Roger Surf
commited on
Commit
·
782c177
1
Parent(s):
1aa53e7
feat: add HRHUB notebook with corrected paths and data structure
Browse files- .gitignore +2 -1
- README.md.backup +292 -0
- data/notebooks/HRHUB_Complete_With_Postings.ipynb +865 -0
- data/notebooks/HRHUB_Full_180K.ipynb +471 -0
- data/notebooks/lib/bindings/utils.js +189 -0
- data/notebooks/lib/tom-select/tom-select.complete.min.js +356 -0
- data/notebooks/lib/tom-select/tom-select.css +334 -0
- data/notebooks/lib/vis-9.1.2/vis-network.css +0 -0
- data/notebooks/lib/vis-9.1.2/vis-network.min.js +0 -0
- data/results/network_graph.html +127 -0
.gitignore
CHANGED
|
@@ -4,4 +4,5 @@ __pycache__/
|
|
| 4 |
*.pyo
|
| 5 |
.DS_Store
|
| 6 |
*.log
|
| 7 |
-
.streamlit/
|
|
|
|
|
|
| 4 |
*.pyo
|
| 5 |
.DS_Store
|
| 6 |
*.log
|
| 7 |
+
.streamlit/
|
| 8 |
+
*.csv
|
README.md.backup
ADDED
|
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: HRHUB
|
| 3 |
+
emoji: 💼
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: blue
|
| 6 |
+
sdk: streamlit
|
| 7 |
+
sdk_version: "1.34.0"
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: true
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# 🏢 HRHUB - HR Matching System
|
| 13 |
+
|
| 14 |
+
**Bilateral Matching Engine for Candidates & Companies**
|
| 15 |
+
|
| 16 |
+
A professional HR matching system using NLP embeddings and cosine similarity to connect job candidates with relevant companies based on skills, experience, and requirements.
|
| 17 |
+
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
HRHUB solves a fundamental inefficiency in hiring: candidates and companies use different vocabularies when describing skills and requirements. Our system bridges this gap using **job postings** as a translator, enriching company profiles to speak the same "skills language" as candidates.
|
| 23 |
+
|
| 24 |
+
### Key Innovation
|
| 25 |
+
- **Candidates** describe: "Python, Machine Learning, Data Science"
|
| 26 |
+
- **Companies** describe: "Tech company, innovation, growth"
|
| 27 |
+
- **Job Postings** translate: "We need Python, AWS, TensorFlow"
|
| 28 |
+
- **Result**: Accurate matching in the same embedding space ℝ³⁸⁴
|
| 29 |
+
|
| 30 |
+
---
|
| 31 |
+
|
| 32 |
+
## 🚀 Features
|
| 33 |
+
|
| 34 |
+
- ✅ **Bilateral Matching**: Both candidates and companies get matched recommendations
|
| 35 |
+
- ✅ **NLP-Powered**: Uses sentence transformers for semantic understanding
|
| 36 |
+
- ✅ **Interactive Visualization**: Network graphs showing match connections
|
| 37 |
+
- ✅ **Scalable**: Handles 9,544 candidates × 180,000 companies
|
| 38 |
+
- ✅ **Real-time**: Fast similarity computation using cosine similarity
|
| 39 |
+
- ✅ **Professional UI**: Clean Streamlit interface
|
| 40 |
+
|
| 41 |
+
---
|
| 42 |
+
|
| 43 |
+
## 📁 Project Structure
|
| 44 |
+
|
| 45 |
+
```
|
| 46 |
+
hrhub/
|
| 47 |
+
├── app.py # Main Streamlit application
|
| 48 |
+
├── config.py # Configuration settings
|
| 49 |
+
├── requirements.txt # Python dependencies
|
| 50 |
+
├── README.md # This file
|
| 51 |
+
├── data/
|
| 52 |
+
│ ├── mock_data.py # Demo data (MVP)
|
| 53 |
+
│ ├── data_loader.py # Real data loader (future)
|
| 54 |
+
│ └── embeddings/ # Saved embeddings (future)
|
| 55 |
+
├── utils/
|
| 56 |
+
│ ├── matching.py # Cosine similarity algorithms
|
| 57 |
+
│ ├── visualization.py # Network graph generation
|
| 58 |
+
│ └── display.py # UI components
|
| 59 |
+
└── assets/
|
| 60 |
+
└── style.css # Custom CSS (optional)
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
---
|
| 64 |
+
|
| 65 |
+
## 🛠️ Installation & Setup
|
| 66 |
+
|
| 67 |
+
### Prerequisites
|
| 68 |
+
- Python 3.8+
|
| 69 |
+
- pip package manager
|
| 70 |
+
- Git
|
| 71 |
+
|
| 72 |
+
### Local Development
|
| 73 |
+
|
| 74 |
+
1. **Clone the repository**
|
| 75 |
+
```bash
|
| 76 |
+
git clone https://github.com/your-username/hrhub.git
|
| 77 |
+
cd hrhub
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
2. **Create virtual environment** (recommended)
|
| 81 |
+
```bash
|
| 82 |
+
python -m venv venv
|
| 83 |
+
source venv/bin/activate # On Windows: venv\Scripts\activate
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
3. **Install dependencies**
|
| 87 |
+
```bash
|
| 88 |
+
pip install -r requirements.txt
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
4. **Run the app**
|
| 92 |
+
```bash
|
| 93 |
+
streamlit run app.py
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
5. **Open browser**
|
| 97 |
+
Navigate to `http://localhost:8501`
|
| 98 |
+
|
| 99 |
+
---
|
| 100 |
+
|
| 101 |
+
## 🌐 Deployment (Streamlit Cloud)
|
| 102 |
+
|
| 103 |
+
### Step 1: Push to GitHub
|
| 104 |
+
```bash
|
| 105 |
+
git add .
|
| 106 |
+
git commit -m "Initial commit"
|
| 107 |
+
git push origin main
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
### Step 2: Deploy on Streamlit Cloud
|
| 111 |
+
1. Go to [share.streamlit.io](https://share.streamlit.io)
|
| 112 |
+
2. Sign in with GitHub
|
| 113 |
+
3. Click "New app"
|
| 114 |
+
4. Select your repository: `hrhub`
|
| 115 |
+
5. Main file path: `app.py`
|
| 116 |
+
6. Click "Deploy"
|
| 117 |
+
|
| 118 |
+
**That's it!** Your app will be live at `https://your-app.streamlit.app`
|
| 119 |
+
|
| 120 |
+
---
|
| 121 |
+
|
| 122 |
+
## 📊 Data Pipeline
|
| 123 |
+
|
| 124 |
+
### Current (MVP - Hardcoded)
|
| 125 |
+
```
|
| 126 |
+
mock_data.py → app.py → Display
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
### Future (Production)
|
| 130 |
+
```
|
| 131 |
+
CSV Files → Data Processing → Embeddings → Saved Files
|
| 132 |
+
↓
|
| 133 |
+
app.py loads embeddings → Real-time matching
|
| 134 |
+
```
|
| 135 |
+
|
| 136 |
+
### Files to Generate (Next Phase)
|
| 137 |
+
```python
|
| 138 |
+
# After running your main code, save these:
|
| 139 |
+
1. candidate_embeddings.npy # 9,544 × 384 array
|
| 140 |
+
2. company_embeddings.npy # 180,000 × 384 array
|
| 141 |
+
3. candidates_processed.pkl # Full candidate data
|
| 142 |
+
4. companies_processed.pkl # Full company data
|
| 143 |
+
```
|
| 144 |
+
|
| 145 |
+
---
|
| 146 |
+
|
| 147 |
+
## 🔄 Switching from Mock to Real Data
|
| 148 |
+
|
| 149 |
+
### Current Code (MVP)
|
| 150 |
+
```python
|
| 151 |
+
# app.py
|
| 152 |
+
from data.mock_data import get_candidate_data, get_company_matches
|
| 153 |
+
```
|
| 154 |
+
|
| 155 |
+
### After Generating Embeddings
|
| 156 |
+
```python
|
| 157 |
+
# app.py
|
| 158 |
+
from data.data_loader import get_candidate_data, get_company_matches
|
| 159 |
+
```
|
| 160 |
+
|
| 161 |
+
**That's it!** No other code changes needed. The UI stays the same.
|
| 162 |
+
|
| 163 |
+
---
|
| 164 |
+
|
| 165 |
+
## 🎨 Configuration
|
| 166 |
+
|
| 167 |
+
Edit `config.py` to customize:
|
| 168 |
+
|
| 169 |
+
```python
|
| 170 |
+
# Matching Settings
|
| 171 |
+
DEFAULT_TOP_K = 10 # Number of matches to show
|
| 172 |
+
MIN_SIMILARITY_SCORE = 0.5 # Minimum score threshold
|
| 173 |
+
EMBEDDING_DIMENSION = 384 # Vector dimension
|
| 174 |
+
|
| 175 |
+
# UI Settings
|
| 176 |
+
NETWORK_GRAPH_HEIGHT = 600 # Graph height in pixels
|
| 177 |
+
|
| 178 |
+
# Demo Mode
|
| 179 |
+
DEMO_MODE = True # Set False for production
|
| 180 |
+
```
|
| 181 |
+
|
| 182 |
+
---
|
| 183 |
+
|
| 184 |
+
## 📈 Technical Details
|
| 185 |
+
|
| 186 |
+
### Algorithm
|
| 187 |
+
1. **Text Representation**: Convert candidate/company data to structured text
|
| 188 |
+
2. **Embedding**: Use sentence transformers (`all-MiniLM-L6-v2`)
|
| 189 |
+
3. **Similarity**: Compute cosine similarity between vectors
|
| 190 |
+
4. **Ranking**: Sort by similarity score, return top K
|
| 191 |
+
|
| 192 |
+
### Why Cosine Similarity?
|
| 193 |
+
- ✅ **Scale-invariant**: Focuses on direction, not magnitude
|
| 194 |
+
- ✅ **Profile shape matching**: Captures proportional skill distributions
|
| 195 |
+
- ✅ **Fast computation**: Optimized for large-scale matching
|
| 196 |
+
- ✅ **Proven in NLP**: Standard metric for semantic similarity
|
| 197 |
+
|
| 198 |
+
### Performance
|
| 199 |
+
- **Loading time**: < 5 seconds (with pre-computed embeddings)
|
| 200 |
+
- **Matching speed**: < 1 second for 180K companies
|
| 201 |
+
- **Memory usage**: ~500MB (embeddings loaded)
|
| 202 |
+
|
| 203 |
+
---
|
| 204 |
+
|
| 205 |
+
## 🧪 Testing
|
| 206 |
+
|
| 207 |
+
### Test Mock Data
|
| 208 |
+
```bash
|
| 209 |
+
cd hrhub
|
| 210 |
+
python data/mock_data.py
|
| 211 |
+
```
|
| 212 |
+
|
| 213 |
+
Expected output:
|
| 214 |
+
```
|
| 215 |
+
✅ Candidate: Demo Candidate #0
|
| 216 |
+
✅ Top 5 matches loaded
|
| 217 |
+
✅ Graph data: 6 nodes, 5 edges
|
| 218 |
+
```
|
| 219 |
+
|
| 220 |
+
### Test Streamlit App
|
| 221 |
+
```bash
|
| 222 |
+
streamlit run app.py
|
| 223 |
+
```
|
| 224 |
+
|
| 225 |
+
---
|
| 226 |
+
|
| 227 |
+
## 🎯 Roadmap
|
| 228 |
+
|
| 229 |
+
### ✅ Phase 1: MVP (Current)
|
| 230 |
+
- [x] Basic matching logic
|
| 231 |
+
- [x] Streamlit UI
|
| 232 |
+
- [x] Network visualization
|
| 233 |
+
- [x] Hardcoded demo data
|
| 234 |
+
|
| 235 |
+
### 🔄 Phase 2: Production (Next)
|
| 236 |
+
- [ ] Generate real embeddings
|
| 237 |
+
- [ ] Load embeddings from files
|
| 238 |
+
- [ ] Dynamic candidate selection
|
| 239 |
+
- [ ] Search functionality
|
| 240 |
+
|
| 241 |
+
### 🚀 Phase 3: Advanced (Future)
|
| 242 |
+
- [ ] User authentication
|
| 243 |
+
- [ ] Company login view
|
| 244 |
+
- [ ] Weighted matching (different dimensions)
|
| 245 |
+
- [ ] RAG-powered recommendations
|
| 246 |
+
- [ ] Email notifications
|
| 247 |
+
- [ ] Analytics dashboard
|
| 248 |
+
|
| 249 |
+
---
|
| 250 |
+
|
| 251 |
+
## 👥 Team
|
| 252 |
+
|
| 253 |
+
**Master's in Business Data Science - Aalborg University**
|
| 254 |
+
|
| 255 |
+
- Roger - Project Lead & Deployment
|
| 256 |
+
- Eskil - [Role]
|
| 257 |
+
- [Team Member 3] - [Role]
|
| 258 |
+
- [Team Member 4] - [Role]
|
| 259 |
+
|
| 260 |
+
---
|
| 261 |
+
|
| 262 |
+
## 📝 License
|
| 263 |
+
|
| 264 |
+
This project is part of an academic course at Aalborg University.
