page handling
Browse files
__pycache__/inference_svm_model.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/inference_svm_model.cpython-310.pyc and b/__pycache__/inference_svm_model.cpython-310.pyc differ
|
|
|
__pycache__/mineru_single.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/mineru_single.cpython-310.pyc and b/__pycache__/mineru_single.cpython-310.pyc differ
|
|
|
__pycache__/table_row_extraction.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/table_row_extraction.cpython-310.pyc and b/__pycache__/table_row_extraction.cpython-310.pyc differ
|
|
|
__pycache__/topic_extraction.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/topic_extraction.cpython-310.pyc and b/__pycache__/topic_extraction.cpython-310.pyc differ
|
|
|
__pycache__/worker.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/worker.cpython-310.pyc and b/__pycache__/worker.cpython-310.pyc differ
|
|
|
page_range.py
ADDED
|
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
import os
|
| 3 |
+
import re
|
| 4 |
+
import json
|
| 5 |
+
import logging
|
| 6 |
+
import fitz
|
| 7 |
+
import requests
|
| 8 |
+
from statistics import mode, median
|
| 9 |
+
|
| 10 |
+
from google import genai
|
| 11 |
+
from google.genai import types
|
| 12 |
+
|
| 13 |
+
logging.basicConfig(level=logging.INFO)
|
| 14 |
+
logger = logging.getLogger(__name__)
|
| 15 |
+
|
| 16 |
+
def find_all_occurrences(pdf_bytes: bytes, search_text: str) -> list:
|
| 17 |
+
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
|
| 18 |
+
st_norm = re.sub(r"\s+", " ", search_text).strip()
|
| 19 |
+
found = []
|
| 20 |
+
for i in range(doc.page_count):
|
| 21 |
+
raw = doc[i].get_text("raw")
|
| 22 |
+
norm = re.sub(r"\s+", " ", raw).strip()
|
| 23 |
+
if st_norm in norm:
|
| 24 |
+
found.append(i)
|
| 25 |
+
doc.close()
|
| 26 |
+
return sorted(found)
|
| 27 |
+
|
| 28 |
+
class GeminiTopicExtractor:
|
| 29 |
+
def __init__(self, api_key: str = None, num_pages: int = 20):
|
| 30 |
+
self.api_key = api_key or os.getenv("GEMINI_API_KEY", "")
|
| 31 |
+
self.num_pages = num_pages
|
| 32 |
+
|
| 33 |
+
def _read_first_pages_raw(self, pdf_path: str, num_pages: int) -> str:
|
| 34 |
+
text_parts = []
|
| 35 |
+
try:
|
| 36 |
+
if pdf_path.startswith("http://") or pdf_path.startswith("https://"):
|
| 37 |
+
response = requests.get(pdf_path)
|
| 38 |
+
if response.status_code != 200:
|
| 39 |
+
logger.error("Failed to download PDF from %s. Status code: %d", pdf_path, response.status_code)
|
| 40 |
+
return ""
|
| 41 |
+
pdf_bytes = response.content
|
| 42 |
+
else:
|
| 43 |
+
with open(pdf_path, "rb") as f:
|
| 44 |
+
pdf_bytes = f.read()
|
| 45 |
+
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
|
| 46 |
+
pages_to_read = min(num_pages, doc.page_count)
|
| 47 |
+
for i in range(pages_to_read):
|
| 48 |
+
raw_text = doc[i].get_text("raw")
|
| 49 |
+
text_parts.append(raw_text)
|
| 50 |
+
doc.close()
|
| 51 |
+
except Exception as e:
|
| 52 |
+
logger.error(f"Could not open PDF: {e}")
|
| 53 |
+
return "\n".join(text_parts)
|
| 54 |
+
|
| 55 |
+
def extract_subtopics(self, pdf_path: str) -> dict:
|
| 56 |
+
first_pages_text = self._read_first_pages_raw(pdf_path, self.num_pages)
|
| 57 |
+
if not first_pages_text.strip():
|
| 58 |
+
logger.error("No text from first pages => cannot extract subtopics.")
|
| 59 |
+
return {}
|
| 60 |
+
prompt = f"""
|
| 61 |
+
You have the first pages of a PDF specification, including a table of contents.
|
| 62 |
+
Instructions:
|
| 63 |
+
1. Identify the 'Contents' section listing all topics, subtopics, and their corresponding pages.
|
| 64 |
+
2. Identify the major academic subtopics (common desired topic names "Paper X", "Theme X", "Content of X", "AS Unit X", "A2 Unit X", or similar headings).
|
| 65 |
+
3. For each subtopic, give the range of pages [start_page, end_page -1] (1-based) from the table of contents.
|
| 66 |
+
4. Output only valid JSON of the form:
|
| 67 |
+
{{
|
| 68 |
+
"Subtopic A": [start_page, end_page],
|
| 69 |
+
"Subtopic B": [start_page, end_page]
|
| 70 |
+
}}
|
| 71 |
+
5. If you can't find any subtopics, return an empty JSON.
|
| 72 |
+
Important notes:
|
| 73 |
+
- The correct "end_page" must be the page number of the next topic or subtopic minus 1.
|
| 74 |
+
- The final output must be valid JSON only, with no extra text or code blocks.
|
| 75 |
+
Examples:
|
| 76 |
+
1. Given this table of contents:
|
| 77 |
+
1 Introduction – 2
|
| 78 |
+
Why choose Edexcel A Level Mathematics? - 2
|
| 79 |
+
Supporting you in planning and implementing this qualification - 3
|
| 80 |
+
Qualification at a glance - 5
|
| 81 |
+
2 Subject content and assessment information – 7
|
| 82 |
+
Paper 1 and Paper 2: Pure Mathematics - 11
|
| 83 |
+
Paper 3: Statistics and Mechanics - 30
|
| 84 |
+
Assessment Objectives - 40
|
| 85 |
+
3 Administration and general information – 42
|
| 86 |
+
Entries - 42
|
| 87 |
+
Access arrangements, reasonable adjustments, special consideration and malpractice - 42
|
| 88 |
+
Student recruitment and progression - 45
|
| 89 |
+
|
| 90 |
+
The correct output should be:
|
| 91 |
+
{{
|
| 92 |
+
"Paper 1 and Paper 2: Pure Mathematics": [11, 29],
|
| 93 |
+
"Paper 3: Statistics and Mechanics": [30, 38]
|
| 94 |
+
}}
|
| 95 |
+
2. Given this table of contents:
|
| 96 |
+
Qualification at a glance – 1
|
| 97 |
+
Assessment Objectives and weightings - 4
|
| 98 |
+
Knowledge, skills and understanding – 5
|
| 99 |
+
Theme 1: Introduction to markets and market failure - 5
|
| 100 |
+
Theme 2: The UK economy – performance and policies - 11
|
| 101 |
+
Theme 3: Business behaviour and the labour market - 21
|
| 102 |
+
Theme 4: A global perspective - 29
|
| 103 |
+
Assessment – 39
|
| 104 |
+
Assessment summary - 39
|
| 105 |
+
Assessment objectives - 41
|
| 106 |
+
Assessment overview - 42
|
| 107 |
+
|
| 108 |
+
The correct output should be:
|
| 109 |
+
{{
|
| 110 |
+
"Theme 1: Introduction to markets and market failure": [5, 10],
|
| 111 |
+
"Theme 2: The UK economy – performance and policies": [11, 20],
|
| 112 |
+
"Theme 3: Business behaviour and the labour market": [21, 28],
|
| 113 |
+
"Theme 4: A global perspective": [29, 38]
|
| 114 |
+
}}
|
| 115 |
+
Now, extract topics from this text:
|
| 116 |
+
{first_pages_text}
|
| 117 |
+
"""
|
| 118 |
+
global _GEMINI_CLIENT
|
| 119 |
+
if '_GEMINI_CLIENT' not in globals() or _GEMINI_CLIENT is None:
|
| 120 |
+
_GEMINI_CLIENT = genai.Client(api_key=self.api_key)
|
| 121 |
+
client = _GEMINI_CLIENT
|
| 122 |
+
try:
|
| 123 |
+
response = client.models.generate_content(
|
| 124 |
+
model="gemini-2.0-flash",
|
| 125 |
+
contents=[prompt],
|
| 126 |
+
config=types.GenerateContentConfig(temperature=0.0)
|
| 127 |
+
)
|
| 128 |
+
if not response or not response.text:
|
| 129 |
+
logger.warning("No text from LLM => returning empty subtopics.")
