Spaces:
Paused
Paused
| import os | |
| import sys | |
| import gradio as gr | |
| from multiprocessing import freeze_support | |
| import importlib | |
| import inspect | |
| import json | |
| # Fix path to include src | |
| sys.path.insert(0, os.path.join(os.path.dirname(__file__), "src")) | |
| # Reload TxAgent from txagent.py | |
| import txagent.txagent | |
| importlib.reload(txagent.txagent) | |
| from txagent.txagent import TxAgent | |
| # Debug info | |
| print(">>> TxAgent loaded from:", inspect.getfile(TxAgent)) | |
| print(">>> TxAgent has run_gradio_chat:", hasattr(TxAgent, "run_gradio_chat")) | |
| # Env vars | |
| current_dir = os.path.abspath(os.path.dirname(__file__)) | |
| os.environ["MKL_THREADING_LAYER"] = "GNU" | |
| os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
| # Model config | |
| model_name = "mims-harvard/TxAgent-T1-Llama-3.1-8B" | |
| rag_model_name = "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B" | |
| new_tool_files = { | |
| "new_tool": os.path.join(current_dir, "data", "new_tool.json") | |
| } | |
| # Sample questions | |
| question_examples = [ | |
| ["Given a patient with WHIM syndrome on prophylactic antibiotics, is it advisable to co-administer Xolremdi with fluconazole?"], | |
| ["What treatment options exist for HER2+ breast cancer resistant to trastuzumab?"] | |
| ] | |
| # Helper: format assistant responses in collapsible panels | |
| def format_collapsible(content): | |
| if isinstance(content, (dict, list)): | |
| try: | |
| formatted = json.dumps(content, indent=2) | |
| except Exception: | |
| formatted = str(content) | |
| else: | |
| formatted = str(content) | |
| return ( | |
| "<details style='border: 1px solid #ccc; padding: 8px; margin-top: 8px;'>" | |
| "<summary style='font-weight: bold;'>Answer</summary>" | |
| f"<pre style='white-space: pre-wrap;'>{formatted}</pre>" | |
| "</details>" | |
| ) | |
| # === UI setup | |
| def create_ui(agent): | |
| with gr.Blocks() as demo: | |
| gr.Markdown("<h1 style='text-align: center;'>TxAgent: Therapeutic Reasoning</h1>") | |
| gr.Markdown("Ask biomedical or therapeutic questions. Powered by step-by-step reasoning and tools.") | |
| temperature = gr.Slider(0, 1, value=0.3, label="Temperature") | |
| max_new_tokens = gr.Slider(128, 4096, value=1024, label="Max New Tokens") | |
| max_tokens = gr.Slider(128, 32000, value=8192, label="Max Total Tokens") | |
| max_round = gr.Slider(1, 50, value=30, label="Max Rounds") | |
| multi_agent = gr.Checkbox(label="Enable Multi-agent Reasoning", value=False) | |
| conversation_state = gr.State([]) | |
| chatbot = gr.Chatbot(label="TxAgent", height=600, type="messages") | |
| message_input = gr.Textbox(placeholder="Ask your biomedical question...", show_label=False) | |
| send_button = gr.Button("Send", variant="primary") | |
| # Main handler | |
| def handle_chat(message, history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round): | |
| generator = agent.run_gradio_chat( | |
| message=message, | |
| history=history, | |
| temperature=temperature, | |
| max_new_tokens=max_new_tokens, | |
| max_token=max_tokens, | |
| call_agent=multi_agent, | |
| conversation=conversation, | |
| max_round=max_round | |
| ) | |
| for update in generator: | |
| formatted = [] | |
| for m in update: | |
| role = m["role"] if isinstance(m, dict) else getattr(m, "role", "assistant") | |
| content = m["content"] if isinstance(m, dict) else getattr(m, "content", "") | |
| if role == "assistant": | |
| content = format_collapsible(content) | |
| formatted.append({"role": role, "content": content}) | |
| yield formatted | |
| # Button and Enter triggers | |
| inputs = [message_input, chatbot, temperature, max_new_tokens, max_tokens, multi_agent, conversation_state, max_round] | |
| send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot) | |
| message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot) | |
| gr.Examples(examples=question_examples, inputs=message_input) | |
| gr.Markdown("**DISCLAIMER**: This demo is for research purposes only and does not provide medical advice.") | |
| return demo | |
| # === Entry point | |
| if __name__ == "__main__": | |
| freeze_support() | |
| try: | |
| agent = TxAgent( | |
| model_name=model_name, | |
| rag_model_name=rag_model_name, | |
| tool_files_dict=new_tool_files, | |
| force_finish=True, | |
| enable_checker=True, | |
| step_rag_num=10, | |
| seed=100, | |
| additional_default_tools=[] # Avoid loading unimplemented tools | |
| ) | |
| agent.init_model() | |
| if not hasattr(agent, "run_gradio_chat"): | |
| raise AttributeError("TxAgent missing run_gradio_chat") | |
| demo = create_ui(agent) | |
| demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True) | |
| except Exception as e: | |
| print(f"❌ App failed to start: {e}") | |
| raise | |