|
| 265 |
+
|
| 266 |
+
---
|
| 267 |
+
|
| 268 |
+
## 🤝 Contributing
|
| 269 |
+
|
| 270 |
+
This is an academic project. Contributions are welcome after project submission (December 14, 2024).
|
| 271 |
+
|
| 272 |
+
---
|
| 273 |
+
|
| 274 |
+
## 📧 Contact
|
| 275 |
+
|
| 276 |
+
For questions or feedback:
|
| 277 |
+
- Create an issue on GitHub
|
| 278 |
+
- Contact via Moodle course forum
|
| 279 |
+
|
| 280 |
+
---
|
| 281 |
+
|
| 282 |
+
## 🙏 Acknowledgments
|
| 283 |
+
|
| 284 |
+
- **Sentence Transformers**: Hugging Face team
|
| 285 |
+
- **Streamlit**: Amazing framework for data apps
|
| 286 |
+
- **PyVis**: Interactive network visualization
|
| 287 |
+
- **Course Instructors**: For guidance and support
|
| 288 |
+
|
| 289 |
+
---
|
| 290 |
+
|
| 291 |
+
**Last Updated**: December 2024
|
| 292 |
+
**Status**: 🟢 Active Development
|
data/notebooks/HRHUB_Complete_With_Postings.ipynb
ADDED
|
@@ -0,0 +1,865 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# 🚀 HRHUB - Complete Bilateral Matching System\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"## 🎯 System Architecture:\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"```\n",
|
| 12 |
+
"Candidates (9.5K) ←→ Postings (700) ←→ Companies (180K)\n",
|
| 13 |
+
" ↓ ↓ ↓\n",
|
| 14 |
+
" Skills text Job requirements Enriched profiles\n",
|
| 15 |
+
" ↓ ↓ ↓\n",
|
| 16 |
+
" Embeddings ←―――――― SAME SPACE ℝ³⁸⁴ ―――――→\n",
|
| 17 |
+
"```\n",
|
| 18 |
+
"\n",
|
| 19 |
+
"## 🔑 Key Innovation:\n",
|
| 20 |
+
"\n",
|
| 21 |
+
"**Use postings to enrich company profiles** so they speak the same language as candidates!\n",
|
| 22 |
+
"\n",
|
| 23 |
+
"- Companies describe: \"We are in tech industry\"\n",
|
| 24 |
+
"- Postings translate: \"We need Python, AWS, React\"\n",
|
| 25 |
+
"- Result: Companies can match with candidates!\n",
|
| 26 |
+
"\n",
|
| 27 |
+
"---"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "markdown",
|
| 32 |
+
"metadata": {},
|
| 33 |
+
"source": [
|
| 34 |
+
"## 📦 Step 1: Install & Import"
|
| 35 |
+
]
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"cell_type": "code",
|
| 39 |
+
"execution_count": null,
|
| 40 |
+
"metadata": {},
|
| 41 |
+
"outputs": [],
|
| 42 |
+
"source": [
|
| 43 |
+
"!pip install -q sentence-transformers plotly anthropic scikit-learn umap-learn\n",
|
| 44 |
+
"\n",
|
| 45 |
+
"import pandas as pd\n",
|
| 46 |
+
"import numpy as np\n",
|
| 47 |
+
"from sentence_transformers import SentenceTransformer\n",
|
| 48 |
+
"import plotly.express as px\n",
|
| 49 |
+
"import plotly.graph_objects as go\n",
|
| 50 |
+
"from sklearn.manifold import TSNE\n",
|
| 51 |
+
"import warnings\n",
|
| 52 |
+
"warnings.filterwarnings('ignore')\n",
|
| 53 |
+
"\n",
|
| 54 |
+
"print(\"✅ All packages ready!\")"
|
| 55 |
+
]
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"cell_type": "markdown",
|
| 59 |
+
"metadata": {},
|
| 60 |
+
"source": [
|
| 61 |
+
"## 📂 Step 2: Load ALL Datasets"
|
| 62 |
+
]
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"cell_type": "code",
|
| 66 |
+
"execution_count": null,
|
| 67 |
+
"metadata": {},
|
| 68 |
+
"outputs": [],
|
| 69 |
+
"source": [
|
| 70 |
+
"print(\"📂 Loading all datasets...\\n\")\n",
|
| 71 |
+
"print(\"=\" * 70)\n",
|
| 72 |
+
"\n",
|
| 73 |
+
"# Load candidates\n",
|
| 74 |
+
"candidates = pd.read_csv('resume_data.csv')\n",
|
| 75 |
+
"print(f\"✅ Candidates: {len(candidates):,} rows × {len(candidates.columns)} columns\")\n",
|
| 76 |
+
"\n",
|
| 77 |
+
"# Load companies base\n",
|
| 78 |
+
"companies_base = pd.read_csv('companies/companies.csv')\n",
|
| 79 |
+
"print(f\"✅ Companies (base): {len(companies_base):,} rows\")\n",
|
| 80 |
+
"\n",
|
| 81 |
+
"# Load company enrichment data\n",
|
| 82 |
+
"company_industries = pd.read_csv('companies/company_industries.csv')\n",
|
| 83 |
+
"print(f\"✅ Company industries: {len(company_industries):,} rows\")\n",
|
| 84 |
+
"\n",
|
| 85 |
+
"company_specialties = pd.read_csv('companies/company_specialties.csv')\n",
|
| 86 |
+
"print(f\"✅ Company specialties: {len(company_specialties):,} rows\")\n",
|
| 87 |
+
"\n",
|
| 88 |
+
"employee_counts = pd.read_csv('companies/employee_counts.csv')\n",
|
| 89 |
+
"print(f\"✅ Employee counts: {len(employee_counts):,} rows\")\n",
|
| 90 |
+
"\n",
|
| 91 |
+
"# Load POSTINGS (THE BRIDGE!)\n",
|
| 92 |
+
"postings = pd.read_csv('postings.csv', on_bad_lines='skip')\n",
|
| 93 |
+
"print(f\"✅ Postings: {len(postings):,} rows × {len(postings.columns)} columns\")\n",
|
| 94 |
+
"\n",
|
| 95 |
+
"# Load job-related tables\n",
|
| 96 |
+
"try:\n",
|
| 97 |
+
" job_skills = pd.read_csv('jobs/job_skills.csv')\n",
|
| 98 |
+
" print(f\"✅ Job skills: {len(job_skills):,} rows\")\n",
|
| 99 |
+
"except:\n",
|
| 100 |
+
" job_skills = None\n",
|
| 101 |
+
" print(\"⚠️ Job skills not found (optional)\")\n",
|
| 102 |
+
"\n",
|
| 103 |
+
"try:\n",
|
| 104 |
+
" job_industries = pd.read_csv('jobs/job_industries.csv')\n",
|
| 105 |
+
" print(f\"✅ Job industries: {len(job_industries):,} rows\")\n",
|
| 106 |
+
"except:\n",
|
| 107 |
+
" job_industries = None\n",
|
| 108 |
+
" print(\"⚠️ Job industries not found (optional)\")\n",
|
| 109 |
+
"\n",
|
| 110 |
+
"print(\"\\n\" + \"=\" * 70)\n",
|
| 111 |
+
"print(\"✅ All datasets loaded!\\n\")"
|
| 112 |
+
]
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"cell_type": "markdown",
|
| 116 |
+
"metadata": {},
|
| 117 |
+
"source": [
|
| 118 |
+
"## 🔗 Step 3: Merge Company Data"
|
| 119 |
+
]
|
| 120 |
+
},
|
| 121 |
+
{
|
| 122 |
+
"cell_type": "code",
|
| 123 |
+
"execution_count": null,
|
| 124 |
+
"metadata": {},
|
| 125 |
+
"outputs": [],
|
| 126 |
+
"source": [
|
| 127 |
+
"print(\"🔗 Merging company data...\\n\")\n",
|
| 128 |
+
"\n",
|
| 129 |
+
"# Aggregate industries\n",
|
| 130 |
+
"company_industries_agg = company_industries.groupby('company_id')['industry_id'].apply(\n",
|
| 131 |
+
" lambda x: ', '.join(map(str, x.tolist()))\n",
|
| 132 |
+
").reset_index()\n",
|
| 133 |
+
"company_industries_agg.columns = ['company_id', 'industries_list']\n",
|
| 134 |
+
"print(f\"✅ Aggregated industries for {len(company_industries_agg):,} companies\")\n",
|
| 135 |
+
"\n",
|
| 136 |
+
"# Aggregate specialties\n",
|
| 137 |
+
"company_specialties_agg = company_specialties.groupby('company_id')['specialty'].apply(\n",
|
| 138 |
+
" lambda x: ' | '.join(x.astype(str).tolist())\n",
|
| 139 |
+
").reset_index()\n",
|
| 140 |
+
"company_specialties_agg.columns = ['company_id', 'specialties_list']\n",
|
| 141 |
+
"print(f\"✅ Aggregated specialties for {len(company_specialties_agg):,} companies\")\n",
|
| 142 |
+
"\n",
|
| 143 |
+
"# Start with base\n",
|
| 144 |
+
"companies_merged = companies_base.copy()\n",
|
| 145 |
+
"\n",
|
| 146 |
+
"# Merge industries\n",
|
| 147 |
+
"companies_merged = companies_merged.merge(\n",
|
| 148 |
+
" company_industries_agg, \n",
|
| 149 |
+
" on='company_id', \n",
|
| 150 |
+
" how='left'\n",
|
| 151 |
+
")\n",
|
| 152 |
+
"\n",
|
| 153 |
+
"# Merge specialties\n",
|
| 154 |
+
"companies_merged = companies_merged.merge(\n",
|
| 155 |
+
" company_specialties_agg, \n",
|
| 156 |
+
" on='company_id', \n",
|
| 157 |
+
" how='left'\n",
|
| 158 |
+
")\n",
|
| 159 |
+
"\n",
|
| 160 |
+
"# Merge employee counts\n",
|
| 161 |
+
"companies_merged = companies_merged.merge(\n",
|
| 162 |
+
" employee_counts, \n",
|
| 163 |
+
" on='company_id', \n",
|
| 164 |
+
" how='left'\n",
|
| 165 |
+
")\n",
|
| 166 |
+
"\n",
|
| 167 |
+
"print(f\"\\n✅ Base company merge complete: {len(companies_merged):,} companies\")\n",
|
| 168 |
+
"print(f\"📊 Columns: {companies_merged.columns.tolist()[:10]}...\\n\")"
|
| 169 |
+
]
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"cell_type": "markdown",
|
| 173 |
+
"metadata": {},
|
| 174 |
+
"source": [
|
| 175 |
+
"## 🌉 Step 4: Enrich Companies with Postings (THE BRIDGE!)\n",
|
| 176 |
+
"\n",
|
| 177 |
+
"**This is the key step!** Postings tell us what companies actually need."