|
| 130 |
+
return {}
|
| 131 |
+
raw_json = response.text.strip()
|
| 132 |
+
cleaned = raw_json.replace("```json", "").replace("```", "")
|
| 133 |
+
try:
|
| 134 |
+
data = json.loads(cleaned)
|
| 135 |
+
except Exception as json_err:
|
| 136 |
+
logger.error(f"JSON parsing error: {json_err}")
|
| 137 |
+
return {}
|
| 138 |
+
final_dict = {}
|
| 139 |
+
found_sub_dict = None
|
| 140 |
+
for k, v in data.items():
|
| 141 |
+
if isinstance(v, dict):
|
| 142 |
+
found_sub_dict = v
|
| 143 |
+
break
|
| 144 |
+
if found_sub_dict is not None:
|
| 145 |
+
for subk, rng in found_sub_dict.items():
|
| 146 |
+
if isinstance(rng, list) and len(rng) == 2:
|
| 147 |
+
final_dict[subk] = rng
|
| 148 |
+
else:
|
| 149 |
+
for subk, rng in data.items():
|
| 150 |
+
if isinstance(rng, list) and len(rng) == 2:
|
| 151 |
+
final_dict[subk] = rng
|
| 152 |
+
return final_dict
|
| 153 |
+
except Exception as e:
|
| 154 |
+
logger.error(f"Gemini subtopic extraction error: {e}")
|
| 155 |
+
return {}
|
| 156 |
+
|
| 157 |
+
class TopicRangeExtractor:
|
| 158 |
+
def __init__(self, gemini_api_key: str):
|
| 159 |
+
self.gemini_api_key = gemini_api_key
|
| 160 |
+
self.subtopic_extractor = GeminiTopicExtractor(api_key=gemini_api_key, num_pages=20)
|
| 161 |
+
|
| 162 |
+
def process(self, pdf_path: str) -> dict:
|
| 163 |
+
logger.info(f"Processing PDF: {pdf_path}")
|
| 164 |
+
subtopics = self.subtopic_extractor.extract_subtopics(pdf_path)
|
| 165 |
+
logger.info(f"Gemini returned subtopics: {subtopics}")
|
| 166 |
+
|
| 167 |
+
if pdf_path.startswith("http://") or pdf_path.startswith("https://"):
|
| 168 |
+
response = requests.get(pdf_path)
|
| 169 |
+
if response.status_code != 200:
|
| 170 |
+
logger.error("Failed to download PDF from %s. Status code: %d", pdf_path, response.status_code)
|
| 171 |
+
raise Exception(f"Failed to download PDF: {pdf_path}")
|
| 172 |
+
pdf_bytes = response.content
|
| 173 |
+
logger.info("Downloaded %d bytes for pdf_url='%s'", len(pdf_bytes), pdf_path)
|
| 174 |
+
else:
|
| 175 |
+
with open(pdf_path, "rb") as f:
|
| 176 |
+
pdf_bytes = f.read()
|
| 177 |
+
logger.info("Loaded %d bytes from local file '%s'", len(pdf_bytes), pdf_path)
|
| 178 |
+
|
| 179 |
+
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
|
| 180 |
+
total_pages = doc.page_count
|
| 181 |
+
doc.close()
|
| 182 |
+
|
| 183 |
+
# Compute global offset and adjust subtopic ranges.
|
| 184 |
+
if not subtopics:
|
| 185 |
+
global_offset = 0
|
| 186 |
+
subtopics_corrected = {}
|
| 187 |
+
else:
|
| 188 |
+
offset_candidates = []
|
| 189 |
+
subtopics_corrected = {}
|
| 190 |
+
for subname, rng in subtopics.items():
|
| 191 |
+
if not (isinstance(rng, list) and len(rng) == 2):
|
| 192 |
+
continue
|
| 193 |
+
start_p, end_p = rng
|
| 194 |
+
occs = find_all_occurrences(pdf_bytes, subname)
|
| 195 |
+
for p in occs:
|
| 196 |
+
candidate = p - (start_p - 1)
|
| 197 |
+
if candidate > 0:
|
| 198 |
+
offset_candidates.append(candidate)
|
| 199 |
+
subtopics_corrected[subname] = rng
|
| 200 |
+
|
| 201 |
+
if offset_candidates:
|
| 202 |
+
try:
|
| 203 |
+
global_offset = mode(offset_candidates)
|
| 204 |
+
except Exception:
|
| 205 |
+
global_offset = int(median(offset_candidates))
|
| 206 |
+
else:
|
| 207 |
+
global_offset = 0
|
| 208 |
+
logger.info(f"Computed global offset: {global_offset}")
|
| 209 |
+
|
| 210 |
+
# Adjust ranges by applying the global offset.
|
| 211 |
+
adjusted_topics = {}
|
| 212 |
+
for subname, rng in subtopics_corrected.items():
|
| 213 |
+
start_p, end_p = rng
|
| 214 |
+
s0 = (start_p - 1) + global_offset
|
| 215 |
+
e0 = (end_p - 1) + global_offset
|
| 216 |
+
adjusted_topics[subname] = [s0, e0]
|
| 217 |
+
|
| 218 |
+
# Sort the topics by their adjusted start page.
|
| 219 |
+
sorted_topics = sorted(adjusted_topics.items(), key=lambda item: item[1][0])
|
| 220 |
+
effective_ranges = {}
|
| 221 |
+
# For each subtopic, if there is a next one, set its effective end to the next topic's start minus 1.
|
| 222 |
+
for i, (name, (start, end)) in enumerate(sorted_topics):
|
| 223 |
+
if i < len(sorted_topics) - 1:
|
| 224 |
+
next_start = sorted_topics[i+1][1][0]
|
| 225 |
+
effective_end = min(end, next_start - 1)
|
| 226 |
+
else:
|
| 227 |
+
effective_end = end
|
| 228 |
+
effective_ranges[name] = [start, effective_end]
|
| 229 |
+
|
| 230 |
+
# Build the union of pages from each effective range.
|
| 231 |
+
# For every topic except the last, use a half-open range to skip the boundary page.
|
| 232 |
+
real_pages_set = set()
|
| 233 |
+
for i, (name, (start, end)) in enumerate(sorted_topics):
|
| 234 |
+
if i < len(sorted_topics) - 1:
|
| 235 |
+
# End is exclusive so the boundary page (end) is skipped.
|
| 236 |
+
for pp in range(start, end):
|
| 237 |
+
if 0 <= pp < total_pages:
|
| 238 |
+
real_pages_set.add(pp)
|
| 239 |
+
else:
|
| 240 |
+
# For the last topic include the end page.
|
| 241 |
+
for pp in range(start, end + 1):
|
| 242 |
+
if 0 <= pp < total_pages:
|
| 243 |
+
real_pages_set.add(pp)
|
| 244 |
+
page_range = sorted(real_pages_set)
|
| 245 |
+
|
| 246 |
+
return {
|
| 247 |
+
"page_range": page_range
|
| 248 |
+
}
|
| 249 |
+
|
| 250 |
+
if __name__ == "__main__":
|
| 251 |
+
input_pdf = "/home/user/app/input_output/a-level-pearson-mathematics-specification.pdf"
|
| 252 |
+
gemini_key = os.getenv("GEMINI_API_KEY", "AIzaSyDtoakpXa2pjJwcQB6TJ5QaXHNSA5JxcrU")
|
| 253 |
+
try:
|
| 254 |
+
extractor = TopicRangeExtractor(gemini_api_key=gemini_key)
|
| 255 |
+
result = extractor.process(input_pdf)
|
| 256 |
+
print(json.dumps(result, indent=2))
|
| 257 |
+
except Exception as e:
|
| 258 |
+
logger.error(f"Processing failed: {e}")
|
topic_extr.py
CHANGED
|
@@ -1,57 +1,22 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
import os
|
| 3 |
-
import
|
| 4 |
-
import gc
|
| 5 |
import json
|
| 6 |
import logging
|
|
|
|
| 7 |
import fitz
|
| 8 |
-
import boto3
|
| 9 |
-
import base64
|
| 10 |
-
import time
|
| 11 |
-
import asyncio
|
| 12 |
-
import tempfile
|
| 13 |
import requests
|
| 14 |
-
from io import BytesIO
|
| 15 |
-
from typing import List, Dict, Any
|
| 16 |
-
|
| 17 |
import torch
|
| 18 |
-
import
|
| 19 |
-
import
|
| 20 |
-
|
| 21 |
-
from google import genai
|
| 22 |
-
from google.genai import types
|
| 23 |
|
| 24 |
from magic_pdf.data.dataset import PymuDocDataset
|
| 25 |
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
|
| 26 |
-
from magic_pdf.data.data_reader_writer.base import DataWriter
|
| 27 |
-
from table_row_extraction import TableExtractor
|
| 28 |
|
| 29 |
logging.basicConfig(level=logging.INFO)
|
| 30 |
logger = logging.getLogger(__name__)
|
| 31 |
-
logger.setLevel(logging.INFO)
|
| 32 |
-
file_handler = logging.FileHandler("topic_extraction.log")
|
| 33 |
-
file_handler.setFormatter(logging.Formatter("%(asctime)s [%(levelname)s] %(name)s - %(message)s"))
|
| 34 |
-
logger.addHandler(file_handler)
|
| 35 |
-
|
| 36 |
-
_GEMINI_CLIENT = None
|
| 37 |
|
| 38 |
-
|
| 39 |
-
def unify_whitespace(text: str) -> str:
|
| 40 |
-
return re.sub(r"\s+", " ", text).strip()
|
| 41 |
-
|
| 42 |
-
def find_all_occurrences(pdf_bytes: bytes, search_text: str) -> List[int]:
|
| 43 |
-
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
|
| 44 |
-
st_norm = unify_whitespace(search_text)
|
| 45 |
-
found = []
|
| 46 |
-
for i in range(doc.page_count):
|
| 47 |
-
raw = doc[i].get_text("raw")
|
| 48 |
-
norm = unify_whitespace(raw)
|
| 49 |
-
if st_norm in norm:
|
| 50 |
-
found.append(i)
|
| 51 |
-
doc.close()
|
| 52 |
-
return sorted(found)
|
| 53 |
-
|
| 54 |
-
def create_subset_pdf(original_pdf_bytes: bytes, page_indices: List[int]) -> bytes:
|
| 55 |
if not page_indices:
|
| 56 |
raise ValueError("No page indices provided for subset creation.")
|
| 57 |
doc = fitz.open(stream=original_pdf_bytes, filetype="pdf")
|
|
@@ -67,121 +32,33 @@ def create_subset_pdf(original_pdf_bytes: bytes, page_indices: List[int]) -> byt
|
|
| 67 |
doc.close()
|
| 68 |
return subset_bytes
|
| 69 |
|
| 70 |
-
def
|
| 71 |
-
"""
|
| 72 |
-
Clean up a topic title:
|
| 73 |
-
- Remove any trailing "continued".
|
| 74 |
-
- If the title does not start with a number but children provide a consistent numeric prefix,
|
| 75 |
-
then prepend that prefix.
