testing
Browse files- input_output/output/images/img_28.png +0 -0
- topic_extraction.py +175 -224
input_output/output/images/img_28.png
CHANGED
|
|
topic_extraction.py
CHANGED
|
@@ -5,27 +5,19 @@ import gc
|
|
| 5 |
import json
|
| 6 |
import logging
|
| 7 |
import fitz # PyMuPDF (pip install pymupdf)
|
|
|
|
| 8 |
import base64
|
| 9 |
import concurrent.futures
|
| 10 |
-
from io import BytesIO
|
| 11 |
from typing import List, Dict, Any
|
| 12 |
|
| 13 |
-
# Attempt to import google.genai
|
| 14 |
-
try:
|
| 15 |
-
from google import genai
|
| 16 |
-
from google.genai import types
|
| 17 |
-
except ImportError:
|
| 18 |
-
genai = None
|
| 19 |
-
types = None
|
| 20 |
-
|
| 21 |
import torch
|
| 22 |
import cv2
|
| 23 |
|
| 24 |
-
#
|
| 25 |
from magic_pdf.data.dataset import PymuDocDataset
|
| 26 |
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
|
| 27 |
|
| 28 |
-
#
|
| 29 |
from table_row_extraction import TableExtractor
|
| 30 |
|
| 31 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -34,130 +26,113 @@ logger.setLevel(logging.INFO)
|
|
| 34 |
|
| 35 |
|
| 36 |
# -------------------------------------------------------------------
|
| 37 |
-
#
|
| 38 |
# -------------------------------------------------------------------
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
return original_pdf_bytes # If empty, just return original
|
| 46 |
-
|
| 47 |
-
doc = fitz.open(stream=original_pdf_bytes, filetype="pdf")
|
| 48 |
-
new_doc = fitz.open() # empty PDF to insert pages into
|
| 49 |
-
|
| 50 |
-
sorted_pages = sorted(set(page_indices))
|
| 51 |
-
for p in sorted_pages:
|
| 52 |
-
if 0 <= p < doc.page_count:
|
| 53 |
-
new_doc.insert_pdf(doc, from_page=p, to_page=p)
|
| 54 |
-
else:
|
| 55 |
-
logger.warning(f"Page index {p} is out of range, skipping.")
|
| 56 |
-
|
| 57 |
-
subset_bytes = new_doc.tobytes()
|
| 58 |
-
new_doc.close()
|
| 59 |
-
doc.close()
|
| 60 |
-
return subset_bytes
|
| 61 |
-
|
| 62 |
|
| 63 |
-
|
| 64 |
-
# Gemini-based subtopic extraction
|
| 65 |
-
# -------------------------------------------------------------------
|
| 66 |
-
class GeminiTopicExtractor:
|
| 67 |
-
"""
|
| 68 |
-
Uses Gemini to parse the PDF text, looking specifically for
|
| 69 |
-
"2 Subject content and assessment information" and subtopics with pages.
|
| 70 |
-
"""
|
| 71 |
-
def __init__(self, api_key: str = None):
|
| 72 |
-
self.api_key = api_key or os.getenv("GEMINI_API_KEY", "AIzaSyDtoakpXa2pjJwcQB6TJ5QaXHNSA5JxcrU")
|
| 73 |
-
if not self.api_key:
|
| 74 |
-
raise ValueError("Gemini API key not found in environment or constructor.")
|
| 75 |
|
|
|
|
|
|
|
| 76 |
if genai is None or types is None:
|
| 77 |
-
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
|
|
|
|
| 80 |
"""
|
| 81 |
-
|
| 82 |
-
2) Ask Gemini for JSON structure like:
|
| 83 |
-
{
|
| 84 |
-
"2 Subject content and assessment information": {
|
| 85 |
-
"Paper 1 and Paper 2: Pure Mathematics": [11, 29],
|
| 86 |
-
"Paper 3: Statistics and Mechanics": [30, 42]
|
| 87 |
-
}
|
| 88 |
-
}
|
| 89 |
-
3) Return parsed JSON
|
| 90 |
"""
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
prompt = f"""
|
| 97 |
-
You
|
| 98 |
-
Identify the '2 Subject content and assessment information'
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
Return JSON
|
| 102 |
-
{{
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
{text_content}
|
| 111 |
"""
|
| 112 |
|
| 113 |
try:
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
model="gemini-2.0-flash",
|
| 117 |
contents=[prompt],
|
| 118 |
config=types.GenerateContentConfig(temperature=0.0)
|
| 119 |
)
|
| 120 |
-
|
| 121 |
-
# Clean up any triple backticks
|
| 122 |
-
cleaned = raw_text.replace("```json", "").replace("```", "")
|
| 123 |
-
data = json.loads(cleaned)
|
| 124 |
-
return data
|
| 125 |
except Exception as e:
|
| 126 |
-
logger.error(f"
|
| 127 |
-
return {}
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
|
| 145 |
# -------------------------------------------------------------------
|
| 146 |
-
# Gemini-based table classification
|
| 147 |
# -------------------------------------------------------------------
|
| 148 |
def call_gemini_for_table_classification(image_data: bytes) -> str:
|
| 149 |
if genai is None or types is None:
|
| 150 |
-
logger.warning("Gemini not available.