|
| 178 |
+
]
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"cell_type": "code",
|
| 182 |
+
"execution_count": null,
|
| 183 |
+
"metadata": {},
|
| 184 |
+
"outputs": [],
|
| 185 |
+
"source": [
|
| 186 |
+
"print(\"🌉 Enriching companies with job posting data...\\n\")\n",
|
| 187 |
+
"print(\"=\" * 70)\n",
|
| 188 |
+
"print(\"KEY INSIGHT: Postings contain the 'requirements language'\")\n",
|
| 189 |
+
"print(\"that bridges companies and candidates!\")\n",
|
| 190 |
+
"print(\"=\" * 70 + \"\\n\")\n",
|
| 191 |
+
"\n",
|
| 192 |
+
"# Clean postings\n",
|
| 193 |
+
"postings = postings.fillna('')\n",
|
| 194 |
+
"\n",
|
| 195 |
+
"# Aggregate postings per company\n",
|
| 196 |
+
"postings_agg = postings.groupby('company_id').agg({\n",
|
| 197 |
+
" 'title': lambda x: ' | '.join(x.astype(str).tolist()[:10]), # Top 10 job titles\n",
|
| 198 |
+
" 'description': lambda x: ' '.join(x.astype(str).tolist()[:5]), # Top 5 descriptions (truncated)\n",
|
| 199 |
+
" 'skills_desc': lambda x: ' | '.join(x.dropna().astype(str).tolist()), # All skills\n",
|
| 200 |
+
" 'formatted_experience_level': lambda x: ' | '.join(x.dropna().unique().astype(str)),\n",
|
| 201 |
+
" 'formatted_work_type': lambda x: ' | '.join(x.dropna().unique().astype(str))\n",
|
| 202 |
+
"}).reset_index()\n",
|
| 203 |
+
"\n",
|
| 204 |
+
"postings_agg.columns = [\n",
|
| 205 |
+
" 'company_id', \n",
|
| 206 |
+
" 'posted_job_titles', \n",
|
| 207 |
+
" 'posted_descriptions',\n",
|
| 208 |
+
" 'required_skills',\n",
|
| 209 |
+
" 'experience_levels',\n",
|
| 210 |
+
" 'work_types'\n",
|
| 211 |
+
"]\n",
|
| 212 |
+
"\n",
|
| 213 |
+
"print(f\"✅ Aggregated postings for {len(postings_agg):,} companies\")\n",
|
| 214 |
+
"print(f\"\\n💡 These {len(postings_agg):,} companies have explicit requirements!\\n\")\n",
|
| 215 |
+
"\n",
|
| 216 |
+
"# Merge postings into companies\n",
|
| 217 |
+
"companies_full = companies_merged.merge(\n",
|
| 218 |
+
" postings_agg,\n",
|
| 219 |
+
" on='company_id',\n",
|
| 220 |
+
" how='left'\n",
|
| 221 |
+
")\n",
|
| 222 |
+
"\n",
|
| 223 |
+
"# Fill NaN\n",
|
| 224 |
+
"companies_full = companies_full.fillna('')\n",
|
| 225 |
+
"\n",
|
| 226 |
+
"print(f\"✅ ENRICHED COMPANIES CREATED!\")\n",
|
| 227 |
+
"print(f\"📊 Final: {len(companies_full):,} companies × {len(companies_full.columns)} columns\")\n",
|
| 228 |
+
"print(f\"\\n📋 New columns from postings:\")\n",
|
| 229 |
+
"print(f\" - posted_job_titles\")\n",
|
| 230 |
+
"print(f\" - posted_descriptions\")\n",
|
| 231 |
+
"print(f\" - required_skills ← KEY FOR MATCHING!\")\n",
|
| 232 |
+
"print(f\" - experience_levels\")\n",
|
| 233 |
+
"print(f\" - work_types\\n\")\n",
|
| 234 |
+
"\n",
|
| 235 |
+
"# Show sample\n",
|
| 236 |
+
"print(\"👀 Sample enriched company:\")\n",
|
| 237 |
+
"sample_with_postings = companies_full[companies_full['required_skills'] != ''].iloc[0]\n",
|
| 238 |
+
"print(f\"\\nCompany: {sample_with_postings.get('name', 'N/A')}\")\n",
|
| 239 |
+
"print(f\"Industries: {str(sample_with_postings.get('industries_list', ''))[:100]}...\")\n",
|
| 240 |
+
"print(f\"Required Skills: {str(sample_with_postings.get('required_skills', ''))[:100]}...\")\n",
|
| 241 |
+
"print(f\"Job Titles Posted: {str(sample_with_postings.get('posted_job_titles', ''))[:100]}...\")"
|
| 242 |
+
]
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"cell_type": "markdown",
|
| 246 |
+
"metadata": {},
|
| 247 |
+
"source": [
|
| 248 |
+
"## 📂 Step 5: Load & Clean Candidates"
|
| 249 |
+
]
|
| 250 |
+
},
|
| 251 |
+
{
|
| 252 |
+
"cell_type": "code",
|
| 253 |
+
"execution_count": null,
|
| 254 |
+
"metadata": {},
|
| 255 |
+
"outputs": [],
|
| 256 |
+
"source": [
|
| 257 |
+
"# Clean candidates\n",
|
| 258 |
+
"candidates = candidates.fillna('')\n",
|
| 259 |
+
"\n",
|
| 260 |
+
"print(f\"✅ Candidates cleaned: {len(candidates):,} rows\")\n",
|
| 261 |
+
"print(f\"📋 Columns: {candidates.columns.tolist()[:10]}...\")\n",
|
| 262 |
+
"candidates.head(3)"
|
| 263 |
+
]
|
| 264 |
+
},
|
| 265 |
+
{
|
| 266 |
+
"cell_type": "markdown",
|
| 267 |
+
"metadata": {},
|
| 268 |
+
"source": [
|
| 269 |
+
"## 📝 Step 6: Create Aligned Text Representations\n",
|
| 270 |
+
"\n",
|
| 271 |
+
"**CRITICAL:** Both entities must use the same vocabulary!"
|
| 272 |
+
]
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"cell_type": "code",
|
| 276 |
+
"execution_count": null,
|
| 277 |
+
"metadata": {},
|
| 278 |
+
"outputs": [],
|
| 279 |
+
"source": [
|
| 280 |
+
"print(\"📝 Creating ALIGNED text representations...\\n\")\n",
|
| 281 |
+
"print(\"=\" * 70)\n",
|
| 282 |
+
"print(\"ALIGNMENT STRATEGY:\")\n",
|
| 283 |
+
"print(\"• Candidates: Describe skills, experience, education\")\n",
|
| 284 |
+
"print(\"• Companies: Describe what they NEED (from postings!)\")\n",
|
| 285 |
+
"print(\"• Result: Both use 'skills language' → same vector space!\")\n",
|
| 286 |
+
"print(\"=\" * 70 + \"\\n\")\n",
|
| 287 |
+
"\n",
|
| 288 |
+
"# ========================================================================\n",
|
| 289 |
+
"# CANDIDATE TEXT - Professional offering\n",
|
| 290 |
+
"# ========================================================================\n",
|
| 291 |
+
"def make_candidate_text(row):\n",
|
| 292 |
+
" \"\"\"\n",
|
| 293 |
+
" Candidate text focuses on:\n",
|
| 294 |
+
" - What skills I have\n",
|
| 295 |
+
" - What experience I bring\n",
|
| 296 |
+
" - What value I offer\n",
|
| 297 |
+
" \"\"\"\n",
|
| 298 |
+
" parts = []\n",
|
| 299 |
+
" \n",
|
| 300 |
+
" # Professional identity\n",
|
| 301 |
+
" if row.get('career_objective'):\n",
|
| 302 |
+
" parts.append(f\"Professional seeking: {row['career_objective']}\")\n",
|
| 303 |
+
" \n",
|
| 304 |
+
" if row.get('job_position_name'):\n",
|
| 305 |
+
" parts.append(f\"Target role: {row['job_position_name']}\")\n",
|
| 306 |
+
" \n",
|
| 307 |
+
" # SKILLS (most important for matching!)\n",
|
| 308 |
+
" all_skills = []\n",
|
| 309 |
+
" if row.get('skills'): \n",
|
| 310 |
+
" all_skills.append(row['skills'])\n",
|
| 311 |
+
" if row.get('related_skills_in_job'): \n",
|
| 312 |
+
" all_skills.append(row['related_skills_in_job'])\n",
|
| 313 |
+
" if row.get('certification_skills'): \n",
|
| 314 |
+
" all_skills.append(row['certification_skills'])\n",
|
| 315 |
+
" if row.get('skills_required'): # Skills they're looking for in jobs\n",
|
| 316 |
+
" all_skills.append(row['skills_required'])\n",
|
| 317 |
+
" \n",
|
| 318 |
+
" if all_skills:\n",
|
| 319 |
+
" parts.append(f\"Skills and expertise: {' | '.join(all_skills)}\")\n",
|
| 320 |
+
" \n",
|
| 321 |
+
" # EXPERIENCE\n",
|
| 322 |
+
" if row.get('positions'):\n",
|
| 323 |
+
" parts.append(f\"Experience in roles: {row['positions']}\")\n",
|
| 324 |
+
" \n",
|
| 325 |
+
" if row.get('professional_company_names'):\n",
|
| 326 |
+
" parts.append(f\"Companies worked at: {row['professional_company_names']}\")\n",
|
| 327 |
+
" \n",
|
| 328 |
+
" if row.get('responsibilities'):\n",
|
| 329 |
+
" resp = str(row['responsibilities'])[:250]\n",
|
| 330 |
+
" parts.append(f\"Responsibilities: {resp}\")\n",
|
| 331 |
+
" \n",
|
| 332 |
+
" # EDUCATION\n",
|
| 333 |
+
" edu_parts = []\n",
|
| 334 |
+
" if row.get('degree_names'): \n",
|
| 335 |
+
" edu_parts.append(row['degree_names'])\n",
|
| 336 |
+
" if row.get('major_field_of_studies'): \n",
|
| 337 |
+
" edu_parts.append(f\"in {row['major_field_of_studies']}\")\n",
|
| 338 |
+
" if row.get('educational_institution_name'): \n",
|
| 339 |
+
" edu_parts.append(f\"from {row['educational_institution_name']}\")\n",
|
| 340 |
+
" \n",
|
| 341 |
+
" if edu_parts:\n",
|
| 342 |
+
" parts.append(f\"Education: {' '.join(edu_parts)}\")\n",
|
| 343 |
+
" \n",
|
| 344 |
+
" # ADDITIONAL\n",
|
| 345 |
+
" if row.get('languages'):\n",
|
| 346 |
+
" parts.append(f\"Languages: {row['languages']}\")\n",
|
| 347 |
+
" \n",
|
| 348 |
+
" if row.get('certification_providers'):\n",
|
| 349 |
+
" parts.append(f\"Certifications from: {row['certification_providers']}\")\n",
|
| 350 |
+
" \n",
|
| 351 |
+
" if row.get('extra_curricular_activity_types'):\n",
|
| 352 |
+
" parts.append(f\"Activities: {row['extra_curricular_activity_types']}\")\n",
|
| 353 |
+
" \n",
|
| 354 |
+
" return ' || '.join(parts) if parts else \"Professional profile\"\n",
|
| 355 |
+
"\n",
|
| 356 |
+
"\n",
|
| 357 |
+
"# ========================================================================\n",
|
| 358 |
+
"# COMPANY TEXT - Job requirements (enriched with postings!)\n",
|
| 359 |
+
"# ========================================================================\n",
|
| 360 |
+
"def make_company_text(row):\n",
|
| 361 |
+
" \"\"\"\n",
|
| 362 |
+
" Company text focuses on:\n",
|
| 363 |
+
" - What skills we need (from postings!)\n",
|
| 364 |
+
" - What roles we're hiring for\n",
|
| 365 |
+
" - What our company does\n",
|
| 366 |
+
" \"\"\"\n",
|
| 367 |
+
" parts = []\n",
|
| 368 |
+
" \n",
|
| 369 |
+
" # Company identity\n",
|
| 370 |
+
" if row.get('name'):\n",
|
| 371 |
+
" parts.append(f\"Company: {row['name']}\")\n",
|
| 372 |
+
" \n",
|
| 373 |
+
" # REQUIRED SKILLS (from postings - KEY!)\n",
|
| 374 |
+
" if row.get('required_skills'):\n",