|
| 76 |
-
"""
|
| 77 |
-
title = raw_title.strip()
|
| 78 |
-
# Remove trailing "continued"
|
| 79 |
-
title = re.sub(r"\s+continued\s*$", "", title, flags=re.IGNORECASE)
|
| 80 |
-
|
| 81 |
-
# If title already starts with a number, use it as is.
|
| 82 |
-
if re.match(r"^\d+", title):
|
| 83 |
-
return title
|
| 84 |
-
|
| 85 |
-
# Otherwise, try to deduce a numeric prefix from the children.
|
| 86 |
-
prefixes = []
|
| 87 |
-
for child in children_subtopics:
|
| 88 |
-
child_title = child.get("title", "").strip()
|
| 89 |
-
m = re.match(r"^(\d+)\.", child_title)
|
| 90 |
-
if m:
|
| 91 |
-
prefixes.append(m.group(1))
|
| 92 |
-
if prefixes:
|
| 93 |
-
# If all numeric prefixes in children are the same, use that prefix.
|
| 94 |
-
if all(p == prefixes[0] for p in prefixes):
|
| 95 |
-
# If title is non-empty, prepend the number; otherwise, use a fallback.
|
| 96 |
-
if title:
|
| 97 |
-
title = f"{prefixes[0]} {title}"
|
| 98 |
-
else:
|
| 99 |
-
title = f"{prefixes[0]} Topic"
|
| 100 |
-
# Optionally, handle known broken titles explicitly.
|
| 101 |
-
if title.lower() in {"gonometry"}:
|
| 102 |
-
# For example, if children indicate "5.X", set to "5 Trigonometry"
|
| 103 |
-
if prefixes and prefixes[0] == "5":
|
| 104 |
-
title = "5 Trigonometry"
|
| 105 |
-
return title
|
| 106 |
-
|
| 107 |
-
def merge_topics(subtopic_list: list) -> list:
|
| 108 |
"""
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
| 116 |
"""
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
children = topic_obj.get("children", [])
|
| 122 |
-
contents = topic_obj.get("contents", [])
|
| 123 |
-
new_title = unify_topic_name(raw_title, children)
|
| 124 |
-
# Extract parent's numeric prefix, if present.
|
| 125 |
-
m = re.match(r"^(\d+)", new_title)
|
| 126 |
-
parent_prefix = m.group(1) if m else None
|
| 127 |
-
key = parent_prefix if parent_prefix is not None else new_title
|
| 128 |
-
|
| 129 |
-
if key not in merged:
|
| 130 |
-
merged[key] = {
|
| 131 |
-
"title": new_title,
|
| 132 |
-
"contents": list(contents),
|
| 133 |
-
"children": list(children),
|
| 134 |
-
}
|
| 135 |
else:
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
new_children = []
|
| 148 |
-
for child in topic["children"]:
|
| 149 |
-
child_title = child.get("title", "").strip()
|
| 150 |
-
m_child = re.match(r"^(\d+)\.", child_title)
|
| 151 |
-
if m_child:
|
| 152 |
-
child_prefix = m_child.group(1)
|
| 153 |
-
if key != child_prefix and child_prefix in parent_lookup:
|
| 154 |
-
# Reassign this child to the proper parent.
|
| 155 |
-
parent_lookup[child_prefix]["children"].append(child)
|
| 156 |
-
continue
|
| 157 |
-
new_children.append(child)
|
| 158 |
-
topic["children"] = new_children
|
| 159 |
-
|
| 160 |
-
# Remove duplicate children by merging their contents.
|
| 161 |
-
for topic in merged.values():
|
| 162 |
-
child_map = {}
|
| 163 |
-
for child in topic["children"]:
|
| 164 |
-
ctitle = child.get("title", "").strip()
|
| 165 |
-
if ctitle not in child_map:
|
| 166 |
-
child_map[ctitle] = child
|
| 167 |
-
else:
|
| 168 |
-
child_map[ctitle]["contents"].extend(child.get("contents", []))
|
| 169 |
-
child_map[ctitle]["children"].extend(child.get("children", []))
|
| 170 |
-
topic["children"] = list(child_map.values())
|
| 171 |
-
|
| 172 |
-
# Sort children by full numeric order (e.g. "2.1" < "2.10" < "2.2").
|
| 173 |
-
def parse_subtopic_num(subtitle):
|
| 174 |
-
digits = re.findall(r"\d+", subtitle)
|
| 175 |
-
return tuple(int(d) for d in digits) if digits else (9999,)
|
| 176 |
-
topic["children"].sort(key=lambda ch: parse_subtopic_num(ch.get("title", "")))
|
| 177 |
-
|
| 178 |
-
# Convert merged topics to a sorted list.
|
| 179 |
-
def parse_parent_num(topic):
|
| 180 |
-
m = re.match(r"^(\d+)", topic.get("title", ""))
|
| 181 |
-
return int(m.group(1)) if m else 9999
|
| 182 |
-
final_list = list(merged.values())
|
| 183 |
-
final_list.sort(key=lambda topic: parse_parent_num(topic))
|
| 184 |
-
return final_list
|
| 185 |
|
| 186 |
class s3Writer:
|
| 187 |
def __init__(self, ak: str, sk: str, bucket: str, endpoint_url: str):
|
|
@@ -195,676 +72,44 @@ class s3Writer:
|
|
| 195 |
|
| 196 |
def write(self, path: str, data: bytes) -> None:
|
| 197 |
try:
|
|
|
|
| 198 |
file_obj = BytesIO(data)
|
| 199 |
-
self.client.upload_fileobj(
|
| 200 |
-
file_obj,
|
| 201 |
-
self.bucket,
|
| 202 |
-
path
|
| 203 |
-
)
|
| 204 |
logger.info(f"Uploaded to S3: {path}")
|
| 205 |
except Exception as e:
|
| 206 |
logger.error(f"Failed to upload to S3: {str(e)}")
|
| 207 |
raise
|
| 208 |
|
| 209 |
-
|
| 210 |
-
try:
|
| 211 |
-
self.client.delete_object(Bucket=self.bucket, Key=path)
|
| 212 |
-
except Exception as e:
|
| 213 |
-
logger.error(f"Failed to delete from S3: {str(e)}")
|
| 214 |
-
raise
|
| 215 |
-
|
| 216 |
-
def preprocess_image(image_data: bytes, max_dim: int = 600, quality: int = 60) -> bytes:
|
| 217 |
-
arr = np.frombuffer(image_data, np.uint8)
|
| 218 |
-
img = cv2.imdecode(arr, cv2.IMREAD_COLOR)
|
| 219 |
-
if img is not None:
|
| 220 |
-
h, w, _ = img.shape
|
| 221 |
-
if max(h, w) > max_dim:
|
| 222 |
-
scale = max_dim / float(max(h, w))
|
| 223 |
-
new_w = int(w * scale)
|
| 224 |
-
new_h = int(h * scale)
|
| 225 |
-
img = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_AREA)
|
| 226 |
-
encode_params = [int(cv2.IMWRITE_JPEG_QUALITY), quality]
|
| 227 |
-
success, enc = cv2.imencode(".jpg", img, encode_params)
|
| 228 |
-
if success:
|
| 229 |
-
return enc.tobytes()
|
| 230 |
-
return image_data
|
| 231 |
-
|
| 232 |
-
def call_gemini_for_table_classification(image_data: bytes, api_key: str, max_retries: int = 1) -> str:
|
| 233 |
-
"""
|
| 234 |
-
Existing Gemini call to classify an image as TWO_COLUMN, THREE_COLUMN, or NO_TABLE.
|
| 235 |
-
"""
|
| 236 |
-
for attempt in range(max_retries + 1):
|
| 237 |
-
try:
|
| 238 |
-
prompt = """You are given an image. Determine if it shows a table that has exactly 2 or 3 columns.
|
| 239 |
-
The three-column 'table' image includes such key features:
|
| 240 |
-
- Three columns header
|
| 241 |
-
- Headers like 'Topics', 'Content', 'Guidelines', 'Amplification', 'Additional guidance notes', 'Area of Study'
|
| 242 |
-
- Possibly sections (e.g. 8.4, 9.1)
|
| 243 |
-
The two-column 'table' image includes such key features:
|
| 244 |
-
- Two columns
|
| 245 |
-
- Headers like 'Subject content', 'Additional information'
|
| 246 |
-
- Possibly sections (e.g. 2.1, 3.4, G2, G3, )
|
| 247 |
-
If the image is a relevant table with 2 columns, respond with 'TWO_COLUMN'.
|
| 248 |
-
If the image is a relevant table with 3 columns, respond with 'THREE_COLUMN'.
|
| 249 |
-
If the image is non-empty but does not show a table, respond with 'NO_TABLE'.
|
| 250 |
-
Return only one of these exact labels.
