SECRET_KEY"),
bucket=os.getenv("S3_BUCKET_NAME"),
endpoint_url=os.getenv("S3_ENDPOINT")
)
else:
self.use_s3 = False
def cleanup_gpu(self):
try:
gc.collect()
torch.cuda.empty_cache()
logger.info("GPU memory cleaned up.")
except Exception as e:
logger.error(f"Error during GPU cleanup: {e}")
def process(self, pdf_path: str) -> Dict[str, Any]:
logger.info(f"Processing PDF: {pdf_path}")
try:
subtopics = self.subtopic_extractor.extract_subtopics(pdf_path)
logger.info(f"Gemini returned subtopics: {subtopics}")
if pdf_path.startswith("http://") or pdf_path.startswith("https://"):
response = requests.get(pdf_path)
if response.status_code != 200:
logger.error("Failed to download PDF from %s. Status code: %d", pdf_path, response.status_code)
raise Exception(f"Failed to download PDF: {pdf_path}")
pdf_bytes = response.content
logger.info("Downloaded %d bytes for pdf_url='%s'", len(pdf_bytes), pdf_path)
else:
with open(pdf_path, "rb") as f:
pdf_bytes = f.read()
logger.info("Loaded %d bytes from local file '%s'", len(pdf_bytes), pdf_path)
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
total_pages = doc.page_count
doc.close()
final_pages = set()
if not subtopics:
logger.warning("No subtopics found. Processing entire PDF as fallback.")
final_pages = set(range(total_pages))
else:
for subname, rng in subtopics.items():
if not (isinstance(rng, list) and len(rng) == 2):
logger.warning(f"Skipping subtopic '{subname}' => invalid range {rng}")
continue
start_p, end_p = rng
if start_p > end_p:
logger.warning(f"Skipping subtopic '{subname}' => start > end {rng}")
continue
occs = find_all_occurrences(pdf_bytes, subname)
logger.info(f"Occurrences of subtopic '{subname}': {occs}")
doc_start_0 = start_p - 1
chosen_page = None
for p in occs:
if p >= doc_start_0:
chosen_page = p
break
if chosen_page is None:
chosen_page = occs[-1] if occs else 0
logger.warning(f"No suitable occurrence for '{subname}'. Using page {chosen_page}.")
raw_offset = chosen_page - doc_start_0
offset = max(0, raw_offset)
s0 = (start_p - 1) + offset
e0 = (end_p - 1) + offset
s0 = max(0, min(total_pages - 1, s0))
e0 = max(0, min(total_pages - 1, e0))
for pp in range(s0, e0 + 1):
final_pages.add(pp)
if not final_pages:
logger.warning("No valid pages after offset. Processing entire PDF.")
final_pages = set(range(total_pages))
logger.info(f"Processing pages (0-based): {sorted(final_pages)}")
subset_pdf_bytes = create_subset_pdf(pdf_bytes, sorted(final_pages))
dataset = PymuDocDataset(subset_pdf_bytes)
inference = doc_analyze(
dataset,
ocr=True,
lang=self.language,
layout_model=self.layout_model,
formula_enable=self.formula_enable,
table_enable=self.table_enable
)
logger.info("doc_analyze complete. Extracting images.")
key = os.path.splitext(os.path.basename(pdf_path))[0]
if self.use_s3:
writer = S3ImageWriter(self.s3_writer, f"{key}/", self.gemini_api_key)
md_prefix = f"{key}/"
else:
writer = LocalImageWriter(self.output_folder, self.gemini_api_key)
md_prefix = "local-unique-prefix/"
pipe_result = inference.pipe_ocr_mode(writer, lang=self.language)
md_content = pipe_result.get_markdown(md_prefix)
final_markdown = writer.post_process(md_prefix, md_content)
output_json = {
"subtopics": subtopics
}
if not self.use_s3 and isinstance(writer, LocalImageWriter):
local_images = {k: v["relative_path"] for k, v in writer.descriptions.items()}
tables_extracted = writer.extracted_tables
output_json["local_images"] = local_images
output_json["tables_extracted"] = tables_extracted
# Save output in JSON format.
out_json = json.dumps(output_json, indent=2)
# Save JSON locally.
out_path = os.path.join(self.output_folder, "final_output.json")
with open(out_path, "w", encoding="utf-8") as f:
f.write(out_json)
logger.info(f"Final JSON saved locally at {out_path}")
# Also save a local copy for testing.
local_md_path = os.path.join(self.output_folder, "final_output_local.json")
with open(local_md_path, "w", encoding="utf-8") as f:
f.write(out_json)
logger.info(f"Final JSON saved locally at {local_md_path}")
return output_json
finally:
self.cleanup_gpu()
if __name__ == "__main__":
input_pdf = "/home/user/app/input_output/a-level-pearson-mathematics-specification.pdf"
output_dir = "/home/user/app/wje"
gemini_key = os.getenv("GEMINI_API_KEY", "AIzaSyDtoakpXa2pjJwcQB6TJ5QaXHNSA5JxcrU")
try:
processor = MineruNoTextProcessor(output_folder=output_dir, gemini_api_key=gemini_key)
result_json = processor.process(input_pdf)
logger.info("Processing completed successfully.")
except Exception as e:
logger.error(f"Processing failed: {e}") |