|
| 375 |
+
" parts.append(f\"Looking for skills: {row['required_skills']}\")\n",
|
| 376 |
+
" \n",
|
| 377 |
+
" # JOB TITLES (from postings)\n",
|
| 378 |
+
" if row.get('posted_job_titles'):\n",
|
| 379 |
+
" parts.append(f\"Hiring for roles: {row['posted_job_titles']}\")\n",
|
| 380 |
+
" \n",
|
| 381 |
+
" # EXPERIENCE LEVELS (from postings)\n",
|
| 382 |
+
" if row.get('experience_levels'):\n",
|
| 383 |
+
" parts.append(f\"Experience levels: {row['experience_levels']}\")\n",
|
| 384 |
+
" \n",
|
| 385 |
+
" # Industries & specialties\n",
|
| 386 |
+
" if row.get('industries_list'):\n",
|
| 387 |
+
" parts.append(f\"Industries: {row['industries_list']}\")\n",
|
| 388 |
+
" \n",
|
| 389 |
+
" if row.get('specialties_list'):\n",
|
| 390 |
+
" parts.append(f\"Specialties: {row['specialties_list']}\")\n",
|
| 391 |
+
" \n",
|
| 392 |
+
" # Company description\n",
|
| 393 |
+
" if row.get('description'):\n",
|
| 394 |
+
" desc = str(row['description'])[:300]\n",
|
| 395 |
+
" parts.append(f\"About: {desc}\")\n",
|
| 396 |
+
" \n",
|
| 397 |
+
" # Posted descriptions (gives context)\n",
|
| 398 |
+
" if row.get('posted_descriptions'):\n",
|
| 399 |
+
" posted_desc = str(row['posted_descriptions'])[:200]\n",
|
| 400 |
+
" parts.append(f\"Job descriptions: {posted_desc}\")\n",
|
| 401 |
+
" \n",
|
| 402 |
+
" # Company size\n",
|
| 403 |
+
" if row.get('employee_count'):\n",
|
| 404 |
+
" parts.append(f\"Company size: {row['employee_count']} employees\")\n",
|
| 405 |
+
" \n",
|
| 406 |
+
" # Location\n",
|
| 407 |
+
" loc = []\n",
|
| 408 |
+
" if row.get('city'): loc.append(row['city'])\n",
|
| 409 |
+
" if row.get('state'): loc.append(row['state'])\n",
|
| 410 |
+
" if row.get('country'): loc.append(row['country'])\n",
|
| 411 |
+
" if loc:\n",
|
| 412 |
+
" parts.append(f\"Location: {', '.join(loc)}\")\n",
|
| 413 |
+
" \n",
|
| 414 |
+
" # Work types\n",
|
| 415 |
+
" if row.get('work_types'):\n",
|
| 416 |
+
" parts.append(f\"Work arrangement: {row['work_types']}\")\n",
|
| 417 |
+
" \n",
|
| 418 |
+
" return ' || '.join(parts) if parts else \"Company profile\"\n",
|
| 419 |
+
"\n",
|
| 420 |
+
"\n",
|
| 421 |
+
"# ========================================================================\n",
|
| 422 |
+
"# APPLY TO DATAFRAMES\n",
|
| 423 |
+
"# ========================================================================\n",
|
| 424 |
+
"print(\"🔄 Generating candidate texts...\")\n",
|
| 425 |
+
"candidates['text'] = candidates.apply(make_candidate_text, axis=1)\n",
|
| 426 |
+
"\n",
|
| 427 |
+
"print(\"🔄 Generating company texts...\")\n",
|
| 428 |
+
"companies_full['text'] = companies_full.apply(make_company_text, axis=1)\n",
|
| 429 |
+
"\n",
|
| 430 |
+
"print(\"\\n✅ ALIGNED texts created!\\n\")\n",
|
| 431 |
+
"\n",
|
| 432 |
+
"# Compare vocabularies\n",
|
| 433 |
+
"print(\"=\" * 70)\n",
|
| 434 |
+
"print(\"CANDIDATE SAMPLE:\")\n",
|
| 435 |
+
"print(candidates['text'].iloc[0][:500])\n",
|
| 436 |
+
"print(\"\\n\" + \"=\" * 70)\n",
|
| 437 |
+
"print(\"COMPANY SAMPLE (with postings data):\")\n",
|
| 438 |
+
"# Find company with postings\n",
|
| 439 |
+
"company_with_postings = companies_full[companies_full['required_skills'] != ''].iloc[0]\n",
|
| 440 |
+
"print(company_with_postings['text'][:500])\n",
|
| 441 |
+
"print(\"=\" * 70)\n",
|
| 442 |
+
"\n",
|
| 443 |
+
"print(\"\\n💡 Notice: Both now use SKILLS LANGUAGE!\")\n",
|
| 444 |
+
"print(\" Candidate: 'Skills and expertise: Python, Java'\")\n",
|
| 445 |
+
"print(\" Company: 'Looking for skills: Python, AWS'\")\n",
|
| 446 |
+
"print(\" → They can now be compared in the same space!\\n\")"
|
| 447 |
+
]
|
| 448 |
+
},
|
| 449 |
+
{
|
| 450 |
+
"cell_type": "markdown",
|
| 451 |
+
"metadata": {},
|
| 452 |
+
"source": [
|
| 453 |
+
"## 🧠 Step 7: Generate Embeddings (ℝ³⁸⁴)\n",
|
| 454 |
+
"\n",
|
| 455 |
+
"Transform aligned text → vectors in same mathematical space"
|
| 456 |
+
]
|
| 457 |
+
},
|
| 458 |
+
{
|
| 459 |
+
"cell_type": "code",
|
| 460 |
+
"execution_count": null,
|
| 461 |
+
"metadata": {},
|
| 462 |
+
"outputs": [],
|
| 463 |
+
"source": [
|
| 464 |
+
"print(\"🧠 Loading embedding model...\\n\")\n",
|
| 465 |
+
"model = SentenceTransformer('all-MiniLM-L6-v2')\n",
|
| 466 |
+
"\n",
|
| 467 |
+
"embedding_dim = model.get_sentence_embedding_dimension()\n",
|
| 468 |
+
"print(f\"✅ Model loaded! Embedding dimension: ℝ^{embedding_dim}\\n\")\n",
|
| 469 |
+
"\n",
|
| 470 |
+
"print(\"🔄 Generating candidate vectors...\")\n",
|
| 471 |
+
"print(f\" ({len(candidates):,} candidates × ~2-3 minutes)\\n\")\n",
|
| 472 |
+
"cand_vectors = model.encode(\n",
|
| 473 |
+
" candidates['text'].tolist(), \n",
|
| 474 |
+
" show_progress_bar=True,\n",
|
| 475 |
+
" batch_size=32\n",
|
| 476 |
+
")\n",
|
| 477 |
+
"\n",
|
| 478 |
+
"print(\"\\n🔄 Generating company vectors...\")\n",
|
| 479 |
+
"print(f\" ({len(companies_full):,} companies × ~15-20 minutes)\\n\")\n",
|
| 480 |
+
"comp_vectors = model.encode(\n",
|
| 481 |
+
" companies_full['text'].tolist(), \n",
|
| 482 |
+
" show_progress_bar=True,\n",
|
| 483 |
+
" batch_size=64\n",
|
| 484 |
+
")\n",
|
| 485 |
+
"\n",
|
| 486 |
+
"print(\"\\n\" + \"=\" * 70)\n",
|
| 487 |
+
"print(\"✅ VECTORS CREATED IN SAME SPACE!\")\n",
|
| 488 |
+
"print(\"=\" * 70)\n",
|
| 489 |
+
"print(f\"📊 Candidate vectors: {cand_vectors.shape}\")\n",
|
| 490 |
+
"print(f\"📊 Company vectors: {comp_vectors.shape}\")\n",
|
| 491 |
+
"print(f\"\\n🎯 Both live in ℝ^{embedding_dim}!\")\n",
|
| 492 |
+
"print(f\"🎯 Now companies with 'Python' requirements will be\")\n",
|
| 493 |
+
"print(f\" CLOSE to candidates with 'Python' skills!\\n\")"
|
| 494 |
+
]
|
| 495 |
+
},
|
| 496 |
+
{
|
| 497 |
+
"cell_type": "markdown",
|
| 498 |
+
"metadata": {},
|
| 499 |
+
"source": [
|
| 500 |
+
"## 🎯 Step 8: Matching Engine"
|
| 501 |
+
]
|
| 502 |
+
},
|
| 503 |
+
{
|
| 504 |
+
"cell_type": "code",
|
| 505 |
+
"execution_count": null,
|
| 506 |
+
"metadata": {},
|
| 507 |
+
"outputs": [],
|
| 508 |
+
"source": [
|
| 509 |
+
"def cosine_similarity(a, b):\n",
|
| 510 |
+
" \"\"\"Calculate cosine similarity between two vectors.\"\"\"\n",
|
| 511 |
+
" return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))\n",
|
| 512 |
+
"\n",
|
| 513 |
+
"def find_top_matches(candidate_idx, top_k=10):\n",
|
| 514 |
+
" \"\"\"\n",
|
| 515 |
+
" Find top K company matches for a candidate.\n",
|
| 516 |
+
" \n",
|
| 517 |
+
" Returns: List of (company_idx, similarity_score)\n",
|
| 518 |
+
" \"\"\"\n",
|
| 519 |
+
" cand_vec = cand_vectors[candidate_idx]\n",
|
| 520 |
+
" \n",
|
| 521 |
+
" scores = []\n",
|
| 522 |
+
" for i, comp_vec in enumerate(comp_vectors):\n",
|
| 523 |
+
" score = cosine_similarity(cand_vec, comp_vec)\n",
|
| 524 |
+
" scores.append((i, score))\n",
|
| 525 |
+
" \n",
|
| 526 |
+
" scores.sort(key=lambda x: x[1], reverse=True)\n",
|
| 527 |
+
" return scores[:top_k]\n",
|
| 528 |
+
"\n",
|
| 529 |
+
"print(\"✅ Matching engine ready!\")\n",
|
| 530 |
+
"print(f\"📊 Can match {len(candidates):,} candidates with {len(companies_full):,} companies\\n\")"
|
| 531 |
+
]
|
| 532 |
+
},
|
| 533 |
+
{
|
| 534 |
+
"cell_type": "markdown",
|
| 535 |
+
"metadata": {},
|
| 536 |
+
"source": [
|
| 537 |
+
"## 🔍 Step 9: Test Matching"
|
| 538 |
+
]
|
| 539 |
+
},
|
| 540 |
+
{
|
| 541 |
+
"cell_type": "code",
|
| 542 |
+
"execution_count": null,
|
| 543 |
+
"metadata": {},
|
| 544 |
+
"outputs": [],
|
| 545 |
+
"source": [
|
| 546 |
+
"print(\"🔍 Finding top 10 matches for Candidate #0...\\n\")\n",
|
| 547 |
+
"\n",
|
| 548 |
+
"matches = find_top_matches(0, top_k=10)\n",
|
| 549 |
+
"\n",
|
| 550 |
+
"print(\"🎯 Top 10 Company Matches:\\n\")\n",
|
| 551 |
+
"print(\"=\" * 90)\n",
|
| 552 |
+
"print(f\"{'Rank':<6} {'Score':<8} {'Company':<35} {'Skills Needed':<40}\")\n",
|
| 553 |
+
"print(\"=\" * 90)\n",
|
| 554 |
+
"\n",
|
| 555 |
+
"for rank, (comp_idx, score) in enumerate(matches, 1):\n",
|
| 556 |
+
" company = companies_full.iloc[comp_idx]\n",
|
| 557 |
+
" name = company.get('name', 'N/A')[:33]\n",
|
| 558 |
+
" skills = company.get('required_skills', 'N/A')[:38]\n",
|
| 559 |
+
" print(f\"{rank:<6} {score:.4f} {name:<35} {skills}\")\n",
|
| 560 |
+
"\n",
|
| 561 |
+
"print(\"=\" * 90)\n",
|
| 562 |
+
"\n",
|
| 563 |
+
"print(\"\\n💡 If scores are good (>0.5), the alignment worked!\")\n",
|
| 564 |
+
"print(\" High scores = Company needs match candidate skills\\n\")"
|
| 565 |
+
]
|
| 566 |
+
},
|
| 567 |
+
{
|
| 568 |
+
"cell_type": "markdown",
|
| 569 |
+
"metadata": {},
|
| 570 |
+
"source": [
|
| 571 |
+
"## 📊 Step 10: Visualize Vector Space\n",
|
| 572 |
+
"\n",
|
| 573 |
+
"See where candidates and companies live in ℝ³⁸⁴ (projected to ℝ²)"
|
| 574 |
+
]
|
| 575 |
+
},
|
| 576 |
+
{
|
| 577 |
+
"cell_type": "code",
|
| 578 |
+
"execution_count": null,
|
| 579 |
+
"metadata": {},
|
| 580 |
+
"outputs": [],
|
| 581 |
+
"source": [
|
| 582 |
+
"print(\"🎨 VECTOR SPACE VISUALIZATION\\n\")\n",
|
| 583 |
+
"print(\"=\" * 70)\n",
|
| 584 |
+
"\n",
|
| 585 |
+
"# Sample for visualization\n",
|
| 586 |
+
"n_cand_viz = min(500, len(candidates))\n",
|
| 587 |
+
"n_comp_viz = min(2000, len(companies_full))\n",