|
| 251 |
-
"""
|
| 252 |
-
global _GEMINI_CLIENT
|
| 253 |
-
if _GEMINI_CLIENT is None:
|
| 254 |
-
_GEMINI_CLIENT = genai.Client(api_key=api_key)
|
| 255 |
-
client = _GEMINI_CLIENT
|
| 256 |
-
|
| 257 |
-
resp = client.models.generate_content(
|
| 258 |
-
model="gemini-2.0-flash",
|
| 259 |
-
contents=[
|
| 260 |
-
{
|
| 261 |
-
"parts": [
|
| 262 |
-
{"text": prompt},
|
| 263 |
-
{
|
| 264 |
-
"inline_data": {
|
| 265 |
-
"mime_type": "image/jpeg",
|
| 266 |
-
"data": base64.b64encode(image_data).decode('utf-8')
|
| 267 |
-
}
|
| 268 |
-
}
|
| 269 |
-
]
|
| 270 |
-
}
|
| 271 |
-
],
|
| 272 |
-
config=types.GenerateContentConfig(temperature=0.0)
|
| 273 |
-
)
|
| 274 |
-
if resp and resp.text:
|
| 275 |
-
classification = resp.text.strip().upper()
|
| 276 |
-
if "THREE" in classification:
|
| 277 |
-
return "THREE_COLUMN"
|
| 278 |
-
elif "TWO" in classification:
|
| 279 |
-
return "TWO_COLUMN"
|
| 280 |
-
elif "EMPTY" in classification:
|
| 281 |
-
return "EMPTY_IMAGE"
|
| 282 |
-
return "NO_TABLE"
|
| 283 |
-
except Exception as e:
|
| 284 |
-
logger.error(f"Gemini table classification error: {e}")
|
| 285 |
-
if "503" in str(e):
|
| 286 |
-
return "NO_TABLE"
|
| 287 |
-
if attempt < max_retries:
|
| 288 |
-
time.sleep(0.5)
|
| 289 |
-
else:
|
| 290 |
-
return "NO_TABLE"
|
| 291 |
-
|
| 292 |
-
async def classify_image_async(image_data: bytes, api_key: str, max_retries: int = 1) -> str:
|
| 293 |
-
loop = asyncio.get_event_loop()
|
| 294 |
-
preprocessed = preprocess_image(image_data)
|
| 295 |
-
return await loop.run_in_executor(None, call_gemini_for_table_classification, preprocessed, api_key, max_retries)
|
| 296 |
-
|
| 297 |
-
def call_gemini_for_subtopic_identification_image(image_data: bytes, api_key: str, max_retries: int = 1) -> dict:
|
| 298 |
-
for attempt in range(max_retries + 1):
|
| 299 |
-
try:
|
| 300 |
-
prompt = """
|
| 301 |
-
You are given an image from an educational curriculum specification for Gemini Flash 2. The image may contain:
|
| 302 |
-
1) A main topic heading in the format: "<number> <Topic Name>", for example "2 Algebra and functions continued".
|
| 303 |
-
2) A subtopic heading in the format "<number>.<number>" or "<number>.<number>.<number>", for example "2.5", "2.6", "3.4", "2.1.1", "4.3.3" or "1.2.1".
|
| 304 |
-
3) A label-like title in the left column of a two-column table, for example "G2", "G3", "Scarcity, choice and opportunity cost", or similar text without explicit numeric patterns (2.1, 3.4, etc.).
|
| 305 |
-
4) Possibly no relevant text or only truncated text (e.g. "Topics", "Subject content", "What students need to learn", "Content Amplification Additional guidance notes", etc.).
|
| 306 |
-
|
| 307 |
-
Your task is to extract:
|
| 308 |
-
- **"title"**: A recognized main topic or heading text.
|
| 309 |
-
- **"subtopics"**: Any recognized subtopic numbers (e.g. "2.5", "2.6", "3.4", "G2", "2.1.1", "4.1.1"), as an array of strings.
|
| 310 |
-
|
| 311 |
-
Follow these rules:
|
| 312 |
-
|
| 313 |
-
(1) **If the cell shows a main topic in the format "<number> <Topic Name>",** for example "2 Algebra and functions continued":
|
| 314 |
-
- Remove the word "continued" if present.
|
| 315 |
-
- Put that resulting text in "title". (e.g. "2 Algebra and functions")
|
| 316 |
-
- "subtopics" should be an empty array, unless smaller subtopic numbers (e.g. "2.5") are also detected in the same text.
|
| 317 |
-
|
| 318 |
-
(2) **If the cell shows one or more subtopic numbers** in the format "<number>.<number>", for example "2.5", "2.6", or "3.4":
|
| 319 |
-
- Collect those exact strings in the JSON key "subtopics" (an array of strings).
|
| 320 |
-
- "title" in this case should be an empty string if you only detect subtopics.
|
| 321 |
-
(Example: If text is "2.5 Solve linear inequalities...", then "title" = "", "subtopics" = ["2.5"]).
|
| 322 |
-
|
| 323 |
-
(3) **If no main topic or subtopic is detected but the text appears to be a heading**, for example "Specialisation, division of labour and exchange", then:
|
| 324 |
-
- Return:
|
| 325 |
-
{
|
| 326 |
-
"title": "<the heading text>",
|
| 327 |
-
"subtopics": []
|
| 328 |
-
}
|
| 329 |
-
|
| 330 |
-
(4) **If there is no numeric value in the left column** (e.g. "2.1" or "2 <Topic name>" not found) but the left column text appears to be a heading (for instance "Scarcity, choice and opportunity cost"), then:
|
| 331 |
-
- Use that left column text as "title".
|
| 332 |
-
- "subtopics" remains empty.
|
| 333 |
-
Example:
|
| 334 |
-
If the left column is "Scarcity, choice and opportunity cost" and the right column has definitions, your output is:
|
| 335 |
-
{
|
| 336 |
-
"title": "Scarcity, choice and opportunity cost",
|
| 337 |
-
"subtopics": []
|
| 338 |
-
}
|
| 339 |
-
|
| 340 |
-
(5) **If there is no numeric value in the left column** (e.g. "2.1" or "2 <Topic name>" not found) or it appears to be a standalone column with text, treat it as a heading.
|
| 341 |
-
- "subtopics" remains empty.
|
| 342 |
-
Example:
|
| 343 |
-
If there is only one column image that is "Specialisation, devision of labour and exchange" and the right column is not present, your output is:
|
| 344 |
-
{
|
| 345 |
-
"title": "Specialisation, devision of labour and exchange",
|
| 346 |
-
"subtopics": []
|
| 347 |
-
}
|
| 348 |
-
|
| 349 |
-
(6) **If there is a character + digit pattern** in the left column of a two-column table (for example "G2", "G3", "G4", "C1"), treat that as a topic-like label:
|
| 350 |
-
- Put that label text into "title" (e.g. "G2").
|
| 351 |
-
- "subtopics" remains empty unless you also see actual subtopic formats like "2.5", "3.4" inside the same cell.
|
| 352 |
-
|
| 353 |
-
(7) **Output must be valid JSON** in this exact structure, with no extra text or explanation:
|
| 354 |
-
{
|
| 355 |
-
"title": "...",
|
| 356 |
-
"subtopics": [...]
|
| 357 |
-
}
|
| 358 |
-
|
| 359 |
-
(8) **If the image is blank or truncated**, defined as:
|
| 360 |
-
- Contains no words at all (e.g. a blank white or black image), **OR**
|
| 361 |
-
- Contains only snippet words/phrases such as "Topics", "Subject content", "Content Amplification Additional guidance notes", "What students need to learn" (including variations in background color), **OR**
|
| 362 |
-
- Contains partial headings with no recognizable numeric or textual headings
|
| 363 |
-
- Contains partial UI labels only, such as “Topics” in a gray bar or “What students need to learn” in a blue bar, with no additional meaningful text.
|
| 364 |
-
then return:
|
| 365 |
-
{
|
| 366 |
-
"title": "EMPTY_IMAGE",
|
| 367 |
-
"subtopics": []
|
| 368 |
-
}
|
| 369 |
-
|
| 370 |
-
(9) **If you cannot recognize any text matching the patterns above**, or the text is too partial/truncated to form a valid heading, also return:
|
| 371 |
-
{
|
| 372 |
-
"title": "EMPTY_IMAGE",
|
| 373 |
-
"subtopics": []
|
| 374 |
-
}
|
| 375 |
-
|
| 376 |
-
**Examples**:
|
| 377 |
-
|
| 378 |
-
- If the image text is "2 Algebra and functions continued", return:
|
| 379 |
-
{
|
| 380 |
-
"title": "2 Algebra and functions",
|
| 381 |
-
"subtopics": []
|
| 382 |
-
}
|
| 383 |
-
|
| 384 |
-
- If the image text is "2.5 Solve linear and quadratic inequalities ...", return:
|
| 385 |
-
{
|
| 386 |
-
"title": "",
|
| 387 |
-
"subtopics": ["2.5"]
|
| 388 |
-
}
|
| 389 |
-
|
| 390 |
-
- If the image text is "Specialisation, division of labour and exchange" (with no numeric patterns at all), return:
|
| 391 |
-
{
|
| 392 |
-
"title": "Specialisation, division of labour and exchange",
|
| 393 |
-
"subtopics": []
|
| 394 |
-
}
|
| 395 |
-
|
| 396 |
-
- If the left column says "G2" and the right column has details, but no subtopic numbers, return:
|
| 397 |
-
{
|
| 398 |
-
"title": "G2",
|
| 399 |
-
"subtopics": []
|
| 400 |
-
}
|
| 401 |
-
|
| 402 |
-
- If the image is blank or shows only partial/truncated snippet words (e.g. "Topics", "Content Amplification Additional guidance notes", "Subject content", "What students need to learn") and nothing else, return:
|
| 403 |
-
{
|
| 404 |
-
"title": "EMPTY_IMAGE",
|
| 405 |
-
"subtopics": []
|
| 406 |
-
}
|
| 407 |
-
"""
|
| 408 |
-
global _GEMINI_CLIENT
|
| 409 |
-
if _GEMINI_CLIENT is None:
|
| 410 |
-
_GEMINI_CLIENT = genai.Client(api_key=api_key)
|
| 411 |
-
client = _GEMINI_CLIENT
|
| 412 |
-
|
| 413 |
-
resp = client.models.generate_content(
|
| 414 |
-
model="gemini-2.0-flash",
|
| 415 |
-
contents=[
|
| 416 |
-
{
|
| 417 |
-
"parts": [
|
| 418 |
-
{"text": prompt},
|
| 419 |
-
{
|
| 420 |
-
"inline_data": {
|
| 421 |
-
"mime_type": "image/jpeg",
|
| 422 |
-
"data": base64.b64encode(image_data).decode("utf-8")
|
| 423 |
-
}
|
| 424 |
-
}
|
| 425 |
-
]
|
| 426 |
-
}
|
| 427 |
-
],
|
| 428 |
-
config=types.GenerateContentConfig(temperature=0.0)
|
| 429 |
-
)
|
| 430 |
-
|
| 431 |
-
if not resp or not resp.text:
|
| 432 |
-
logger.warning("Gemini returned an empty response for subtopic extraction.")