|
| 151 |
return "NO_TABLE"
|
| 152 |
|
| 153 |
-
prompt = """
|
| 154 |
-
- 'TWO_COLUMN' (2 col table),
|
| 155 |
-
- 'THREE_COLUMN' (3 col table),
|
| 156 |
-
- 'NO_TABLE' otherwise.
|
| 157 |
-
Return only that label as entire response."""
|
| 158 |
-
|
| 159 |
try:
|
| 160 |
-
client = genai.Client(api_key=
|
| 161 |
response = client.models.generate_content(
|
| 162 |
model="gemini-2.0-flash",
|
| 163 |
contents=[
|
|
@@ -167,7 +142,7 @@ Return only that label as entire response."""
|
|
| 167 |
{
|
| 168 |
"inline_data": {
|
| 169 |
"mime_type": "image/jpeg",
|
| 170 |
-
"data": base64.b64encode(image_data).decode(
|
| 171 |
}
|
| 172 |
}
|
| 173 |
]
|
|
@@ -175,34 +150,25 @@ Return only that label as entire response."""
|
|
| 175 |
],
|
| 176 |
config=types.GenerateContentConfig(temperature=0.0)
|
| 177 |
)
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
if "THREE" in classification:
|
| 181 |
return "THREE_COLUMN"
|
| 182 |
-
elif "TWO" in
|
| 183 |
return "TWO_COLUMN"
|
| 184 |
else:
|
| 185 |
return "NO_TABLE"
|
| 186 |
-
|
| 187 |
except Exception as e:
|
| 188 |
-
logger.error(f"
|
| 189 |
return "NO_TABLE"
|
| 190 |
|
| 191 |
-
|
| 192 |
-
# -------------------------------------------------------------------
|
| 193 |
-
# Gemini-based image description (Mineru style)
|
| 194 |
-
# -------------------------------------------------------------------
|
| 195 |
def call_gemini_for_image_description(image_data: bytes) -> str:
|
| 196 |
if genai is None or types is None:
|
| 197 |
-
logger.warning("Gemini not available.
|
| 198 |
return "Image description unavailable"
|
| 199 |
|
| 200 |
-
prompt_text = """
|
| 201 |
-
No text data needed, just a short 20-word max summary if no table is detected.
|
| 202 |
-
If it’s an MCQ, mention 'MCQ: A [...], B [...], etc.'"""
|
| 203 |
-
|
| 204 |
try:
|
| 205 |
-
client = genai.Client(api_key=
|
| 206 |
response = client.models.generate_content(
|
| 207 |
model="gemini-2.0-flash",
|
| 208 |
contents=[
|
|
@@ -212,7 +178,7 @@ If it’s an MCQ, mention 'MCQ: A [...], B [...], etc.'"""
|
|
| 212 |
{
|
| 213 |
"inline_data": {
|
| 214 |
"mime_type": "image/jpeg",
|
| 215 |
-
"data": base64.b64encode(image_data).decode(
|
| 216 |
}
|
| 217 |
}
|
| 218 |
]
|
|
@@ -220,20 +186,21 @@ If it’s an MCQ, mention 'MCQ: A [...], B [...], etc.'"""
|
|
| 220 |
],
|
| 221 |
config=types.GenerateContentConfig(temperature=0.0)
|
| 222 |
)
|
| 223 |
-
return response.text.strip() if response and response.text else "Image description unavailable"
|
| 224 |
-
|
| 225 |
except Exception as e:
|
| 226 |
-
logger.error(f"
|
| 227 |
return "Image description unavailable"
|
| 228 |
|
| 229 |
|
| 230 |
# -------------------------------------------------------------------
|
| 231 |
-
#
|
| 232 |
# -------------------------------------------------------------------
|
| 233 |
class LocalImageWriter:
|
| 234 |
"""
|
| 235 |
-
|
| 236 |
-
|
|
|
|
|
|
|
| 237 |
"""
|
| 238 |
def __init__(self, output_folder: str):
|
| 239 |
self.output_folder = output_folder
|
|
@@ -249,7 +216,6 @@ class LocalImageWriter:
|
|
| 249 |
self._img_count += 1
|
| 250 |
local_filename = f"img_{self._img_count}.png"
|
| 251 |
local_path = os.path.join(self.images_dir, local_filename)
|
| 252 |
-
|
| 253 |
with open(local_path, "wb") as f:
|
| 254 |
f.write(data)
|
| 255 |
|
|
@@ -263,9 +229,9 @@ class LocalImageWriter:
|
|
| 263 |
|
| 264 |
def post_process(self, key: str, md_content: str) -> str:
|
| 265 |
# 1) Table classification
|
| 266 |
-
with concurrent.futures.ThreadPoolExecutor(max_workers=len(self.descriptions)) as