|
| 588 |
+
"\n",
|
| 589 |
+
"print(f\"📊 Visualizing:\")\n",
|
| 590 |
+
"print(f\" • {n_cand_viz} candidates\")\n",
|
| 591 |
+
"print(f\" • {n_comp_viz} companies\")\n",
|
| 592 |
+
"print(f\" • From ℝ^{embedding_dim} → ℝ² (t-SNE projection)\\n\")\n",
|
| 593 |
+
"\n",
|
| 594 |
+
"# Sample vectors\n",
|
| 595 |
+
"cand_sample = cand_vectors[:n_cand_viz]\n",
|
| 596 |
+
"comp_sample = comp_vectors[:n_comp_viz]\n",
|
| 597 |
+
"\n",
|
| 598 |
+
"# Combine\n",
|
| 599 |
+
"all_vectors = np.vstack([cand_sample, comp_sample])\n",
|
| 600 |
+
"\n",
|
| 601 |
+
"print(\"🔄 Running t-SNE (2-3 minutes)...\")\n",
|
| 602 |
+
"tsne = TSNE(\n",
|
| 603 |
+
" n_components=2,\n",
|
| 604 |
+
" perplexity=30,\n",
|
| 605 |
+
" random_state=42,\n",
|
| 606 |
+
" n_iter=1000,\n",
|
| 607 |
+
" verbose=1\n",
|
| 608 |
+
")\n",
|
| 609 |
+
"\n",
|
| 610 |
+
"vectors_2d = tsne.fit_transform(all_vectors)\n",
|
| 611 |
+
"\n",
|
| 612 |
+
"# Split\n",
|
| 613 |
+
"cand_2d = vectors_2d[:n_cand_viz]\n",
|
| 614 |
+
"comp_2d = vectors_2d[n_cand_viz:]\n",
|
| 615 |
+
"\n",
|
| 616 |
+
"print(\"\\n✅ t-SNE complete!\\n\")"
|
| 617 |
+
]
|
| 618 |
+
},
|
| 619 |
+
{
|
| 620 |
+
"cell_type": "code",
|
| 621 |
+
"execution_count": null,
|
| 622 |
+
"metadata": {},
|
| 623 |
+
"outputs": [],
|
| 624 |
+
"source": [
|
| 625 |
+
"# Create plot\n",
|
| 626 |
+
"fig = go.Figure()\n",
|
| 627 |
+
"\n",
|
| 628 |
+
"# Companies (red)\n",
|
| 629 |
+
"fig.add_trace(go.Scatter(\n",
|
| 630 |
+
" x=comp_2d[:, 0],\n",
|
| 631 |
+
" y=comp_2d[:, 1],\n",
|
| 632 |
+
" mode='markers',\n",
|
| 633 |
+
" name='Companies',\n",
|
| 634 |
+
" marker=dict(\n",
|
| 635 |
+
" size=6,\n",
|
| 636 |
+
" color='#ff6b6b',\n",
|
| 637 |
+
" opacity=0.6\n",
|
| 638 |
+
" ),\n",
|
| 639 |
+
" text=[f\"Company {i}: {companies_full.iloc[i].get('name', 'N/A')[:30]}\" \n",
|
| 640 |
+
" for i in range(n_comp_viz)],\n",
|
| 641 |
+
" hovertemplate='<b>%{text}</b><extra></extra>'\n",
|
| 642 |
+
"))\n",
|
| 643 |
+
"\n",
|
| 644 |
+
"# Candidates (green)\n",
|
| 645 |
+
"fig.add_trace(go.Scatter(\n",
|
| 646 |
+
" x=cand_2d[:, 0],\n",
|
| 647 |
+
" y=cand_2d[:, 1],\n",
|
| 648 |
+
" mode='markers',\n",
|
| 649 |
+
" name='Candidates',\n",
|
| 650 |
+
" marker=dict(\n",
|
| 651 |
+
" size=10,\n",
|
| 652 |
+
" color='#00ff00',\n",
|
| 653 |
+
" opacity=0.8,\n",
|
| 654 |
+
" line=dict(width=1, color='white')\n",
|
| 655 |
+
" ),\n",
|
| 656 |
+
" text=[f\"Candidate {i}\" for i in range(n_cand_viz)],\n",
|
| 657 |
+
" hovertemplate='<b>%{text}</b><extra></extra>'\n",
|
| 658 |
+
"))\n",
|
| 659 |
+
"\n",
|
| 660 |
+
"fig.update_layout(\n",
|
| 661 |
+
" title='Vector Space: Candidates & Companies (with Postings Enrichment)',\n",
|
| 662 |
+
" xaxis_title='Dimension 1',\n",
|
| 663 |
+
" yaxis_title='Dimension 2',\n",
|
| 664 |
+
" width=1200,\n",
|
| 665 |
+
" height=800,\n",
|
| 666 |
+
" plot_bgcolor='#1a1a1a',\n",
|
| 667 |
+
" paper_bgcolor='#0d0d0d',\n",
|
| 668 |
+
" font=dict(color='white')\n",
|
| 669 |
+
")\n",
|
| 670 |
+
"\n",
|
| 671 |
+
"fig.show()\n",
|
| 672 |
+
"\n",
|
| 673 |
+
"print(\"✅ Visualization complete!\\n\")\n",
|
| 674 |
+
"print(\"💡 KEY OBSERVATIONS:\")\n",
|
| 675 |
+
"print(\" • Green = Candidates | Red = Companies\")\n",
|
| 676 |
+
"print(\" • If they OVERLAP → Good! Alignment worked!\")\n",
|
| 677 |
+
"print(\" • If still separated → Need more postings data\")\n",
|
| 678 |
+
"print(\" • Clusters = Similar skill profiles grouped\\n\")"
|
| 679 |
+
]
|
| 680 |
+
},
|
| 681 |
+
{
|
| 682 |
+
"cell_type": "markdown",
|
| 683 |
+
"metadata": {},
|
| 684 |
+
"source": [
|
| 685 |
+
"## 🔍 Step 11: Highlight Specific Candidate + Matches"
|
| 686 |
+
]
|
| 687 |
+
},
|
| 688 |
+
{
|
| 689 |
+
"cell_type": "code",
|
| 690 |
+
"execution_count": null,
|
| 691 |
+
"metadata": {},
|
| 692 |
+
"outputs": [],
|
| 693 |
+
"source": [
|
| 694 |
+
"target_candidate = 0\n",
|
| 695 |
+
"\n",
|
| 696 |
+
"print(f\"🔍 Analyzing Candidate #{target_candidate}...\\n\")\n",
|
| 697 |
+
"\n",
|
| 698 |
+
"matches = find_top_matches(target_candidate, top_k=10)\n",
|
| 699 |
+
"match_indices = [comp_idx for comp_idx, score in matches if comp_idx < n_comp_viz]\n",
|
| 700 |
+
"\n",
|
| 701 |
+
"# Create highlighted plot\n",
|
| 702 |
+
"fig2 = go.Figure()\n",
|
| 703 |
+
"\n",
|
| 704 |
+
"# All companies (background)\n",
|
| 705 |
+
"fig2.add_trace(go.Scatter(\n",
|
| 706 |
+
" x=comp_2d[:, 0],\n",
|
| 707 |
+
" y=comp_2d[:, 1],\n",
|
| 708 |
+
" mode='markers',\n",
|
| 709 |
+
" name='All Companies',\n",
|
| 710 |
+
" marker=dict(size=4, color='#ff6b6b', opacity=0.3),\n",
|
| 711 |
+
" showlegend=True\n",
|
| 712 |
+
"))\n",
|
| 713 |
+
"\n",
|
| 714 |
+
"# Top matches (highlighted)\n",
|
| 715 |
+
"if match_indices:\n",
|
| 716 |
+
" match_positions = comp_2d[match_indices]\n",
|
| 717 |
+
" fig2.add_trace(go.Scatter(\n",
|
| 718 |
+
" x=match_positions[:, 0],\n",
|
| 719 |
+
" y=match_positions[:, 1],\n",
|
| 720 |
+
" mode='markers',\n",
|
| 721 |
+
" name='Top Matches',\n",
|
| 722 |
+
" marker=dict(\n",
|
| 723 |
+
" size=15,\n",
|
| 724 |
+
" color='#ff0000',\n",
|
| 725 |
+
" line=dict(width=2, color='white')\n",
|
| 726 |
+
" ),\n",
|
| 727 |
+
" text=[f\"Match #{i+1}: {companies_full.iloc[match_indices[i]].get('name', 'N/A')[:30]}<br>Score: {matches[i][1]:.3f}\" \n",
|
| 728 |
+
" for i in range(len(match_indices))],\n",
|
| 729 |
+
" hovertemplate='<b>%{text}</b><extra></extra>'\n",
|
| 730 |
+
" ))\n",
|
| 731 |
+
"\n",
|
| 732 |
+
"# Target candidate\n",
|
| 733 |
+
"fig2.add_trace(go.Scatter(\n",
|
| 734 |
+
" x=[cand_2d[target_candidate, 0]],\n",
|
| 735 |
+
" y=[cand_2d[target_candidate, 1]],\n",
|
| 736 |
+
" mode='markers',\n",
|
| 737 |
+
" name=f'Candidate #{target_candidate}',\n",
|
| 738 |
+
" marker=dict(\n",
|
| 739 |
+
" size=25,\n",
|
| 740 |
+
" color='#00ff00',\n",
|
| 741 |
+
" symbol='star',\n",
|
| 742 |
+
" line=dict(width=3, color='white')\n",
|
| 743 |
+
" )\n",
|
| 744 |
+
"))\n",
|
| 745 |
+
"\n",
|
| 746 |
+
"# Connection lines\n",
|
| 747 |
+
"for i, match_idx in enumerate(match_indices[:5]):\n",
|
| 748 |
+
" fig2.add_trace(go.Scatter(\n",
|
| 749 |
+
" x=[cand_2d[target_candidate, 0], comp_2d[match_idx, 0]],\n",
|
| 750 |
+
" y=[cand_2d[target_candidate, 1], comp_2d[match_idx, 1]],\n",
|
| 751 |
+
" mode='lines',\n",
|
| 752 |
+
" line=dict(color='yellow', width=1, dash='dot'),\n",
|
| 753 |
+
" opacity=0.5,\n",
|
| 754 |
+
" showlegend=False\n",
|
| 755 |
+
" ))\n",
|
| 756 |
+
"\n",
|
| 757 |
+
"fig2.update_layout(\n",
|
| 758 |
+
" title=f'Candidate #{target_candidate} and Top Matches',\n",
|
| 759 |
+
" xaxis_title='Dimension 1',\n",
|
| 760 |
+
" yaxis_title='Dimension 2',\n",
|
| 761 |
+
" width=1200,\n",
|
| 762 |
+
" height=800,\n",
|
| 763 |
+
" plot_bgcolor='#1a1a1a',\n",
|
| 764 |
+
" paper_bgcolor='#0d0d0d',\n",
|
| 765 |
+
" font=dict(color='white')\n",
|
| 766 |
+
")\n",
|
| 767 |
+
"\n",
|
| 768 |
+
"fig2.show()\n",
|
| 769 |
+
"\n",
|
| 770 |
+
"print(\"✅ Highlighted visualization created!\")\n",
|
| 771 |
+
"print(f\" ⭐ Green star = Candidate #{target_candidate}\")\n",
|
| 772 |
+
"print(f\" 🔴 Red dots = Top matches\")\n",
|
| 773 |
+
"print(f\" 💛 Yellow lines = Connections in vector space\\n\")"
|
| 774 |
+
]
|
| 775 |
+
},
|
| 776 |
+
{
|
| 777 |
+
"cell_type": "markdown",
|
| 778 |
+
"metadata": {},
|
| 779 |
+
"source": [
|
| 780 |
+
"## 💾 Step 12: Export Results"
|
| 781 |
+
]
|
| 782 |
+
},
|
| 783 |
+
{
|
| 784 |
+
"cell_type": "code",
|
| 785 |
+
"execution_count": null,
|
| 786 |
+
"metadata": {},
|
| 787 |
+
"outputs": [],
|
| 788 |
+
"source": [
|
| 789 |
+
"# Generate matches for sample\n",
|
| 790 |
+
"results = []\n",
|
| 791 |
+
"export_sample = min(500, len(candidates))\n",
|
| 792 |
+
"\n",
|
| 793 |
+
"print(f\"💾 Generating matches for {export_sample} candidates...\\n\")\n",
|
| 794 |
+
"\n",
|
| 795 |
+
"for i in range(export_sample):\n",
|
| 796 |
+
" if i % 50 == 0:\n",
|
| 797 |
+
" print(f\" Progress: {i}/{export_sample}\")\n",
|
| 798 |
+
" \n",
|
| 799 |
+
" matches = find_top_matches(i, top_k=10)\n",
|
| 800 |
+
" \n",
|
| 801 |
+
" for rank, (comp_idx, score) in enumerate(matches, 1):\n",
|
| 802 |
+
" company = companies_full.iloc[comp_idx]\n",
|
| 803 |
+
" results.append({\n",
|
| 804 |
+
" 'candidate_id': i,\n",
|
| 805 |
+
" 'company_id': company.get('company_id'),\n",
|
| 806 |
+
" 'company_name': company.get('name', 'N/A'),\n",
|
| 807 |
+
" 'rank': rank,\n",
|
| 808 |
+
" 'similarity_score': float(score),\n",
|
| 809 |
+
" 'required_skills': company.get('required_skills', 'N/A')[:100],\n",
|
| 810 |
+
" 'posted_jobs': company.get('posted_job_titles', 'N/A')[:100]\n",
|
| 811 |
+
" })\n",
|
| 812 |
+
"\n",
|
| 813 |
+
"results_df = pd.DataFrame(results)\n",
|
| 814 |
+
"results_df.to_csv('hrhub_matches_with_postings.csv', index=False)\n",
|
| 815 |
+
"\n",
|
| 816 |
+
"print(f\"\\n✅ Exported {len(results_df):,} matches!\")\n",
|
| 817 |
+
"print(f\"📄 File: hrhub_matches_with_postings.csv\\n\")\n",
|
| 818 |
+
"results_df.head(20)"
|
| 819 |
+
]
|
| 820 |
+
},
|
| 821 |
+
{
|
| 822 |
+
"cell_type": "markdown",