|
| 433 |
-
return {"title": "", "subtopics": []}
|
| 434 |
-
|
| 435 |
-
raw = resp.text.strip()
|
| 436 |
-
# Remove any markdown fences if present
|
| 437 |
-
raw = raw.replace("```json", "").replace("```", "").strip()
|
| 438 |
-
data = json.loads(raw)
|
| 439 |
-
|
| 440 |
-
title = data.get("title", "")
|
| 441 |
-
subtopics = data.get("subtopics", [])
|
| 442 |
-
if title.upper() == "EMPTY_IMAGE":
|
| 443 |
-
return {"title": "EMPTY_IMAGE", "subtopics": []}
|
| 444 |
-
if not isinstance(subtopics, list):
|
| 445 |
-
subtopics = []
|
| 446 |
-
return {"title": title, "subtopics": subtopics}
|
| 447 |
-
|
| 448 |
-
except Exception as e:
|
| 449 |
-
logger.error(f"Gemini subtopic identification error on attempt {attempt}: {e}")
|
| 450 |
-
if attempt < max_retries:
|
| 451 |
-
time.sleep(0.5)
|
| 452 |
-
else:
|
| 453 |
-
return {"title": "", "subtopics": []}
|
| 454 |
-
|
| 455 |
-
return {"title": "", "subtopics": []}
|
| 456 |
-
|
| 457 |
-
class S3ImageWriter(DataWriter):
|
| 458 |
def __init__(self, s3_writer: s3Writer, base_path: str, gemini_api_key: str):
|
| 459 |
self.s3_writer = s3_writer
|
| 460 |
self.base_path = base_path if base_path.endswith("/") else base_path + "/"
|
| 461 |
self.gemini_api_key = gemini_api_key
|
| 462 |
self.descriptions = {}
|
| 463 |
-
self._img_count = 0
|
| 464 |
-
self.extracted_tables = {}
|
| 465 |
-
|
| 466 |
-
self.extracted_subtopics = {}
|
| 467 |
|
| 468 |
def write(self, path: str, data: bytes) -> None:
|
| 469 |
-
self.
|
| 470 |
-
|
| 471 |
-
s3_key = f"{self.base_path}{unique_id}"
|
| 472 |
-
self.s3_writer.write(s3_key, data)
|
| 473 |
self.descriptions[path] = {
|
| 474 |
"data": data,
|
| 475 |
-
"s3_path":
|
| 476 |
-
"table_classification": "NO_TABLE",
|
| 477 |
-
"final_alt": ""
|
| 478 |
-
}
|
| 479 |
-
|
| 480 |
-
async def post_process_async(self, key: str, md_content: str) -> str:
|
| 481 |
-
logger.info("Classifying images to detect tables.")
|
| 482 |
-
tasks = {
|
| 483 |
-
p: asyncio.create_task(classify_image_async(info["data"], self.gemini_api_key))
|
| 484 |
-
for p, info in self.descriptions.items()
|
| 485 |
}
|
| 486 |
-
results = await asyncio.gather(*tasks.values(), return_exceptions=True)
|
| 487 |
-
for p, result in zip(list(self.descriptions.keys()), results):
|
| 488 |
-
if isinstance(result, Exception):
|
| 489 |
-
logger.error(f"Table classification error for {p}: {result}")
|
| 490 |
-
self.descriptions[p]['table_classification'] = "NO_TABLE"
|
| 491 |
-
else:
|
| 492 |
-
self.descriptions[p]['table_classification'] = result
|
| 493 |
-
|
| 494 |
-
# Process each image description.
|
| 495 |
-
for p, info in list(self.descriptions.items()):
|
| 496 |
-
cls = info['table_classification']
|
| 497 |
-
if cls == "TWO_COLUMN":
|
| 498 |
-
info['final_alt'] = "HAS TO BE PROCESSED - two column table"
|
| 499 |
-
elif cls == "THREE_COLUMN":
|
| 500 |
-
info['final_alt'] = "HAS TO BE PROCESSED - three column table"
|
| 501 |
-
elif cls == "EMPTY_IMAGE":
|
| 502 |
-
md_content = md_content.replace(f"", "")
|
| 503 |
-
try:
|
| 504 |
-
self.s3_writer.delete(info['s3_path'])
|
| 505 |
-
except Exception as e:
|
| 506 |
-
logger.error(f"Error deleting S3 object {info['s3_path']}: {e}")
|
| 507 |
-
del self.descriptions[p]
|
| 508 |
-
continue
|
| 509 |
-
else:
|
| 510 |
-
info['final_alt'] = "NO_TABLE image"
|
| 511 |
-
md_content = md_content.replace(f"", f"![{info['final_alt']}]({info['s3_path']})")
|
| 512 |
-
|
| 513 |
-
md_content = await self._process_table_images_in_markdown(key, md_content)
|
| 514 |
-
|
| 515 |
-
# Filter final lines to keep only lines with images.
|
| 516 |
-
final_lines = [
|
| 517 |
-
line.strip() for line in md_content.split("\n")
|
| 518 |
-
if re.match(r"^\!\[.*\]\(.*\)", line.strip())
|
| 519 |
-
]
|
| 520 |
-
return "\n".join(final_lines)
|
| 521 |
-
|
| 522 |
-
async def _process_table_images_in_markdown(self, key: str, md_content: str) -> str:
|
| 523 |
-
pat = r"!\[HAS TO BE PROCESSED - (two|three) column table\]\(([^)]+)\)"
|
| 524 |
-
matches = re.findall(pat, md_content, flags=re.IGNORECASE)
|
| 525 |
-
if not matches:
|
| 526 |
-
return md_content
|
| 527 |
-
|
| 528 |
-
for (col_type, s3_key) in matches:
|
| 529 |
-
logger.info(f"Processing table image: {s3_key}, columns={col_type}")
|
| 530 |
-
img_data = None
|
| 531 |
-
for desc in self.descriptions.values():
|
| 532 |
-
if desc.get("s3_path") == s3_key:
|
| 533 |
-
img_data = desc.get("data")
|
| 534 |
-
break
|
| 535 |
-
if img_data is None:
|
| 536 |
-
logger.warning(f"No image data found for S3 key {s3_key}. Skipping.")
|
| 537 |
-
continue
|
| 538 |
-
|
| 539 |
-
# Write temporary file for processing.
|
| 540 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
| 541 |
-
temp_file.write(img_data)
|
| 542 |
-
temp_path = temp_file.name
|
| 543 |
-
|
| 544 |
-
try:
|
| 545 |
-
if col_type.lower() == 'two':
|
| 546 |
-
extractor = TableExtractor(
|
| 547 |
-
skip_header=True,
|
| 548 |
-
merge_two_col_rows=True,
|
| 549 |
-
enable_subtopic_merge=True,
|
| 550 |
-
subtopic_threshold=0.2
|
| 551 |
-
)
|
| 552 |
-
else:
|
| 553 |
-
extractor = TableExtractor(
|
| 554 |
-
skip_header=True,
|
| 555 |
-
merge_two_col_rows=False,
|
| 556 |
-
enable_subtopic_merge=False,
|
| 557 |
-
subtopic_threshold=0.2
|
| 558 |
-
)
|
| 559 |
-
row_boxes = extractor.process_image(temp_path)
|
| 560 |
-
out_folder = temp_path + "_rows"
|
| 561 |
-
os.makedirs(out_folder, exist_ok=True)
|
| 562 |
-
extractor.save_extracted_cells(temp_path, row_boxes, out_folder)
|
| 563 |
-
|
| 564 |
-
#Group cells by row using file name pattern
|
| 565 |
-
recognized_main_topic = ""
|
| 566 |
-
main_topic_image_key = None
|
| 567 |
-
recognized_subtopics = []
|
| 568 |
-
header_found = False
|
| 569 |
-
header_row_index = None
|
| 570 |
-
|
| 571 |
-
# Loop through each row of extracted cells
|
| 572 |
-
for i, row in enumerate(row_boxes):
|
| 573 |
-
row_dir = os.path.join(out_folder, f"row_{i}")
|
| 574 |
-
valid_info = None
|
| 575 |
-
valid_cell_key = None
|
| 576 |
-
for j in range(len(row)):
|
| 577 |
-
cell_path = os.path.join(row_dir, f"col_{j}.png")
|
| 578 |
-
if not os.path.isfile(cell_path):
|
| 579 |
-
alternative_path = os.path.join(row_dir, f"col_{j}.jpg")
|
| 580 |
-
if os.path.isfile(alternative_path):
|
| 581 |
-
cell_path = alternative_path
|
| 582 |
-
else:
|
| 583 |
-
logger.warning(f"Cell image not found: {cell_path}")
|
| 584 |
-
continue
|
| 585 |
-
with open(cell_path, "rb") as cf:
|
| 586 |
-
cell_image_data = cf.read()
|
| 587 |
-
cell_key = f"{self.base_path}cells/{os.path.basename(s3_key)}_r{i}_c{j}.png"
|
| 588 |
-
self.s3_writer.write(cell_key, cell_image_data)
|
| 589 |
-
info = call_gemini_for_subtopic_identification_image(cell_image_data, self.gemini_api_key)
|
| 590 |
-
if info.get("title", "").upper() == "EMPTY_IMAGE":
|
| 591 |
-
try:
|
| 592 |
-
self.s3_writer.delete(cell_key)
|
| 593 |
-
logger.info(f"Deleted empty cell image from S3: {cell_key}")
|
| 594 |
-
except Exception as e:
|
| 595 |
-
logger.error(f"Error deleting empty cell image {cell_key}: {e}")
|
| 596 |
-
continue
|
| 597 |
-
valid_info = info
|
| 598 |
-
valid_cell_key = cell_key
|
| 599 |
-
break # Use only the first valid cell in this row
|
| 600 |
-
|
| 601 |
-
if valid_info is None:
|
| 602 |
-
continue
|
| 603 |
-
|
| 604 |
-
# First valid row becomes header row.
|
| 605 |
-
if not header_found:
|
| 606 |
-
header_found = True
|
| 607 |
-
header_row_index = i
|
| 608 |
-
recognized_main_topic = valid_info.get("title", "")
|
| 609 |
-
main_topic_image_key = valid_cell_key
|
| 610 |
-
# The row immediately following the header is used for subtopic children.
|
| 611 |
-
elif i == header_row_index + 1:
|
| 612 |
-
for st in valid_info.get("subtopics", []):
|
| 613 |
-
recognized_subtopics.append({
|
| 614 |
-
"title": st,
|
| 615 |
-
"contents": [{"type": "image", "key": valid_cell_key}],
|
| 616 |
-
"children": []
|
| 617 |
-
})
|
| 618 |
-
else:
|
| 619 |
-
# Ignore further rows
|
| 620 |
-
continue
|
| 621 |
-
|
| 622 |
-
final_json = {
|
| 623 |
-
"title": recognized_main_topic,
|
| 624 |
-
"contents": [],
|
| 625 |
-
"children": recognized_subtopics
|
| 626 |
-
}
|
| 627 |
-
if main_topic_image_key:
|
| 628 |
-
final_json["contents"].append({"type": "image", "key": main_topic_image_key})
|
| 629 |
-
|
| 630 |
-
# Save the final JSON.
|
| 631 |
-
self.extracted_subtopics[s3_key] = final_json
|
| 632 |
-
|
| 633 |
-
# Create a snippet to replace the markdown line.
|
| 634 |
-
snippet = ["**Extracted table cells:**"]
|
| 635 |
-
if main_topic_image_key:
|
| 636 |
-
snippet.append(f"")
|
| 637 |
-
for child in recognized_subtopics:
|
| 638 |
-
for content in child.get("contents", []):
|
| 639 |
-
snippet.append(f"})")
|
| 640 |
-
new_snip = "\n".join(snippet)
|
| 641 |
-
old_line = f""
|
| 642 |
-
md_content = md_content.replace(old_line, new_snip)
|
| 643 |
-
|
| 644 |
-
except Exception as e:
|
| 645 |
-
logger.error(f"Error processing table image {s3_key}: {e}")
|
| 646 |
-
finally:
|
| 647 |
-
os.remove(temp_path)
|
| 648 |
-
|
| 649 |
-
return md_content
|
| 650 |
|
| 651 |
def post_process(self, key: str, md_content: str) -> str:
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
self.api_key = api_key or os.getenv("GEMINI_API_KEY", "")
|
| 657 |
-
self.num_pages = num_pages
|
| 658 |
-
|
| 659 |
-
def extract_subtopics(self, pdf_path: str) -> Dict[str, List[int]]:
|
| 660 |
-
first_pages_text = self._read_first_pages_raw(pdf_path, self.num_pages)
|
| 661 |
-
if not first_pages_text.strip():
|
| 662 |
-
logger.error("No text from first pages => cannot extract subtopics.")
|
| 663 |
-
return {}
|
| 664 |
-
prompt = f"""
|
| 665 |
-
You have the first pages of a PDF specification, including a table of contents.
|
| 666 |
-
Instructions:
|
| 667 |
-
1. Identify the 'Contents' section listing all topics, subtopics, and their corresponding pages.
|
| 668 |
-
2. Identify the major academic subtopics (common desired topic names "Paper X", "Theme X", "Content of X", "AS Unit X", "A2 Unit X", or similar headings).
|
| 669 |
-
3. For each subtopic, give the range of pages [start_page, end_page] (1-based) from the table of contents.
|
| 670 |
-
4. Output only valid JSON of the form:
|
| 671 |
-
{{
|
| 672 |
-
"Subtopic A": [start_page, end_page],
|
| 673 |
-
"Subtopic B": [start_page, end_page]
|
| 674 |
-
}}
|
| 675 |
-
5. If you can't find any subtopics, return an empty JSON.
|
| 676 |
-
Important notes:
|
| 677 |
-
- The correct "end_page" must be the page number of the next topic or subtopic minus 1.
|
| 678 |
-
- The final output must be valid JSON only, with no extra text or code blocks.
|
| 679 |
-
Examples:
|
| 680 |
-
1. Given this table of contents:
|
| 681 |
-
1 Introduction – 2
|
| 682 |
-
Why choose Edexcel A Level Mathematics? - 2
|
| 683 |
-
Supporting you in planning and implementing this qualification - 3
|
| 684 |
-
Qualification at a glance - 5
|
| 685 |
-
2 Subject content and assessment information – 7
|
| 686 |
-
Paper 1 and Paper 2: Pure Mathematics - 11
|
| 687 |
-
Paper 3: Statistics and Mechanics - 30
|
| 688 |
-
Assessment Objectives - 40
|
| 689 |
-
3 Administration and general information – 42
|
| 690 |
-
Entries - 42
|
| 691 |
-
Access arrangements, reasonable adjustments, special consideration and malpractice - 42
|
| 692 |
-
Student recruitment and progression - 45
|
| 693 |
-
Appendix 1: Formulae – 49
|
| 694 |
-
Appendix 2: Notation – 53
|
| 695 |
-
Appendix 3: Use of calculators – 59
|
| 696 |
-
Appendix 4: Assessment Objectives – 60
|
| 697 |
-
Appendix 5: The context for the development of this qualification – 62
|
| 698 |
-
Appendix 6: Transferable skills – 64
|
| 699 |
-
Appendix 7: Level 3 Extended Project qualification – 65
|
| 700 |
-
Appendix 8: Codes – 67
|
| 701 |
-
The correct output should be:
|
| 702 |
-
{{
|
| 703 |
-
"Paper 1 and Paper 2: Pure Mathematics": [11, 29],
|
| 704 |
-
"Paper 3: Statistics and Mechanics": [30, 42]
|
| 705 |
-
}}
|
| 706 |
-
2. Given this table of contents:
|
| 707 |
-
Qualification at a glance – 1
|
| 708 |
-
Assessment Objectives and weightings - 4
|
| 709 |
-
Knowledge, skills and understanding – 5
|
| 710 |
-
Theme 1: Introduction to markets and market failure - 5
|
| 711 |
-
Theme 2: The UK economy – performance and policies - 11
|
| 712 |
-
Theme 3: Business behaviour and the labour market - 21
|
| 713 |
-
Theme 4: A global perspective - 29
|
| 714 |
-
Assessment – 39
|
| 715 |
-
Assessment summary - 39
|
| 716 |
-
Assessment objectives - 41
|
| 717 |
-
Assessment overview - 42
|
| 718 |
-
Breakdown of assessment objectives - 42
|
| 719 |
-
Synoptic assessment - 43
|
| 720 |
-
Discount code and performance tables - 43
|
| 721 |
-
Access arrangements, reasonable adjustments and special consideration - 44
|
| 722 |
-
Malpractice - 45
|
| 723 |
-
Equality Act 2010 and Pearson equality policy - 45
|
| 724 |
-
Synoptic assessment - 46
|
| 725 |
-
Awarding and reporting - 47
|
| 726 |
-
Other information – 49
|
| 727 |
-
Student recruitment -49
|
| 728 |
-
Prior learning and other requirements -49
|
| 729 |
-
Progression - 49
|
| 730 |
-
Appendix 1: Transferable skills – 53
|
| 731 |
-
Appendix 2: Level 3 Extended Project qualification – 55
|
| 732 |
-
Appendix 3: Quantitative skills – 59
|
| 733 |
-
Appendix 4: Codes – 61
|
| 734 |
-
Appendix 5: Index – 63
|
| 735 |
-
The correct output should be:
|
| 736 |
-
{{
|
| 737 |
-
"Theme 1: Introduction to markets and market failure": [5, 10],
|
| 738 |
-
"Theme 2: The UK economy – performance and policies": [11, 20],
|
| 739 |
-
"Theme 3: Business behaviour and the labour market": [21, 28],
|
| 740 |
-
"Theme 4: A global perspective": [29, 38]
|
| 741 |
-
}}
|
| 742 |
-
3. You might also see sections like:
|
| 743 |
-
2.1 AS Unit 1 11
|
| 744 |
-
2.2 AS Unit 2 18
|
| 745 |
-
2.3 A2 Unit 3 24
|
| 746 |
-
2.4 A2 Unit 4 31
|
| 747 |
-
In that scenario, your output might look like:
|
| 748 |
-
{{
|
| 749 |
-
"2.1 AS Unit 1": [11, 17],
|
| 750 |
-
"2.2 AS Unit 2": [18, 23],
|
| 751 |
-
"2.3 A2 Unit 3": [24, 30],
|
| 752 |
-
"2.4 A2 Unit 4": [31, 35]
|
| 753 |
-
}}
|
| 754 |
-
or
|
| 755 |
-
2.1 AS units 6
|
| 756 |
-
2.2 AS units 23
|
| 757 |
-
In that scenario, your output might look like:
|
| 758 |
-
{{
|
| 759 |
-
"2.1 AS Unit 1": [6, 2],
|
| 760 |
-
"2.2 AS Unit 2": [23, 43]
|
| 761 |
-
}}
|
| 762 |
-
|
| 763 |
-
4. Another example might list subtopics:
|
| 764 |
-
3.1 Overarching themes 11
|
| 765 |
-
3.2 A: Proof 12
|
| 766 |
-
3.3 B: Algebra and functions 13
|
| 767 |
-
3.4 C: Coordinate geometry in the ( x , y ) plane 14
|
| 768 |
-
3.5 D: Sequences and series 15
|
| 769 |
-
3.6 E: Trigonometry 16
|
| 770 |
-
3.7 F: Exponentials and logarithms 17
|
| 771 |
-
3.8 G: Differentiation 18
|
| 772 |
-
3.9 H: Integration 19
|
| 773 |
-
3.10 I: Numerical methods 20
|
| 774 |
-
3.11 J: Vectors 20
|
| 775 |
-
3.12 K: Statistical sampling 21
|
| 776 |
-
3.13 L: Data presentation and interpretation 21
|
| 777 |
-
3.14 M: Probability 22
|
| 778 |
-
3.15 N: Statistical distributions 23
|
| 779 |
-
3.16 O: Statistical hypothesis testing 23
|
| 780 |
-
3.17 P: Quantities and units in mechanics 24
|
| 781 |
-
3.18 Q: Kinematics 24
|
| 782 |
-
3.19 R: Forces and Newton’s laws 24
|
| 783 |
-
3.20 S: Moments 25
|
| 784 |
-
3.21 Use of data in statistics 26
|
| 785 |
-
Here the correct output might look like:
|
| 786 |
-
{{
|
| 787 |
-
"A: Proof": [12, 12],
|
| 788 |
-
"B: Algebra and functions": [13, 13],
|
| 789 |
-
...