|
| 267 |
fut_map = {
|
| 268 |
-
|
| 269 |
for p, info in self.descriptions.items()
|
| 270 |
}
|
| 271 |
for fut in concurrent.futures.as_completed(fut_map):
|
|
@@ -274,15 +240,15 @@ class LocalImageWriter:
|
|
| 274 |
classification = fut.result()
|
| 275 |
self.descriptions[path]['table_classification'] = classification
|
| 276 |
except Exception as e:
|
| 277 |
-
logger.error(f"
|
| 278 |
self.descriptions[path]['table_classification'] = "NO_TABLE"
|
| 279 |
|
| 280 |
-
# 2) If NO_TABLE =>
|
| 281 |
-
with concurrent.futures.ThreadPoolExecutor(max_workers=len(self.descriptions)) as
|
| 282 |
fut_map2 = {}
|
| 283 |
for p, info in self.descriptions.items():
|
| 284 |
if info['table_classification'] == "NO_TABLE":
|
| 285 |
-
fut =
|
| 286 |
fut_map2[fut] = p
|
| 287 |
|
| 288 |
for fut in concurrent.futures.as_completed(fut_map2):
|
|
@@ -291,10 +257,10 @@ class LocalImageWriter:
|
|
| 291 |
desc = fut.result()
|
| 292 |
self.descriptions[path]['final_alt'] = desc
|
| 293 |
except Exception as e:
|
| 294 |
-
logger.error(f"
|
| 295 |
self.descriptions[path]['final_alt'] = "Image description unavailable"
|
| 296 |
|
| 297 |
-
# 3) If 2
|
| 298 |
for p, info in self.descriptions.items():
|
| 299 |
cls = info['table_classification']
|
| 300 |
if cls == "TWO_COLUMN":
|
|
@@ -306,22 +272,20 @@ class LocalImageWriter:
|
|
| 306 |
|
| 307 |
# 4) Replace placeholders
|
| 308 |
for p, info in self.descriptions.items():
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
md_content = md_content.replace(
|
| 312 |
|
| 313 |
-
# 5) For "HAS TO BE PROCESSED" => run TableExtractor =>
|
| 314 |
md_content = self._process_table_images_in_markdown(md_content)
|
| 315 |
|
| 316 |
-
# 6)
|
| 317 |
final_lines = []
|
| 318 |
for line in md_content.split("\n"):
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
new_md = "\n".join(final_lines)
|
| 324 |
-
return new_md
|
| 325 |
|
| 326 |
def _process_table_images_in_markdown(self, md_content: str) -> str:
|
| 327 |
pattern = r"!\[HAS TO BE PROCESSED - (two|three) column table\]\(([^)]+)\)"
|
|
@@ -350,7 +314,6 @@ class LocalImageWriter:
|
|
| 350 |
os.makedirs(out_folder, exist_ok=True)
|
| 351 |
extractor.save_extracted_cells(abs_image_path, row_boxes, out_folder)
|
| 352 |
|
| 353 |
-
# Build snippet
|
| 354 |
snippet_lines = ["**Extracted table cells:**"]
|
| 355 |
for i, row in enumerate(row_boxes):
|
| 356 |
row_dir = os.path.join(out_folder, f"row_{i}")
|
|
@@ -363,7 +326,6 @@ class LocalImageWriter:
|
|
| 363 |
new_snippet = "\n".join(snippet_lines)
|
| 364 |
old_line = f""
|
| 365 |
md_content = md_content.replace(old_line, new_snippet)
|
| 366 |
-
|
| 367 |
except Exception as e:
|
| 368 |
logger.error(f"Error processing table image {image_path}: {e}")
|
| 369 |
|
|
@@ -371,14 +333,14 @@ class LocalImageWriter:
|
|
| 371 |
|
| 372 |
|
| 373 |
# -------------------------------------------------------------------
|
| 374 |
-
# Final
|
| 375 |
# -------------------------------------------------------------------
|
| 376 |
-
class
|
| 377 |
"""
|
| 378 |
-
1)
|
| 379 |
-
2)
|
| 380 |
-
3)
|
| 381 |
-
4)
|
| 382 |
"""
|
| 383 |
def __init__(self, output_folder: str):
|
| 384 |
self.output_folder = output_folder
|
|
@@ -389,7 +351,7 @@ class MineruNoTextProcessor:
|
|
| 389 |
self.table_enable = False
|
| 390 |
self.language = "en"
|
| 391 |
|
| 392 |
-
self.
|
| 393 |
|
| 394 |
def cleanup_gpu(self):
|
| 395 |
try:
|
|
@@ -397,54 +359,64 @@ class MineruNoTextProcessor:
|
|
| 397 |
torch.cuda.empty_cache()
|
| 398 |
logger.info("GPU memory cleaned up.")