|
| 823 |
+
"metadata": {},
|
| 824 |
+
"source": [
|
| 825 |
+
"## 🎉 COMPLETE!\n",
|
| 826 |
+
"\n",
|
| 827 |
+
"### ✅ What you have:\n",
|
| 828 |
+
"\n",
|
| 829 |
+
"1. **Enriched companies** with job posting data (requirements, skills needed)\n",
|
| 830 |
+
"2. **Aligned text representations** (both use \"skills language\")\n",
|
| 831 |
+
"3. **Vectors in same space** ℝ³⁸⁴\n",
|
| 832 |
+
"4. **Cosine similarity matching**\n",
|
| 833 |
+
"5. **Vector space visualization**\n",
|
| 834 |
+
"6. **Exported results**\n",
|
| 835 |
+
"\n",
|
| 836 |
+
"### 🚀 Next steps:\n",
|
| 837 |
+
"\n",
|
| 838 |
+
"1. **Train LLM on patterns:** \"Company in industry X historically needs skills Y\"\n",
|
| 839 |
+
"2. **Predict for companies without postings:** Use learned patterns\n",
|
| 840 |
+
"3. **Add weights:** Let users tune dimension importance\n",
|
| 841 |
+
"4. **Build UI:** Interactive matching interface\n",
|
| 842 |
+
"5. **LLM explanations:** Why these matches make sense\n",
|
| 843 |
+
"\n",
|
| 844 |
+
"### 💡 Key insight achieved:\n",
|
| 845 |
+
"\n",
|
| 846 |
+
"**Postings bridge the gap!** They translate \"what companies are\" into \"what companies need\" - the same language candidates speak!\n",
|
| 847 |
+
"\n",
|
| 848 |
+
"---"
|
| 849 |
+
]
|
| 850 |
+
}
|
| 851 |
+
],
|
| 852 |
+
"metadata": {
|
| 853 |
+
"kernelspec": {
|
| 854 |
+
"display_name": "Python 3",
|
| 855 |
+
"language": "python",
|
| 856 |
+
"name": "python3"
|
| 857 |
+
},
|
| 858 |
+
"language_info": {
|
| 859 |
+
"name": "python",
|
| 860 |
+
"version": "3.8.0"
|
| 861 |
+
}
|
| 862 |
+
},
|
| 863 |
+
"nbformat": 4,
|
| 864 |
+
"nbformat_minor": 4
|
| 865 |
+
}
|
data/notebooks/HRHUB_Full_180K.ipynb
ADDED
|
@@ -0,0 +1,471 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# 🚀 HRHUB - Bilateral Matching System\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"## 🎯 Mathematical Framework:\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"```\n",
|
| 12 |
+
"Candidate ∈ ℝⁿ (multidimensional vector)\n",
|
| 13 |
+
"Company ∈ ℝⁿ (multidimensional vector)\n",
|
| 14 |
+
"\n",
|
| 15 |
+
"Both live in the SAME vector space!\n",
|
| 16 |
+
"\n",
|
| 17 |
+
"Match Score = cosine_similarity(v_candidate, v_company)\n",
|
| 18 |
+
"```\n",
|
| 19 |
+
"\n",
|
| 20 |
+
"## 📊 Dataset:\n",
|
| 21 |
+
"- **9,544 candidates** (35 dimensions)\n",
|
| 22 |
+
"- **180,000 companies** (multiple dimensions from merged data)\n",
|
| 23 |
+
"\n",
|
| 24 |
+
"---"
|
| 25 |
+
]
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"cell_type": "markdown",
|
| 29 |
+
"metadata": {},
|
| 30 |
+
"source": [
|
| 31 |
+
"## 📦 Step 1: Install & Import"
|
| 32 |
+
]
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"cell_type": "code",
|
| 36 |
+
"execution_count": null,
|
| 37 |
+
"metadata": {},
|
| 38 |
+
"outputs": [],
|
| 39 |
+
"source": [
|
| 40 |
+
"!pip install -q sentence-transformers plotly anthropic\n",
|
| 41 |
+
"\n",
|
| 42 |
+
"import pandas as pd\n",
|
| 43 |
+
"import numpy as np\n",
|
| 44 |
+
"from sentence_transformers import SentenceTransformer\n",
|
| 45 |
+
"import plotly.express as px\n",
|
| 46 |
+
"import warnings\n",
|
| 47 |
+
"warnings.filterwarnings('ignore')\n",
|
| 48 |
+
"\n",
|
| 49 |
+
"print(\"✅ Ready!\")"
|
| 50 |
+
]
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"cell_type": "markdown",
|
| 54 |
+
"metadata": {},
|
| 55 |
+
"source": [
|
| 56 |
+
"## 📂 Step 2: Load & Merge Company Data\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"Building rich 180K company entities by merging multiple tables."
|
| 59 |
+
]
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"cell_type": "code",
|
| 63 |
+
"execution_count": null,
|
| 64 |
+
"metadata": {},
|
| 65 |
+
"outputs": [],
|
| 66 |
+
"source": [
|
| 67 |
+
"print(\"📂 Loading company datasets...\\n\")\n",
|
| 68 |
+
"\n",
|
| 69 |
+
"# Load base companies table\n",
|
| 70 |
+
"companies_base = pd.read_csv('companies/companies.csv')\n",
|
| 71 |
+
"print(f\"✅ Base companies: {len(companies_base):,} rows\")\n",
|
| 72 |
+
"\n",
|
| 73 |
+
"# Load additional company dimensions\n",
|
| 74 |
+
"company_industries = pd.read_csv('companies/company_industries.csv')\n",
|
| 75 |
+
"print(f\"✅ Company industries: {len(company_industries):,} rows\")\n",
|
| 76 |
+
"\n",
|
| 77 |
+
"company_specialties = pd.read_csv('companies/company_specialties.csv')\n",
|
| 78 |
+
"print(f\"✅ Company specialties: {len(company_specialties):,} rows\")\n",
|
| 79 |
+
"\n",
|
| 80 |
+
"employee_counts = pd.read_csv('companies/employee_counts.csv')\n",
|
| 81 |
+
"print(f\"✅ Employee counts: {len(employee_counts):,} rows\")\n",
|
| 82 |
+
"\n",
|
| 83 |
+
"# Load mappings (for reference)\n",
|
| 84 |
+
"industries_map = pd.read_csv('mappings/industries.csv')\n",
|
| 85 |
+
"skills_map = pd.read_csv('mappings/skills.csv')\n",
|
| 86 |
+
"print(f\"✅ Mappings loaded\")\n",
|
| 87 |
+
"\n",
|
| 88 |
+
"print(f\"\\n📊 Base company columns: {companies_base.columns.tolist()}\")"
|
| 89 |
+
]
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
"cell_type": "markdown",
|
| 93 |
+
"metadata": {},
|
| 94 |
+
"source": [
|
| 95 |
+
"## 🔗 Step 3: Merge Company Data (Create Rich Entities)\n",
|
| 96 |
+
"\n",
|
| 97 |
+
"Aggregate multiple dimensions into single company profile."
|
| 98 |
+
]
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"cell_type": "code",
|
| 102 |
+
"execution_count": null,
|
| 103 |
+
"metadata": {},
|
| 104 |
+
"outputs": [],
|
| 105 |
+
"source": [
|
| 106 |
+
"print(\"🔗 Merging company data...\\n\")\n",
|
| 107 |
+
"\n",
|
| 108 |
+
"# Aggregate industries per company (many-to-many)\n",
|
| 109 |
+
"company_industries_agg = company_industries.groupby('company_id')['industry_id'].apply(\n",
|
| 110 |
+
" lambda x: ', '.join(map(str, x.tolist()))\n",
|
| 111 |
+
").reset_index()\n",
|
| 112 |
+
"company_industries_agg.columns = ['company_id', 'industries_list']\n",
|
| 113 |
+
"\n",
|
| 114 |
+
"print(f\"✅ Aggregated industries for {len(company_industries_agg):,} companies\")\n",
|
| 115 |
+
"\n",
|
| 116 |
+
"# Aggregate specialties per company\n",
|
| 117 |
+
"company_specialties_agg = company_specialties.groupby('company_id')['specialty'].apply(\n",
|
| 118 |
+
" lambda x: ' | '.join(x.tolist())\n",
|
| 119 |
+
").reset_index()\n",
|
| 120 |
+
"company_specialties_agg.columns = ['company_id', 'specialties_list']\n",
|
| 121 |
+
"\n",
|
| 122 |
+
"print(f\"✅ Aggregated specialties for {len(company_specialties_agg):,} companies\")\n",
|
| 123 |
+
"\n",
|
| 124 |
+
"# Merge everything into companies_base\n",
|
| 125 |
+
"companies_full = companies_base.copy()\n",
|
| 126 |
+
"\n",
|
| 127 |
+
"# Merge industries\n",
|
| 128 |
+
"companies_full = companies_full.merge(\n",
|
| 129 |
+
" company_industries_agg, \n",
|
| 130 |
+
" on='company_id', \n",
|
| 131 |
+
" how='left'\n",
|
| 132 |
+
")\n",
|
| 133 |
+
"\n",
|
| 134 |
+
"# Merge specialties\n",
|
| 135 |
+
"companies_full = companies_full.merge(\n",
|
| 136 |
+
" company_specialties_agg, \n",
|
| 137 |
+
" on='company_id', \n",
|
| 138 |
+
" how='left'\n",
|
| 139 |
+
")\n",
|
| 140 |
+
"\n",
|
| 141 |
+
"# Merge employee counts\n",
|
| 142 |
+
"companies_full = companies_full.merge(\n",
|
| 143 |
+
" employee_counts, \n",
|
| 144 |
+
" on='company_id', \n",
|
| 145 |
+
" how='left'\n",
|
| 146 |
+
")\n",
|
| 147 |
+
"\n",
|
| 148 |
+
"# Fill NaN\n",
|
| 149 |
+
"companies_full = companies_full.fillna('')\n",
|
| 150 |
+
"\n",
|
| 151 |
+
"print(f\"\\n✅ MERGED DATASET CREATED!\")\n",
|
| 152 |
+
"print(f\"📊 Final companies: {len(companies_full):,} rows × {len(companies_full.columns)} columns\")\n",
|
| 153 |
+
"print(f\"\\n📋 Columns: {companies_full.columns.tolist()}\")\n",
|
| 154 |
+
"\n",
|
| 155 |
+
"# Show sample\n",
|
| 156 |
+
"print(f\"\\n👀 Sample company:\")\n",
|
| 157 |
+
"companies_full.head(3)"
|
| 158 |
+
]
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"cell_type": "markdown",
|
| 162 |
+
"metadata": {},
|
| 163 |
+
"source": [
|
| 164 |
+
"## 📂 Step 4: Load Candidates"
|
| 165 |
+
]
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"cell_type": "code",
|
| 169 |
+
"execution_count": null,
|
| 170 |
+
"metadata": {},
|
| 171 |
+
"outputs": [],
|
| 172 |
+
"source": [
|
| 173 |
+
"# Load candidates\n",
|
| 174 |
+
"candidates = pd.read_csv('resume_data.csv')\n",
|
| 175 |
+
"candidates = candidates.fillna('')\n",
|
| 176 |
+
"\n",
|
| 177 |
+
"print(f\"✅ Loaded {len(candidates):,} candidates × {len(candidates.columns)} columns\")\n",
|
| 178 |
+
"print(f\"\\n📋 Candidate columns: {candidates.columns.tolist()[:10]}...\")\n",
|
| 179 |
+
"candidates.head(3)"
|
| 180 |
+
]
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
"cell_type": "markdown",
|
| 184 |
+
"metadata": {},
|
| 185 |
+
"source": [
|
| 186 |
+
"## 📝 Step 5: Create Text Representations (ℝⁿ preparation)\n",
|
| 187 |
+
"\n",
|
| 188 |
+
"Transform structured data → unified text → embeddings → vectors ∈ ℝⁿ"
|
| 189 |
+
]
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"cell_type": "code",
|
| 193 |
+
"execution_count": null,
|
| 194 |
+
"metadata": {},
|
| 195 |
+