|
| 790 |
-
}}
|
| 791 |
-
Now, extract topics from this text:
|
| 792 |
-
{first_pages_text}
|
| 793 |
-
"""
|
| 794 |
-
global _GEMINI_CLIENT
|
| 795 |
-
if _GEMINI_CLIENT is None:
|
| 796 |
-
_GEMINI_CLIENT = genai.Client(api_key=self.api_key)
|
| 797 |
-
client = _GEMINI_CLIENT
|
| 798 |
-
try:
|
| 799 |
-
response = client.models.generate_content(
|
| 800 |
-
model="gemini-2.0-flash",
|
| 801 |
-
contents=[prompt],
|
| 802 |
-
config=types.GenerateContentConfig(temperature=0.0)
|
| 803 |
-
)
|
| 804 |
-
if not response or not response.text:
|
| 805 |
-
logger.warning("No text from LLM => returning empty subtopics.")
|
| 806 |
-
return {}
|
| 807 |
-
raw_json = response.text.strip()
|
| 808 |
-
cleaned = raw_json.replace("```json", "").replace("```", "")
|
| 809 |
-
try:
|
| 810 |
-
data = json.loads(cleaned)
|
| 811 |
-
except Exception as json_err:
|
| 812 |
-
logger.error(f"JSON parsing error: {json_err}")
|
| 813 |
-
return {}
|
| 814 |
-
final_dict = {}
|
| 815 |
-
found_sub_dict = None
|
| 816 |
-
for k, v in data.items():
|
| 817 |
-
if isinstance(v, dict):
|
| 818 |
-
found_sub_dict = v
|
| 819 |
-
break
|
| 820 |
-
if found_sub_dict is not None:
|
| 821 |
-
for subk, rng in found_sub_dict.items():
|
| 822 |
-
if isinstance(rng, list) and len(rng) == 2:
|
| 823 |
-
final_dict[subk] = rng
|
| 824 |
-
else:
|
| 825 |
-
for subk, rng in data.items():
|
| 826 |
-
if isinstance(rng, list) and len(rng) == 2:
|
| 827 |
-
final_dict[subk] = rng
|
| 828 |
-
return final_dict
|
| 829 |
-
except Exception as e:
|
| 830 |
-
logger.error(f"Gemini subtopic extraction error: {e}")
|
| 831 |
-
return {}
|
| 832 |
-
|
| 833 |
-
def _read_first_pages_raw(self, pdf_path: str, num_pages: int) -> str:
|
| 834 |
-
text_parts = []
|
| 835 |
-
try:
|
| 836 |
-
if pdf_path.startswith("http://") or pdf_path.startswith("https://"):
|
| 837 |
-
response = requests.get(pdf_path)
|
| 838 |
-
if response.status_code != 200:
|
| 839 |
-
logger.error("Failed to download PDF from %s. Status code: %d", pdf_path, response.status_code)
|
| 840 |
-
return ""
|
| 841 |
-
pdf_bytes = response.content
|
| 842 |
-
else:
|
| 843 |
-
with open(pdf_path, "rb") as f:
|
| 844 |
-
pdf_bytes = f.read()
|
| 845 |
-
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
|
| 846 |
-
pages_to_read = min(num_pages, doc.page_count)
|
| 847 |
-
for i in range(pages_to_read):
|
| 848 |
-
raw_text = doc[i].get_text("raw")
|
| 849 |
-
text_parts.append(raw_text)
|
| 850 |
-
doc.close()
|
| 851 |
-
except Exception as e:
|
| 852 |
-
logger.error(f"Could not open PDF: {e}")
|
| 853 |
-
return "\n".join(text_parts)
|
| 854 |
|
| 855 |
-
class
|
| 856 |
-
def __init__(self,
|
|
|
|
| 857 |
self.output_folder = output_folder
|
| 858 |
os.makedirs(self.output_folder, exist_ok=True)
|
| 859 |
self.layout_model = "doclayout_yolo"
|
| 860 |
self.formula_enable = True
|
| 861 |
self.table_enable = False
|
| 862 |
self.language = "en"
|
| 863 |
-
|
| 864 |
-
self.subtopic_extractor = GeminiTopicExtractor(api_key=gemini_api_key, num_pages=20)
|
| 865 |
-
self.gemini_api_key = gemini_api_key or os.getenv("GEMINI_API_KEY", "")
|
| 866 |
-
|
| 867 |
-
self.use_s3 = True
|
| 868 |
self.s3_writer = s3Writer(
|
| 869 |
ak=os.getenv("S3_ACCESS_KEY"),
|
| 870 |
sk=os.getenv("S3_SECRET_KEY"),
|
|
@@ -880,110 +125,106 @@ class MineruNoTextProcessor:
|
|
| 880 |
except Exception as e:
|
| 881 |
logger.error(f"Error during GPU cleanup: {e}")
|
| 882 |
|
| 883 |
-
def
|
| 884 |
-
|
| 885 |
-
|
| 886 |
-
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
|
| 890 |
-
|
| 891 |
-
|
| 892 |
-
|
| 893 |
-
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
|
| 897 |
-
|
| 898 |
-
|
| 899 |
-
|
| 900 |
-
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
|
| 904 |
-
|
| 905 |
-
|
| 906 |
-
|
| 907 |
-
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
|
| 912 |
-
|
| 913 |
-
|
| 914 |
-
|
| 915 |
-
|
| 916 |
-
|
| 917 |
-
|
| 918 |
-
|
| 919 |
-
|
| 920 |
-
|
| 921 |
-
|
| 922 |
-
|
| 923 |
-
|
| 924 |
-
|
| 925 |
-
|
| 926 |
-
|
| 927 |
-
|
| 928 |
-
|
| 929 |
-
|
| 930 |
-
|
| 931 |
-
|
| 932 |
-
|
| 933 |
-
|
| 934 |
-
|
| 935 |
-
|
| 936 |
-
|
| 937 |
-
|
| 938 |
-
|
| 939 |
-
|
| 940 |
-
|
| 941 |
-
|
| 942 |
-
|
| 943 |
-
|
| 944 |
-
|
| 945 |
-
|
| 946 |
-
|
| 947 |
-
|
| 948 |
-
|
| 949 |
-
|
| 950 |
-
|
| 951 |
-
|
| 952 |
-
|
| 953 |
-
|
| 954 |
-
|
| 955 |
-
|
| 956 |
-
|
| 957 |
-
|
| 958 |
-
|
| 959 |
-
|
| 960 |
-
|
| 961 |
-
|
| 962 |
-
md_content = pipe_result.get_markdown(md_prefix)
|
| 963 |
-
final_markdown = writer.post_process(md_prefix, md_content)
|
| 964 |
-
|
| 965 |
-
subtopic_list = list(writer.extracted_subtopics.values())
|
| 966 |
-
subtopic_list = merge_topics(subtopic_list)
|
| 967 |
-
|
| 968 |
-
out_path = os.path.join(self.output_folder, "_subtopics.json")
|
| 969 |
-
with open(out_path, "w", encoding="utf-8") as f:
|
| 970 |
-
json.dump(subtopic_list, f, indent=2)
|
| 971 |
-
logger.info(f"Final subtopics JSON saved locally at {out_path}")
|
| 972 |
|
| 973 |
-
|
| 974 |
-
|
| 975 |
-
|
| 976 |
-
|
| 977 |
-
|
| 978 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 979 |
|
| 980 |
if __name__ == "__main__":
|
| 981 |
-
|
| 982 |
-
output_dir = "/home/user/app/pearson_json"
|
| 983 |
-
gemini_key = os.getenv("GEMINI_API_KEY", "AIzaSyDtoakpXa2pjJwcQB6TJ5QaXHNSA5JxcrU")
|
| 984 |
-
try:
|
| 985 |
-
processor = MineruNoTextProcessor(output_folder=output_dir, gemini_api_key=gemini_key)
|
| 986 |
-
result = processor.process(input_pdf)
|
| 987 |
-
logger.info("Processing completed successfully.")
|
| 988 |
-
except Exception as e:
|
| 989 |
-
logger.error(f"Processing failed: {e}")
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
import os
|
| 3 |
+
import sys
|
|
|
|
| 4 |
import json
|
| 5 |
import logging
|
| 6 |
+
import gc
|
| 7 |
import fitz
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
import requests
|
|
|
|
|
|
|
|
|
|
| 9 |
import torch
|
| 10 |
+
import boto3
|
| 11 |
+
import re
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
from magic_pdf.data.dataset import PymuDocDataset
|
| 14 |
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
|
|
|
|
|
|
|
| 15 |
|
| 16 |
logging.basicConfig(level=logging.INFO)
|
| 17 |
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
def create_subset_pdf(original_pdf_bytes: bytes, page_indices: list) -> bytes:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
if not page_indices:
|
| 21 |
raise ValueError("No page indices provided for subset creation.")