|
| 399 |
except Exception as e:
|
| 400 |
-
logger.error(f"
|
| 401 |
|
| 402 |
def process(self, pdf_path: str) -> str:
|
| 403 |
-
"""
|
| 404 |
-
1) Extract subtopics JSON from the PDF
|
| 405 |
-
2) Flatten page ranges for subtopics
|
| 406 |
-
3) Subset PDF
|
| 407 |
-
4) doc_analyze => images => produce MD with only table lines
|
| 408 |
-
5) Return final MD
|
| 409 |
-
"""
|
| 410 |
logger.info(f"Processing PDF: {pdf_path}")
|
| 411 |
try:
|
| 412 |
-
# 1)
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
else:
|
| 418 |
-
#
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
with open(pdf_path, "rb") as f:
|
| 422 |
-
original_pdf_bytes = f.read()
|
| 423 |
-
|
| 424 |
-
# If no pages found => entire doc
|
| 425 |
-
if page_indices:
|
| 426 |
-
# Convert from 1-based => 0-based
|
| 427 |
-
doc = fitz.open(stream=original_pdf_bytes, filetype="pdf")
|
| 428 |
-
max_p = doc.page_count
|
| 429 |
doc.close()
|
| 430 |
|
| 431 |
zero_based = []
|
| 432 |
-
for p in
|
| 433 |
z = p - 1
|
| 434 |
-
if 0 <= z <
|
| 435 |
zero_based.append(z)
|
| 436 |
zero_based = sorted(set(zero_based))
|
|
|
|
| 437 |
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
subset_pdf_bytes =
|
| 441 |
else:
|
| 442 |
-
|
| 443 |
-
subset_pdf_bytes =
|
| 444 |
-
else:
|
| 445 |
-
subset_pdf_bytes = original_pdf_bytes
|
| 446 |
|
| 447 |
-
# 3) doc_analyze
|
| 448 |
dataset = PymuDocDataset(subset_pdf_bytes)
|
| 449 |
inference = doc_analyze(
|
| 450 |
dataset,
|
|
@@ -456,51 +428,30 @@ class MineruNoTextProcessor:
|
|
| 456 |
)
|
| 457 |
logger.info("doc_analyze complete. Extracting images...")
|
| 458 |
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
pipe_result = inference.pipe_ocr_mode(image_writer, lang=self.language)
|
| 462 |
|
| 463 |
md_content = pipe_result.get_markdown("local-unique-prefix/")
|
| 464 |
-
final_markdown =
|
| 465 |
|
| 466 |
-
# 5) Save final
|
| 467 |
md_path = os.path.join(self.output_folder, "final_output.md")
|
| 468 |
with open(md_path, "w", encoding="utf-8") as f:
|
| 469 |
f.write(final_markdown)
|
| 470 |
|
| 471 |
logger.info(f"Markdown saved to: {md_path}")
|
| 472 |
return final_markdown
|
| 473 |
-
|
| 474 |
finally:
|
| 475 |
self.cleanup_gpu()
|
| 476 |
|
| 477 |
-
def _collect_page_indices(self, subtopic_dict: Dict[str, List[int]]) -> List[int]:
|
| 478 |
-
"""
|
| 479 |
-
Given something like:
|
| 480 |
-
{
|
| 481 |
-
"Paper 1 and Paper 2: Pure Mathematics": [11, 29],
|
| 482 |
-
"Paper 3: Statistics and Mechanics": [30, 42]
|
| 483 |
-
}
|
| 484 |
-
Return [11..29, 30..42] => a flattened list of pages
|
| 485 |
-
"""
|
| 486 |
-
pages = []
|
| 487 |
-
for _, rng in subtopic_dict.items():
|
| 488 |
-
if isinstance(rng, list) and len(rng) == 2:
|
| 489 |
-
start_p, end_p = rng
|
| 490 |
-
# add all pages from start to end (inclusive)
|
| 491 |
-
for p in range(start_p, end_p + 1):
|
| 492 |
-
pages.append(p)
|
| 493 |
-
return pages
|
| 494 |
-
|
| 495 |
|
| 496 |
# -------------------------------------------------------------------
|
| 497 |
# Example usage
|
| 498 |
# -------------------------------------------------------------------
|
| 499 |
if __name__ == "__main__":
|
| 500 |
input_pdf = "/home/user/app/input_output/a-level-pearson-mathematics-specification.pdf"
|
| 501 |
-
output_dir = "/home/user/app/input_output/
|
| 502 |
|
| 503 |
-
processor =
|
| 504 |
final_md = processor.process(input_pdf)
|
| 505 |
-
|
| 506 |
-
# print(final_md)
|
|
|
|
| 5 |
import json
|
| 6 |
import logging
|
| 7 |
import fitz # PyMuPDF (pip install pymupdf)
|
| 8 |
+
import requests
|
| 9 |
import base64
|
| 10 |
import concurrent.futures
|
|
|
|
| 11 |
from typing import List, Dict, Any
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
import torch
|
| 14 |
import cv2
|
| 15 |
|
| 16 |
+
# magic-pdf
|
| 17 |
from magic_pdf.data.dataset import PymuDocDataset
|
| 18 |
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
|
| 19 |
|
| 20 |
+
# TableExtractor from your "topic_extraction_upgrade.py"
|
| 21 |
from table_row_extraction import TableExtractor
|
| 22 |
|
| 23 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
# -------------------------------------------------------------------
|
| 29 |
+
# 1) "ContentsExtractor" approach (similar to contents_extractor_v2)
|
| 30 |
# -------------------------------------------------------------------
|
| 31 |
+
try:
|
| 32 |
+
from google import genai
|
| 33 |
+
from google.genai import types
|
| 34 |
+
except ImportError:
|
| 35 |
+
genai = None
|
| 36 |
+
types = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
GEMINI_API_KEY = "AIzaSyDtoakpXa2pjJwcQB6TJ5QaXHNSA5JxcrU"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
class ContentsExtractor:
|
| 41 |
+
def __init__(self, api_key: str = GEMINI_API_KEY):
|
| 42 |
if genai is None or types is None:
|
| 43 |
+
raise ImportError("google.genai is not installed or environment not set up.")