"outputs": [],
|
| 196 |
+
"source": [
|
| 197 |
+
"print(\"📝 Creating text representations...\\n\")\n",
|
| 198 |
+
"\n",
|
| 199 |
+
"# Candidate text\n",
|
| 200 |
+
"def make_candidate_text(row):\n",
|
| 201 |
+
" parts = []\n",
|
| 202 |
+
" \n",
|
| 203 |
+
" if row.get('skills'): \n",
|
| 204 |
+
" parts.append(f\"Skills: {row['skills']}\")\n",
|
| 205 |
+
" if row.get('career_objective'): \n",
|
| 206 |
+
" parts.append(f\"Objective: {row['career_objective']}\")\n",
|
| 207 |
+
" if row.get('educational_institution_name'): \n",
|
| 208 |
+
" parts.append(f\"Education: {row['educational_institution_name']}\")\n",
|
| 209 |
+
" if row.get('degree_names'): \n",
|
| 210 |
+
" parts.append(f\"Degree: {row['degree_names']}\")\n",
|
| 211 |
+
" if row.get('major_field_of_studies'): \n",
|
| 212 |
+
" parts.append(f\"Field: {row['major_field_of_studies']}\")\n",
|
| 213 |
+
" if row.get('positions'): \n",
|
| 214 |
+
" parts.append(f\"Experience: {row['positions']}\")\n",
|
| 215 |
+
" if row.get('responsibilities'): \n",
|
| 216 |
+
" parts.append(f\"Responsibilities: {str(row['responsibilities'])[:200]}\")\n",
|
| 217 |
+
" \n",
|
| 218 |
+
" return ' | '.join(parts) if parts else \"No info\"\n",
|
| 219 |
+
"\n",
|
| 220 |
+
"# Company text (from merged data!)\n",
|
| 221 |
+
"def make_company_text(row):\n",
|
| 222 |
+
" parts = []\n",
|
| 223 |
+
" \n",
|
| 224 |
+
" if row.get('name'): \n",
|
| 225 |
+
" parts.append(f\"Company: {row['name']}\")\n",
|
| 226 |
+
" if row.get('description'): \n",
|
| 227 |
+
" parts.append(f\"Description: {str(row['description'])[:300]}\")\n",
|
| 228 |
+
" if row.get('industries_list'): \n",
|
| 229 |
+
" parts.append(f\"Industries: {row['industries_list']}\")\n",
|
| 230 |
+
" if row.get('specialties_list'): \n",
|
| 231 |
+
" parts.append(f\"Specialties: {row['specialties_list']}\")\n",
|
| 232 |
+
" if row.get('employee_count'): \n",
|
| 233 |
+
" parts.append(f\"Size: {row['employee_count']} employees\")\n",
|
| 234 |
+
" if row.get('follower_count'): \n",
|
| 235 |
+
" parts.append(f\"Followers: {row['follower_count']}\")\n",
|
| 236 |
+
" if row.get('city') or row.get('state') or row.get('country'): \n",
|
| 237 |
+
" loc = f\"{row.get('city', '')}, {row.get('state', '')}, {row.get('country', '')}\"\n",
|
| 238 |
+
" parts.append(f\"Location: {loc}\")\n",
|
| 239 |
+
" \n",
|
| 240 |
+
" return ' | '.join(parts) if parts else \"No info\"\n",
|
| 241 |
+
"\n",
|
| 242 |
+
"# Apply\n",
|
| 243 |
+
"candidates['text'] = candidates.apply(make_candidate_text, axis=1)\n",
|
| 244 |
+
"companies_full['text'] = companies_full.apply(make_company_text, axis=1)\n",
|
| 245 |
+
"\n",
|
| 246 |
+
"print(\"✅ Text created!\")\n",
|
| 247 |
+
"print(f\"\\n📄 Sample candidate text:\\n{candidates['text'].iloc[0][:300]}...\")\n",
|
| 248 |
+
"print(f\"\\n📄 Sample company text:\\n{companies_full['text'].iloc[0][:300]}...\")"
|
| 249 |
+
]
|
| 250 |
+
},
|
| 251 |
+
{
|
| 252 |
+
"cell_type": "markdown",
|
| 253 |
+
"metadata": {},
|
| 254 |
+
"source": [
|
| 255 |
+
"## 🧠 Step 6: Generate Embeddings (Transform to ℝⁿ)\n",
|
| 256 |
+
"\n",
|
| 257 |
+
"**CRITICAL:** This creates vectors in the SAME mathematical space!"
|
| 258 |
+
]
|
| 259 |
+
},
|
| 260 |
+
{
|
| 261 |
+
"cell_type": "code",
|
| 262 |
+
"execution_count": null,
|
| 263 |
+
"metadata": {},
|
| 264 |
+
"outputs": [],
|
| 265 |
+
"source": [
|
| 266 |
+
"print(\"🧠 Loading embedding model...\")\n",
|
| 267 |
+
"model = SentenceTransformer('all-MiniLM-L6-v2') # Creates 384-dim vectors\n",
|
| 268 |
+
"\n",
|
| 269 |
+
"print(f\"✅ Model loaded! Embedding dimension: {model.get_sentence_embedding_dimension()}\")\n",
|
| 270 |
+
"print(f\"\\n🔄 Generating candidate vectors (this may take a few minutes)...\")\n",
|
| 271 |
+
"cand_vectors = model.encode(candidates['text'].tolist(), show_progress_bar=True)\n",
|
| 272 |
+
"\n",
|
| 273 |
+
"print(f\"\\n🔄 Generating company vectors (180K companies - this will take time!)...\")\n",
|
| 274 |
+
"comp_vectors = model.encode(companies_full['text'].tolist(), show_progress_bar=True, batch_size=64)\n",
|
| 275 |
+
"\n",
|
| 276 |
+
"print(f\"\\n✅ VECTORS CREATED!\")\n",
|
| 277 |
+
"print(f\"📊 Candidate vectors: {cand_vectors.shape}\")\n",
|
| 278 |
+
"print(f\"📊 Company vectors: {comp_vectors.shape}\")\n",
|
| 279 |
+
"print(f\"\\n🎯 Both live in ℝ^{model.get_sentence_embedding_dimension()} !\")"
|
| 280 |
+
]
|
| 281 |
+
},
|
| 282 |
+
{
|
| 283 |
+
"cell_type": "markdown",
|
| 284 |
+
"metadata": {},
|
| 285 |
+
"source": [
|
| 286 |
+
"## 🎯 Step 7: Matching Engine (Cosine Similarity)"
|
| 287 |
+
]
|
| 288 |
+
},
|
| 289 |
+
{
|
| 290 |
+
"cell_type": "code",
|
| 291 |
+
"execution_count": null,
|
| 292 |
+
"metadata": {},
|
| 293 |
+
"outputs": [],
|
| 294 |
+
"source": [
|
| 295 |
+
"def cosine_similarity(a, b):\n",
|
| 296 |
+
" \"\"\"Calculate cosine similarity between two vectors.\"\"\"\n",
|
| 297 |
+
" return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))\n",
|
| 298 |
+
"\n",
|
| 299 |
+
"def find_top_matches(candidate_idx, top_k=10):\n",
|
| 300 |
+
" \"\"\"\n",
|
| 301 |
+
" Find top K company matches for a candidate.\n",
|
| 302 |
+
" \n",
|
| 303 |
+
" Returns: List of (company_idx, similarity_score)\n",
|
| 304 |
+
" \"\"\"\n",
|
| 305 |
+
" cand_vec = cand_vectors[candidate_idx]\n",
|
| 306 |
+
" \n",
|
| 307 |
+
" # Calculate similarities with ALL 180K companies\n",
|
| 308 |
+
" scores = []\n",
|
| 309 |
+
" for i, comp_vec in enumerate(comp_vectors):\n",
|
| 310 |
+
" score = cosine_similarity(cand_vec, comp_vec)\n",
|
| 311 |
+
" scores.append((i, score))\n",
|
| 312 |
+
" \n",
|
| 313 |
+
" # Sort by score (descending)\n",
|
| 314 |
+
" scores.sort(key=lambda x: x[1], reverse=True)\n",
|
| 315 |
+
" \n",
|
| 316 |
+
" return scores[:top_k]\n",
|
| 317 |
+
"\n",
|
| 318 |
+
"print(\"✅ Matching engine ready!\")\n",
|
| 319 |
+
"print(f\"📊 Ready to match {len(candidates):,} candidates with {len(companies_full):,} companies!\")"
|
| 320 |
+
]
|
| 321 |
+
},
|
| 322 |
+
{
|
| 323 |
+
"cell_type": "markdown",
|
| 324 |
+
"metadata": {},
|
| 325 |
+
"source": [
|
| 326 |
+
"## 🔍 Step 8: Test - Find Matches for Candidate #0"
|
| 327 |
+
]
|
| 328 |
+
},
|
| 329 |
+
{
|
| 330 |
+
"cell_type": "code",
|
| 331 |
+
"execution_count": null,
|
| 332 |
+
"metadata": {},
|
| 333 |
+
"outputs": [],
|
| 334 |
+
"source": [
|
| 335 |
+
"print(\"🔍 Finding top 10 matches for Candidate #0...\\n\")\n",
|
| 336 |
+
"\n",
|
| 337 |
+
"matches = find_top_matches(0, top_k=10)\n",
|
| 338 |
+
"\n",
|
| 339 |
+
"print(\"🎯 Top 10 Company Matches:\\n\")\n",
|
| 340 |
+
"print(\"=\" * 80)\n",
|
| 341 |
+
"print(f\"{'Rank':<6} {'Score':<8} {'Company Name':<40} {'Industry'}\")\n",
|
| 342 |
+
"print(\"=\" * 80)\n",
|
| 343 |
+
"\n",
|
| 344 |
+
"for rank, (comp_idx, score) in enumerate(matches, 1):\n",
|
| 345 |
+
" company_name = companies_full.iloc[comp_idx].get('name', 'N/A')[:40]\n",
|
| 346 |
+
" industry = companies_full.iloc[comp_idx].get('industries_list', 'N/A')[:30]\n",
|
| 347 |
+
" print(f\"{rank:<6} {score:.4f} {company_name:<40} {industry}\")\n",
|
| 348 |
+
"\n",
|
| 349 |
+
"print(\"=\" * 80)"
|
| 350 |
+
]
|
| 351 |
+
},
|
| 352 |
+
{
|
| 353 |
+
"cell_type": "markdown",
|
| 354 |
+
"metadata": {},
|
| 355 |
+
"source": [
|
| 356 |
+
"## 📊 Step 9: Visualize Match Distribution"
|
| 357 |
+
]
|
| 358 |
+
},
|
| 359 |
+
{
|
| 360 |
+
"cell_type": "code",
|
| 361 |
+
"execution_count": null,
|
| 362 |
+
"metadata": {},
|
| 363 |
+
"outputs": [],
|
| 364 |
+
"source": [
|
| 365 |
+
"# Get scores for sample\n",
|
| 366 |
+
"all_scores = []\n",
|
| 367 |
+
"sample_size = min(100, len(candidates))\n",
|
| 368 |
+
"\n",
|
| 369 |
+
"print(f\"📊 Computing match scores for {sample_size} candidates...\")\n",
|
| 370 |
+
"\n",
|
| 371 |
+
"for i in range(sample_size):\n",
|
| 372 |
+
" if i % 20 == 0:\n",
|
| 373 |
+
" print(f\" Progress: {i}/{sample_size}\")\n",
|
| 374 |
+
" matches = find_top_matches(i, top_k=10)\n",
|
| 375 |
+
" for comp_idx, score in matches:\n",
|
| 376 |
+
" all_scores.append(score)\n",
|
| 377 |
+
"\n",
|
| 378 |
+
"# Plot\n",
|
| 379 |
+
"fig = px.histogram(\n",
|
| 380 |
+
" x=all_scores,\n",
|
| 381 |
+
" nbins=50,\n",
|
| 382 |
+
" title=f'Distribution of Match Scores ({len(candidates):,} candidates × {len(companies_full):,} companies)',\n",
|
| 383 |
+
" labels={'x': 'Cosine Similarity Score'}\n",
|
| 384 |
+
")\n",
|
| 385 |
+
"fig.show()\n",
|
| 386 |
+
"\n",
|
| 387 |
+
"print(f\"\\n📊 Statistics:\")\n",
|
| 388 |
+
"print(f\" Mean: {np.mean(all_scores):.4f}\")\n",
|
| 389 |
+
"print(f\" Median: {np.median(all_scores):.4f}\")\n",
|
| 390 |
+
"print(f\" Std: {np.std(all_scores):.4f}\")\n",
|
| 391 |
+
"print(f\" Max: {np.max(all_scores):.4f}\")"
|
| 392 |
+
]
|
| 393 |
+
},
|
| 394 |
+
{
|
| 395 |
+
"cell_type": "markdown",
|
| 396 |
+
"metadata": {},
|
| 397 |
+
"source": [
|
| 398 |
+
"## 💾 Step 10: Export Results"
|
| 399 |
+
]
|
| 400 |
+
},
|
| 401 |
+
{
|
| 402 |
+
"cell_type": "code",
|
| 403 |
+
"execution_count": null,
|
| 404 |
+
"metadata": {},
|
| 405 |
+
"outputs": [],
|
| 406 |
+
"source": [