|
| 22 |
doc = fitz.open(stream=original_pdf_bytes, filetype="pdf")
|
|
|
|
| 32 |
doc.close()
|
| 33 |
return subset_bytes
|
| 34 |
|
| 35 |
+
def parse_page_range(page_field) -> list:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
"""
|
| 37 |
+
Parse the 'page' field from the JSON input.
|
| 38 |
+
It can be either:
|
| 39 |
+
• a list of integers:
|
| 40 |
+
- If the list contains exactly two integers, treat them as a range [start, end] (inclusive start, exclusive end).
|
| 41 |
+
- Otherwise, treat the list as a sequence of individual pages.
|
| 42 |
+
• a string:
|
| 43 |
+
- Either a comma-separated range "start, end" or a comma-separated list of pages.
|
| 44 |
+
The numbers are assumed to be 1-indexed and are converted to 0-indexed.
|
| 45 |
"""
|
| 46 |
+
if isinstance(page_field, list):
|
| 47 |
+
if len(page_field) == 2:
|
| 48 |
+
start, end = page_field
|
| 49 |
+
return list(range(start - 1, end))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
else:
|
| 51 |
+
return [int(p) - 1 for p in page_field]
|
| 52 |
+
elif isinstance(page_field, str):
|
| 53 |
+
parts = [p.strip() for p in page_field.split(',')]
|
| 54 |
+
if len(parts) == 2:
|
| 55 |
+
start, end = int(parts[0]), int(parts[1])
|
| 56 |
+
return list(range(start - 1, end))
|
| 57 |
+
else:
|
| 58 |
+
return [int(p) - 1 for p in parts]
|
| 59 |
+
else:
|
| 60 |
+
logger.error("Invalid type for page field. Must be list or string.")
|
| 61 |
+
raise ValueError("Invalid page field type.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
class s3Writer:
|
| 64 |
def __init__(self, ak: str, sk: str, bucket: str, endpoint_url: str):
|
|
|
|
| 72 |
|
| 73 |
def write(self, path: str, data: bytes) -> None:
|
| 74 |
try:
|
| 75 |
+
from io import BytesIO
|
| 76 |
file_obj = BytesIO(data)
|
| 77 |
+
self.client.upload_fileobj(file_obj, self.bucket, path)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
logger.info(f"Uploaded to S3: {path}")
|
| 79 |
except Exception as e:
|
| 80 |
logger.error(f"Failed to upload to S3: {str(e)}")
|
| 81 |
raise
|
| 82 |
|
| 83 |
+
class S3ImageWriter:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
def __init__(self, s3_writer: s3Writer, base_path: str, gemini_api_key: str):
|
| 85 |
self.s3_writer = s3_writer
|
| 86 |
self.base_path = base_path if base_path.endswith("/") else base_path + "/"
|
| 87 |
self.gemini_api_key = gemini_api_key
|
| 88 |
self.descriptions = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
def write(self, path: str, data: bytes) -> None:
|
| 91 |
+
full_path = f"{self.base_path}{os.path.basename(path)}"
|
| 92 |
+
self.s3_writer.write(full_path, data)
|
|
|
|
|
|
|
| 93 |
self.descriptions[path] = {
|
| 94 |
"data": data,
|
| 95 |
+
"s3_path": full_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
def post_process(self, key: str, md_content: str) -> str:
|
| 99 |
+
for path, info in self.descriptions.items():
|
| 100 |
+
s3_path = info.get("s3_path")
|
| 101 |
+
md_content = md_content.replace(f"", f"")
|
| 102 |
+
return md_content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
+
class TopicExtractionProcessor:
|
| 105 |
+
def __init__(self, gemini_api_key: str, s3_config: dict, output_folder: str):
|
| 106 |
+
self.gemini_api_key = gemini_api_key
|
| 107 |
self.output_folder = output_folder
|
| 108 |
os.makedirs(self.output_folder, exist_ok=True)
|
| 109 |
self.layout_model = "doclayout_yolo"
|
| 110 |
self.formula_enable = True
|
| 111 |
self.table_enable = False
|
| 112 |
self.language = "en"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
self.s3_writer = s3Writer(
|
| 114 |
ak=os.getenv("S3_ACCESS_KEY"),
|
| 115 |
sk=os.getenv("S3_SECRET_KEY"),
|
|
|
|
| 125 |
except Exception as e:
|
| 126 |
logger.error(f"Error during GPU cleanup: {e}")
|
| 127 |
|
| 128 |
+
def process_input_file(self, input_file: dict) -> str:
|
| 129 |
+
key = input_file.get("key", "")
|
| 130 |
+
url = input_file.get("url", "")
|
| 131 |
+
page_field = input_file.get("page")
|
| 132 |
+
if not url or not page_field:
|
| 133 |
+
logger.error("Input file must contain 'url' and 'page' fields.")
|
| 134 |
+
raise ValueError("Missing 'url' or 'page' in input file.")
|
| 135 |
+
|
| 136 |
+
page_indices = parse_page_range(page_field)
|
| 137 |
+
logger.info("Using page indices (0-indexed): %s", page_indices)
|
| 138 |
+
|
| 139 |
+
# Retrieve PDF bytes (supports URL or local file)
|
| 140 |
+
if url.startswith("http://") or url.startswith("https://"):
|
| 141 |
+
response = requests.get(url)
|
| 142 |
+
if response.status_code != 200:
|
| 143 |
+
logger.error("Failed to download PDF from %s. Status code: %d", url, response.status_code)
|
| 144 |
+
raise Exception(f"Failed to download PDF: {url}")
|
| 145 |
+
pdf_bytes = response.content
|
| 146 |
+
else:
|
| 147 |
+
with open(url, "rb") as f:
|
| 148 |
+
pdf_bytes = f.read()
|
| 149 |
+
|
| 150 |
+
subset_pdf_bytes = create_subset_pdf(pdf_bytes, page_indices)
|
| 151 |
+
logger.info("Created subset PDF with %d pages", len(page_indices))
|
| 152 |
+
|
| 153 |
+
dataset = PymuDocDataset(subset_pdf_bytes)
|
| 154 |
+
inference = doc_analyze(
|
| 155 |
+
dataset,
|
| 156 |
+
ocr=True,
|
| 157 |
+
lang=self.language,
|
| 158 |
+
layout_model=self.layout_model,
|
| 159 |
+
formula_enable=self.formula_enable,
|
| 160 |
+
table_enable=self.table_enable
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
base_path = f"/topic-extraction/{key}/"
|
| 164 |
+
writer = S3ImageWriter(self.s3_writer, "/topic-extraction/", self.gemini_api_key)
|
| 165 |
+
md_prefix = "/topic-extraction/"
|
| 166 |
+
pipe_result = inference.pipe_ocr_mode(writer, lang=self.language)
|
| 167 |
+
md_content = pipe_result.get_markdown(md_prefix)
|
| 168 |
+
final_markdown = writer.post_process(md_prefix, md_content)
|
| 169 |
+
|
| 170 |
+
output_md_path = os.path.join(self.output_folder, f"{key}_output.md")
|
| 171 |
+
with open(output_md_path, "w", encoding="utf-8") as f:
|
| 172 |
+
f.write(final_markdown)
|
| 173 |
+
logger.info("Markdown output saved to %s", output_md_path)
|
| 174 |
+
|
| 175 |
+
self.cleanup_gpu()
|
| 176 |
+
return final_markdown
|
| 177 |
+
|
| 178 |
+
def main():
|
| 179 |
+
message = {
|
| 180 |
+
"pattern": "topic_extraction",
|
| 181 |
+
"data": {
|
| 182 |
+
"input_files": [
|
| 183 |
+
{
|
| 184 |
+
"key": "sample_spec",
|
| 185 |
+
"url": "/home/user/app/input_output/a-level-pearson-mathematics-specification.pdf",
|
| 186 |
+
"type": "specification",
|
| 187 |
+
"page": [
|
| 188 |
+
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
|
| 189 |
+
28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41
|
| 190 |
+
]
|
| 191 |
+
}
|
| 192 |
+
],
|
| 193 |
+
"topics": [
|
| 194 |
+
{
|
| 195 |
+
"title": "Sample Topic",
|
| 196 |
+
"id": 123
|
| 197 |
+
}
|
| 198 |
+
]
|
| 199 |
+
}
|
| 200 |
+
}
|
| 201 |
+
data = message.get("data", {})
|
| 202 |
+
input_files = data.get("input_files", [])
|
| 203 |
+
|
| 204 |
+
output_folder = "output"
|
| 205 |
+
|
| 206 |
+
gemini_api_key = os.getenv("GEMINI_API_KEY", "AIzaSyDtoakpXa2pjJwcQB6TJ5QaXHNSA5JxcrU")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
+
s3_config = {
|
| 209 |
+
"ak": os.getenv("S3_ACCESS_KEY"),
|
| 210 |
+
"sk": os.getenv("S3_SECRET_KEY"),
|
| 211 |
+
"bucket": "quextro-resources",
|
| 212 |
+
"endpoint_url": os.getenv("S3_ENDPOINT")
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
processor = TopicExtractionProcessor(
|
| 216 |
+
gemini_api_key=gemini_api_key,
|
| 217 |
+
s3_config=s3_config,
|
| 218 |
+
output_folder=output_folder
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
for input_file in message["data"].get("input_files", []):
|
| 222 |
+
try:
|
| 223 |
+
logger.info("Processing input file with key: %s", input_file.get("key", ""))
|
| 224 |
+
final_md = processor.process_input_file(input_file)
|
| 225 |
+
logger.info("Processing completed for key: %s", input_file.get("key", ""))
|
| 226 |
+
except Exception as e:
|
| 227 |
+
logger.error("Error processing input file: %s", e)
|
| 228 |
|
| 229 |
if __name__ == "__main__":
|
| 230 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|