|
| 44 |
+
self.client = genai.Client(api_key=api_key)
|
| 45 |
+
self.model = "gemini-2.0-flash"
|
| 46 |
|
| 47 |
+
@staticmethod
|
| 48 |
+
def extract_first_pages(pdf_path: str, num_pages: int = 10) -> str:
|
| 49 |
"""
|
| 50 |
+
Reads up to `num_pages` from pdf_path, returns combined text.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
"""
|
| 52 |
+
try:
|
| 53 |
+
doc = fitz.open(pdf_path)
|
| 54 |
+
total_pages = doc.page_count
|
| 55 |
+
pages_to_read = min(total_pages, num_pages)
|
| 56 |
+
text_list = []
|
| 57 |
+
for i in range(pages_to_read):
|
| 58 |
+
page_text = doc[i].get_text()
|
| 59 |
+
text_list.append(page_text)
|
| 60 |
+
doc.close()
|
| 61 |
+
return "\n".join(text_list)
|
| 62 |
+
except Exception as e:
|
| 63 |
+
logger.error(f"[ContentsExtractor] Could not open or read PDF: {e}")
|
| 64 |
+
return ""
|
| 65 |
+
|
| 66 |
+
def extract_contents(self, text: str) -> str:
|
| 67 |
+
"""
|
| 68 |
+
Send the text to Gemini. Return raw LLM output, presumably JSON with subtopic pages.
|
| 69 |
+
"""
|
| 70 |
+
if not text.strip():
|
| 71 |
+
return "{}"
|
| 72 |
|
| 73 |
prompt = f"""
|
| 74 |
+
You have the first pages of an A-Level Mathematics specification.
|
| 75 |
+
Identify the subtopics under '2 Subject content and assessment information', especially:
|
| 76 |
+
- "Paper 1 and Paper 2: Pure Mathematics"
|
| 77 |
+
- "Paper 3: Statistics and Mechanics"
|
| 78 |
+
Return a JSON of the form:
|
| 79 |
+
{{
|
| 80 |
+
"Paper 1 and Paper 2: Pure Mathematics": [start_page, end_page],
|
| 81 |
+
"Paper 3: Statistics and Mechanics": [start_page, end_page]
|
| 82 |
+
}}
|
| 83 |
+
Where pages are 1-based.
|
| 84 |
+
No extra text. Only JSON.
|
| 85 |
+
TEXT:
|
| 86 |
+
{text}
|
|
|
|
| 87 |
"""
|
| 88 |
|
| 89 |
try:
|
| 90 |
+
response = self.client.models.generate_content(
|
| 91 |
+
model=self.model,
|
|
|
|
| 92 |
contents=[prompt],
|
| 93 |
config=types.GenerateContentConfig(temperature=0.0)
|
| 94 |
)
|
| 95 |
+
return response.text.strip() if (response and response.text) else "{}"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
except Exception as e:
|
| 97 |
+
logger.error(f"[ContentsExtractor] LLM error: {e}")
|
| 98 |
+
return "{}"
|
| 99 |
|
| 100 |
+
|
| 101 |
+
# -------------------------------------------------------------------
|
| 102 |
+
# 2) Helper to create a PDF subset from specific pages
|
| 103 |
+
# -------------------------------------------------------------------
|
| 104 |
+
def create_subset_pdf(pdf_bytes: bytes, page_indices: List[int]) -> bytes:
|
| 105 |
+
"""
|
| 106 |
+
Return a new PDF containing only the pages in `page_indices` (0-based).
|
| 107 |
+
If empty, returns original.
|
| 108 |
+
"""
|
| 109 |
+
if not page_indices:
|
| 110 |
+
return pdf_bytes
|
| 111 |
+
|
| 112 |
+
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
|
| 113 |
+
new_doc = fitz.open()
|
| 114 |
+
for p in sorted(set(page_indices)):
|
| 115 |
+
if 0 <= p < doc.page_count:
|
| 116 |
+
new_doc.insert_pdf(doc, from_page=p, to_page=p)
|
| 117 |
+
else:
|
| 118 |
+
logger.warning(f"Page index {p} out of range.")
|
| 119 |
+
out_bytes = new_doc.tobytes()
|
| 120 |
+
new_doc.close()
|
| 121 |
+
doc.close()
|
| 122 |
+
return out_bytes
|
| 123 |
|
| 124 |
|
| 125 |
# -------------------------------------------------------------------
|
| 126 |
+
# 3) Gemini-based table classification and description
|
| 127 |
# -------------------------------------------------------------------
|
| 128 |
def call_gemini_for_table_classification(image_data: bytes) -> str:
|
| 129 |
if genai is None or types is None:
|
| 130 |
+
logger.warning("Gemini not available. Return NO_TABLE.")
|
| 131 |
return "NO_TABLE"
|
| 132 |
|
| 133 |
+
prompt = """Is this image a 2-col table, 3-col table, or not a table? Return 'TWO_COLUMN','THREE_COLUMN','NO_TABLE'."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
try:
|
| 135 |
+
client = genai.Client(api_key=GEMINI_API_KEY)
|
| 136 |
response = client.models.generate_content(
|
| 137 |
model="gemini-2.0-flash",
|
| 138 |
contents=[
|
|
|
|
| 142 |
{
|
| 143 |
"inline_data": {
|
| 144 |
"mime_type": "image/jpeg",
|
| 145 |
+
"data": base64.b64encode(image_data).decode("utf-8")
|
| 146 |
}
|
| 147 |
}
|
| 148 |
]
|
|
|
|
| 150 |
],
|
| 151 |
config=types.GenerateContentConfig(temperature=0.0)
|
| 152 |
)
|
| 153 |
+
out = response.text.strip().upper() if (response and response.text) else "NO_TABLE"
|
| 154 |
+
if "THREE" in out:
|
|
|
|
| 155 |
return "THREE_COLUMN"
|
| 156 |
+
elif "TWO" in out:
|
| 157 |
return "TWO_COLUMN"
|
| 158 |
else:
|
| 159 |
return "NO_TABLE"
|
|
|
|
| 160 |
except Exception as e:
|
| 161 |
+
logger.error(f"[call_gemini_for_table_classification] error: {e}")
|
| 162 |
return "NO_TABLE"
|
| 163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
def call_gemini_for_image_description(image_data: bytes) -> str:
|
| 165 |
if genai is None or types is None:
|
| 166 |
+
logger.warning("Gemini not available. Return fallback desc.")
|
| 167 |
return "Image description unavailable"
|
| 168 |
|
| 169 |
+
prompt_text = """Short 20-word max summary if not a table. If it's an MCQ, mention 'MCQ: ...'."""
|
|
|
|
|
|
|
|
|
|
| 170 |
try:
|
| 171 |
+
client = genai.Client(api_key=GEMINI_API_KEY)
|
| 172 |
response = client.models.generate_content(
|
| 173 |
model="gemini-2.0-flash",
|
| 174 |
contents=[
|
|
|
|
| 178 |
{
|
| 179 |
"inline_data": {
|
| 180 |
"mime_type": "image/jpeg",
|
| 181 |
+
"data": base64.b64encode(image_data).decode("utf-8")
|
| 182 |
}
|
| 183 |
}
|
| 184 |
]
|
|
|
|
| 186 |
],
|
| 187 |
config=types.GenerateContentConfig(temperature=0.0)
|
| 188 |
)
|
| 189 |
+
return response.text.strip() if (response and response.text) else "Image description unavailable"
|
|
|
|
| 190 |
except Exception as e:
|
| 191 |
+
logger.error(f"[call_gemini_for_image_description] error: {e}")
|
| 192 |
return "Image description unavailable"
|
| 193 |
|
| 194 |
|
| 195 |
# -------------------------------------------------------------------
|
| 196 |
+
# 4) LocalImageWriter that removes all text from final .md
|
| 197 |
# -------------------------------------------------------------------
|
| 198 |
class LocalImageWriter:
|
| 199 |
"""
|
| 200 |
+
- Receives images from doc_analyze
|
| 201 |
+
- Classifies them as table or no_table
|
| 202 |
+
- Replaces single table lines with row/cell references
|
| 203 |
+
- Output MD has only lines referencing images
|
| 204 |
"""
|
| 205 |
def __init__(self, output_folder: str):
|
| 206 |
self.output_folder = output_folder
|
|
|
|
| 216 |
self._img_count += 1
|
| 217 |
local_filename = f"img_{self._img_count}.png"
|
| 218 |
local_path = os.path.join(self.images_dir, local_filename)
|
|
|
|
| 219 |
with open(local_path, "wb") as f:
|
| 220 |
f.write(data)
|
| 221 |
|
|
|
|
| 229 |
|
| 230 |
def post_process(self, key: str, md_content: str) -> str:
|
| 231 |
# 1) Table classification
|
| 232 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=len(self.descriptions)) as exe:
|
| 233 |
fut_map = {
|
| 234 |
+
exe.submit(call_gemini_for_table_classification, info["data"]): p
|
| 235 |
for p, info in self.descriptions.items()
|
| 236 |
}
|
| 237 |
for fut in concurrent.futures.as_completed(fut_map):
|
|
|
|
| 240 |
classification = fut.result()
|
| 241 |
self.descriptions[path]['table_classification'] = classification
|
| 242 |
except Exception as e:
|
| 243 |
+
logger.error(f"Classification error for {path}: {e}")
|
| 244 |
self.descriptions[path]['table_classification'] = "NO_TABLE"
|
| 245 |
|
| 246 |
+
# 2) If NO_TABLE => short description
|
| 247 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=len(self.descriptions)) as exe:
|
| 248 |
fut_map2 = {}
|
| 249 |
for p, info in self.descriptions.items():
|
| 250 |
if info['table_classification'] == "NO_TABLE":
|
| 251 |
+
fut = exe.submit(call_gemini_for_image_description, info["data"])
|
| 252 |
fut_map2[fut] = p
|
| 253 |
|
| 254 |
for fut in concurrent.futures.as_completed(fut_map2):
|
|
|
|
| 257 |
desc = fut.result()
|
| 258 |
self.descriptions[path]['final_alt'] = desc
|
| 259 |
except Exception as e:
|
| 260 |
+
logger.error(f"Desc error for {path}: {e}")
|
| 261 |
self.descriptions[path]['final_alt'] = "Image description unavailable"
|
| 262 |
|
| 263 |
+
# 3) If 2-col or 3-col => "HAS TO BE PROCESSED"
|
| 264 |
for p, info in self.descriptions.items():
|
| 265 |
cls = info['table_classification']
|
| 266 |
if cls == "TWO_COLUMN":
|
|
|
|
| 272 |
|
| 273 |
# 4) Replace placeholders
|
| 274 |
for p, info in self.descriptions.items():
|
| 275 |
+
old_tag = f""
|
| 276 |
+
new_tag = f"![{info['final_alt']}]({info['relative_path']})"
|
| 277 |
+
md_content = md_content.replace(old_tag, new_tag)
|
| 278 |
|
| 279 |
+
# 5) For "HAS TO BE PROCESSED" => run TableExtractor => row/cell references
|
| 280 |
md_content = self._process_table_images_in_markdown(md_content)
|
| 281 |
|
| 282 |
+
# 6) Keep only lines referencing images
|
| 283 |
final_lines = []
|
| 284 |
for line in md_content.split("\n"):
|
| 285 |
+
line = line.strip()
|
| 286 |
+
if re.match(r"^!\[.*\]\(.*\)$", line):
|
| 287 |
+
final_lines.append(line)
|
| 288 |
+
return "\n".join(final_lines)
|
|
|
|
|
|
|
| 289 |
|
| 290 |
def _process_table_images_in_markdown(self, md_content: str) -> str:
|
| 291 |
pattern = r"!\[HAS TO BE PROCESSED - (two|three) column table\]\(([^)]+)\)"
|
|
|
|
| 314 |
os.makedirs(out_folder, exist_ok=True)
|
| 315 |
extractor.save_extracted_cells(abs_image_path, row_boxes, out_folder)
|
| 316 |
|
|
|
|
| 317 |
snippet_lines = ["**Extracted table cells:**"]
|
| 318 |
for i, row in enumerate(row_boxes):
|
| 319 |
row_dir = os.path.join(out_folder, f"row_{i}")
|
|
|
|
| 326 |
new_snippet = "\n".join(snippet_lines)
|
| 327 |
old_line = f""
|
| 328 |
md_content = md_content.replace(old_line, new_snippet)
|
|
|
|
| 329 |
except Exception as e:
|
| 330 |
logger.error(f"Error processing table image {image_path}: {e}")
|
| 331 |
|
|
|
|
| 333 |
|
| 334 |
|
| 335 |
# -------------------------------------------------------------------
|
| 336 |
+
# 5) Final Pipeline
|
| 337 |
# -------------------------------------------------------------------
|
| 338 |
+
class MineruPipelineForSubtopics:
|
| 339 |
"""
|
| 340 |
+
1) Extract ~10 pages to parse contents with Gemini
|
| 341 |
+
2) Identify subtopic pages for 'Paper 1 and Paper 2: Pure Mathematics' and 'Paper 3: Statistics and Mechanics'
|
| 342 |
+
3) Create subset PDF with those pages
|
| 343 |
+
4) doc_analyze => only images => final MD with table references
|
| 344 |
"""
|
| 345 |
def __init__(self, output_folder: str):
|
| 346 |
self.output_folder = output_folder
|
|
|
|
| 351 |
self.table_enable = False
|
| 352 |
self.language = "en"
|
| 353 |
|
| 354 |
+
self.contents_extractor = ContentsExtractor(api_key=GEMINI_API_KEY)
|
| 355 |
|
| 356 |
def cleanup_gpu(self):
|
| 357 |
try:
|
|
|
|
| 359 |
torch.cuda.empty_cache()
|
| 360 |
logger.info("GPU memory cleaned up.")
|
| 361 |
except Exception as e:
|
| 362 |
+
logger.error(f"Cleanup GPU error: {e}")
|
| 363 |
|
| 364 |
def process(self, pdf_path: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
logger.info(f"Processing PDF: {pdf_path}")
|
| 366 |
try:
|
| 367 |
+
# Step 1) parse first pages => subtopics
|
| 368 |
+
first_text = self.contents_extractor.extract_first_pages(pdf_path, num_pages=10)
|
| 369 |
+
raw_json = self.contents_extractor.extract_contents(first_text)
|
| 370 |
+
logger.info(f"[ContentsExtraction] raw LLM output: {raw_json}")
|
| 371 |
+
try:
|
| 372 |
+
subtopics_dict = json.loads(raw_json)
|
| 373 |
+
except json.JSONDecodeError:
|
| 374 |
+
logger.warning("Gemini did not return valid JSON. We'll parse entire doc.")
|
| 375 |
+
subtopics_dict = {}
|
| 376 |
+
|
| 377 |
+
# Step 2) gather pages from subtopics
|
| 378 |
+
# We expect keys like "Paper 1 and Paper 2: Pure Mathematics", "Paper 3: Statistics and Mechanics"
|
| 379 |
+
# If the LLM is correct, we'll get e.g. { "Paper 1 and Paper 2: Pure Mathematics": [11, 29], "Paper 3: Statistics and Mechanics": [30, 38] }
|
| 380 |
+
pages_1_2 = []
|
| 381 |
+
pages_3 = []
|
| 382 |
+
if "Paper 1 and Paper 2: Pure Mathematics" in subtopics_dict:
|
| 383 |
+
rng = subtopics_dict["Paper 1 and Paper 2: Pure Mathematics"]
|
| 384 |
+
if len(rng) == 2:
|
| 385 |
+
for p in range(rng[0], rng[1] + 1):
|
| 386 |
+
pages_1_2.append(p)
|
| 387 |
+
|
| 388 |
+
if "Paper 3: Statistics and Mechanics" in subtopics_dict:
|
| 389 |
+
rng = subtopics_dict["Paper 3: Statistics and Mechanics"]
|
| 390 |
+
if len(rng) == 2:
|
| 391 |
+
for p in range(rng[0], rng[1] + 1):
|
| 392 |
+
pages_3.append(p)
|
| 393 |
+
|
| 394 |
+
all_subtopic_pages = pages_1_2 + pages_3
|
| 395 |
+
if not all_subtopic_pages:
|
| 396 |
+
logger.warning("No subtopic pages found. We'll do entire doc.")
|
| 397 |
+
subset_pdf_bytes = open(pdf_path, "rb").read()
|
| 398 |
else:
|
| 399 |
+
# Convert to 0-based
|
| 400 |
+
doc = fitz.open(pdf_path)
|
| 401 |
+
max_page = doc.page_count
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 402 |
doc.close()
|
| 403 |
|
| 404 |
zero_based = []
|
| 405 |
+
for p in all_subtopic_pages:
|
| 406 |
z = p - 1
|
| 407 |
+
if 0 <= z < max_page:
|
| 408 |
zero_based.append(z)
|
| 409 |
zero_based = sorted(set(zero_based))
|
| 410 |
+
logger.info(f"Final subtopic pages (0-based): {zero_based}")
|
| 411 |
|
| 412 |
+
# If empty => entire doc
|
| 413 |
+
if not zero_based:
|
| 414 |
+
subset_pdf_bytes = open(pdf_path, "rb").read()
|
| 415 |
else:
|
| 416 |
+
original_bytes = open(pdf_path, "rb").read()
|
| 417 |
+
subset_pdf_bytes = create_subset_pdf(original_bytes, zero_based)
|
|
|
|
|
|
|
| 418 |
|
| 419 |
+
# Step 3) doc_analyze => images => final MD
|
| 420 |
dataset = PymuDocDataset(subset_pdf_bytes)
|
| 421 |
inference = doc_analyze(
|
| 422 |
dataset,
|
|
|
|
| 428 |
)
|
| 429 |
logger.info("doc_analyze complete. Extracting images...")
|
| 430 |
|
| 431 |
+
writer = LocalImageWriter(self.output_folder)
|
| 432 |
+
pipe_result = inference.pipe_ocr_mode(writer, lang=self.language)
|
|
|
|
| 433 |
|
| 434 |
md_content = pipe_result.get_markdown("local-unique-prefix/")
|
| 435 |
+
final_markdown = writer.post_process("local-unique-prefix/", md_content)
|
| 436 |
|
|
|
|
| 437 |
md_path = os.path.join(self.output_folder, "final_output.md")
|
| 438 |
with open(md_path, "w", encoding="utf-8") as f:
|
| 439 |
f.write(final_markdown)
|
| 440 |
|
| 441 |
logger.info(f"Markdown saved to: {md_path}")
|
| 442 |
return final_markdown
|
|
|
|
| 443 |
finally:
|
| 444 |
self.cleanup_gpu()
|
| 445 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 446 |
|
| 447 |
# -------------------------------------------------------------------
|
| 448 |
# Example usage
|
| 449 |
# -------------------------------------------------------------------
|
| 450 |
if __name__ == "__main__":
|
| 451 |
input_pdf = "/home/user/app/input_output/a-level-pearson-mathematics-specification.pdf"
|
| 452 |
+
output_dir = "/home/user/app/input_output/outputed"
|
| 453 |
|
| 454 |
+
processor = MineruPipelineForSubtopics(output_folder=output_dir)
|
| 455 |
final_md = processor.process(input_pdf)
|
| 456 |
+
print("\n===== FINAL .MD =====\n")
|
| 457 |
+
# print(final_md)
|