|
| 407 |
+
"# Generate matches for sample\n",
|
| 408 |
+
"results = []\n",
|
| 409 |
+
"export_sample = min(500, len(candidates)) # Export matches for 500 candidates\n",
|
| 410 |
+
"\n",
|
| 411 |
+
"print(f\"💾 Generating matches for {export_sample} candidates...\\n\")\n",
|
| 412 |
+
"\n",
|
| 413 |
+
"for i in range(export_sample):\n",
|
| 414 |
+
" if i % 50 == 0:\n",
|
| 415 |
+
" print(f\" Progress: {i}/{export_sample}\")\n",
|
| 416 |
+
" \n",
|
| 417 |
+
" matches = find_top_matches(i, top_k=10)\n",
|
| 418 |
+
" \n",
|
| 419 |
+
" for rank, (comp_idx, score) in enumerate(matches, 1):\n",
|
| 420 |
+
" results.append({\n",
|
| 421 |
+
" 'candidate_id': i,\n",
|
| 422 |
+
" 'company_id': companies_full.iloc[comp_idx].get('company_id'),\n",
|
| 423 |
+
" 'company_name': companies_full.iloc[comp_idx].get('name', 'N/A'),\n",
|
| 424 |
+
" 'rank': rank,\n",
|
| 425 |
+
" 'similarity_score': float(score),\n",
|
| 426 |
+
" 'industry': companies_full.iloc[comp_idx].get('industries_list', 'N/A')[:50]\n",
|
| 427 |
+
" })\n",
|
| 428 |
+
"\n",
|
| 429 |
+
"# Create DataFrame\n",
|
| 430 |
+
"results_df = pd.DataFrame(results)\n",
|
| 431 |
+
"results_df.to_csv('hrhub_matches.csv', index=False)\n",
|
| 432 |
+
"\n",
|
| 433 |
+
"print(f\"\\n✅ Exported {len(results_df):,} matches to hrhub_matches.csv\")\n",
|
| 434 |
+
"print(f\"\\n👀 Preview:\")\n",
|
| 435 |
+
"results_df.head(20)"
|
| 436 |
+
]
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"cell_type": "markdown",
|
| 440 |
+
"metadata": {},
|
| 441 |
+
"source": [
|
| 442 |
+
"## 🎉 DONE!\n",
|
| 443 |
+
"\n",
|
| 444 |
+
"### ✅ What you have:\n",
|
| 445 |
+
"- **9,544 candidates** as vectors ∈ ℝ³⁸⁴\n",
|
| 446 |
+
"- **180,000 companies** as vectors ∈ ℝ³⁸⁴\n",
|
| 447 |
+
"- Both in the SAME mathematical space!\n",
|
| 448 |
+
"- Cosine similarity matching\n",
|
| 449 |
+
"- Exported results\n",
|
| 450 |
+
"\n",
|
| 451 |
+
"### 🚀 Next steps:\n",
|
| 452 |
+
"1. Add LLM explanations (optional - needs API key)\n",
|
| 453 |
+
"2. Implement user weights for dimensions\n",
|
| 454 |
+
"3. Build UI/API on top"
|
| 455 |
+
]
|
| 456 |
+
}
|
| 457 |
+
],
|
| 458 |
+
"metadata": {
|
| 459 |
+
"kernelspec": {
|
| 460 |
+
"display_name": "Python 3",
|
| 461 |
+
"language": "python",
|
| 462 |
+
"name": "python3"
|
| 463 |
+
},
|
| 464 |
+
"language_info": {
|
| 465 |
+
"name": "python",
|
| 466 |
+
"version": "3.8.0"
|
| 467 |
+
}
|
| 468 |
+
},
|
| 469 |
+
"nbformat": 4,
|
| 470 |
+
"nbformat_minor": 4
|
| 471 |
+
}
|
data/notebooks/lib/bindings/utils.js
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
function neighbourhoodHighlight(params) {
|
| 2 |
+
// console.log("in nieghbourhoodhighlight");
|
| 3 |
+
allNodes = nodes.get({ returnType: "Object" });
|
| 4 |
+
// originalNodes = JSON.parse(JSON.stringify(allNodes));
|
| 5 |
+
// if something is selected:
|
| 6 |
+
if (params.nodes.length > 0) {
|
| 7 |
+
highlightActive = true;
|
| 8 |
+
var i, j;
|
| 9 |
+
var selectedNode = params.nodes[0];
|
| 10 |
+
var degrees = 2;
|
| 11 |
+
|
| 12 |
+
// mark all nodes as hard to read.
|
| 13 |
+
for (let nodeId in allNodes) {
|
| 14 |
+
// nodeColors[nodeId] = allNodes[nodeId].color;
|
| 15 |
+
allNodes[nodeId].color = "rgba(200,200,200,0.5)";
|
| 16 |
+
if (allNodes[nodeId].hiddenLabel === undefined) {
|
| 17 |
+
allNodes[nodeId].hiddenLabel = allNodes[nodeId].label;
|
| 18 |
+
allNodes[nodeId].label = undefined;
|
| 19 |
+
}
|
| 20 |
+
}
|
| 21 |
+
var connectedNodes = network.getConnectedNodes(selectedNode);
|
| 22 |
+
var allConnectedNodes = [];
|
| 23 |
+
|
| 24 |
+
// get the second degree nodes
|
| 25 |
+
for (i = 1; i < degrees; i++) {
|
| 26 |
+
for (j = 0; j < connectedNodes.length; j++) {
|
| 27 |
+
allConnectedNodes = allConnectedNodes.concat(
|
| 28 |
+
network.getConnectedNodes(connectedNodes[j])
|
| 29 |
+
);
|
| 30 |
+
}
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
// all second degree nodes get a different color and their label back
|
| 34 |
+
for (i = 0; i < allConnectedNodes.length; i++) {
|
| 35 |
+
// allNodes[allConnectedNodes[i]].color = "pink";
|
| 36 |
+
allNodes[allConnectedNodes[i]].color = "rgba(150,150,150,0.75)";
|
| 37 |
+
if (allNodes[allConnectedNodes[i]].hiddenLabel !== undefined) {
|
| 38 |
+
allNodes[allConnectedNodes[i]].label =
|
| 39 |
+
allNodes[allConnectedNodes[i]].hiddenLabel;
|
| 40 |
+
allNodes[allConnectedNodes[i]].hiddenLabel = undefined;
|
| 41 |
+
}
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
// all first degree nodes get their own color and their label back
|
| 45 |
+
for (i = 0; i < connectedNodes.length; i++) {
|
| 46 |
+
// allNodes[connectedNodes[i]].color = undefined;
|
| 47 |
+
allNodes[connectedNodes[i]].color = nodeColors[connectedNodes[i]];
|
| 48 |
+
if (allNodes[connectedNodes[i]].hiddenLabel !== undefined) {
|
| 49 |
+
allNodes[connectedNodes[i]].label =
|
| 50 |
+
allNodes[connectedNodes[i]].hiddenLabel;
|
| 51 |
+
allNodes[connectedNodes[i]].hiddenLabel = undefined;
|
| 52 |
+
}
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
// the main node gets its own color and its label back.
|
| 56 |
+
// allNodes[selectedNode].color = undefined;
|
| 57 |
+
allNodes[selectedNode].color = nodeColors[selectedNode];
|
| 58 |
+
if (allNodes[selectedNode].hiddenLabel !== undefined) {
|
| 59 |
+
allNodes[selectedNode].label = allNodes[selectedNode].hiddenLabel;
|
| 60 |
+
allNodes[selectedNode].hiddenLabel = undefined;
|
| 61 |
+
}
|
| 62 |
+
} else if (highlightActive === true) {
|
| 63 |
+
// console.log("highlightActive was true");
|
| 64 |
+
// reset all nodes
|
| 65 |
+
for (let nodeId in allNodes) {
|
| 66 |
+
// allNodes[nodeId].color = "purple";
|
| 67 |
+
allNodes[nodeId].color = nodeColors[nodeId];
|
| 68 |
+
// delete allNodes[nodeId].color;
|
| 69 |
+
if (allNodes[nodeId].hiddenLabel !== undefined) {
|
| 70 |
+
allNodes[nodeId].label = allNodes[nodeId].hiddenLabel;
|
| 71 |
+
allNodes[nodeId].hiddenLabel = undefined;
|
| 72 |
+
}
|
| 73 |
+
}
|
| 74 |
+
highlightActive = false;
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
// transform the object into an array
|
| 78 |
+
var updateArray = [];
|
| 79 |
+
if (params.nodes.length > 0) {
|
| 80 |
+
for (let nodeId in allNodes) {
|
| 81 |
+
if (allNodes.hasOwnProperty(nodeId)) {
|
| 82 |
+
// console.log(allNodes[nodeId]);
|
| 83 |
+
updateArray.push(allNodes[nodeId]);
|
| 84 |
+
}
|
| 85 |
+
}
|
| 86 |
+
nodes.update(updateArray);
|
| 87 |
+
} else {
|
| 88 |
+
// console.log("Nothing was selected");
|
| 89 |
+
for (let nodeId in allNodes) {
|
| 90 |
+
if (allNodes.hasOwnProperty(nodeId)) {
|
| 91 |
+
// console.log(allNodes[nodeId]);
|
| 92 |
+
// allNodes[nodeId].color = {};
|
| 93 |
+
updateArray.push(allNodes[nodeId]);
|
| 94 |
+
}
|
| 95 |
+
}
|
| 96 |
+
nodes.update(updateArray);
|
| 97 |
+
}
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
function filterHighlight(params) {
|
| 101 |
+
allNodes = nodes.get({ returnType: "Object" });
|
| 102 |
+
// if something is selected:
|
| 103 |
+
if (params.nodes.length > 0) {
|
| 104 |
+
filterActive = true;
|
| 105 |
+
let selectedNodes = params.nodes;
|
| 106 |
+
|
| 107 |
+
// hiding all nodes and saving the label
|
| 108 |
+
for (let nodeId in allNodes) {
|
| 109 |
+
allNodes[nodeId].hidden = true;
|
| 110 |
+
if (allNodes[nodeId].savedLabel === undefined) {
|
| 111 |
+
allNodes[nodeId].savedLabel = allNodes[nodeId].label;
|
| 112 |
+
allNodes[nodeId].label = undefined;
|
| 113 |
+
}
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
for (let i=0; i < selectedNodes.length; i++) {
|
| 117 |
+
allNodes[selectedNodes[i]].hidden = false;
|
| 118 |
+
if (allNodes[selectedNodes[i]].savedLabel !== undefined) {
|
| 119 |
+
allNodes[selectedNodes[i]].label = allNodes[selectedNodes[i]].savedLabel;
|
| 120 |
+
allNodes[selectedNodes[i]].savedLabel = undefined;
|
| 121 |
+
}
|
| 122 |
+
}
|
| 123 |
+
|
| 124 |
+
} else if (filterActive === true) {
|
| 125 |
+
// reset all nodes
|
| 126 |
+
for (let nodeId in allNodes) {
|
| 127 |
+
allNodes[nodeId].hidden = false;
|
| 128 |
+
if (allNodes[nodeId].savedLabel !== undefined) {
|
| 129 |
+
allNodes[nodeId].label = allNodes[nodeId].savedLabel;
|
| 130 |
+
allNodes[nodeId].savedLabel = undefined;
|
| 131 |
+
}
|
| 132 |
+
}
|
| 133 |
+
filterActive = false;
|
| 134 |
+
}
|
| 135 |
+
|
| 136 |
+
// transform the object into an array
|
| 137 |
+
var updateArray = [];
|
| 138 |
+
if (params.nodes.length > 0) {
|
| 139 |
+
for (let nodeId in allNodes) {
|
| 140 |
+
if (allNodes.hasOwnProperty(nodeId)) {
|
| 141 |
+
updateArray.push(allNodes[nodeId]);
|
| 142 |
+
}
|
| 143 |
+
}
|
| 144 |
+
nodes.update(updateArray);
|
| 145 |
+
} else {
|
| 146 |
+
for (let nodeId in allNodes) {
|
| 147 |
+
if (allNodes.hasOwnProperty(nodeId)) {
|
| 148 |
+
updateArray.push(allNodes[nodeId]);
|
| 149 |
+
}
|
| 150 |
+
}
|
| 151 |
+
nodes.update(updateArray);
|
| 152 |
+
}
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
function selectNode(nodes) {
|
| 156 |
+
network.selectNodes(nodes);
|
| 157 |
+
neighbourhoodHighlight({ nodes: nodes });
|
| 158 |
+
return nodes;
|
| 159 |
+
}
|
| 160 |
+
|
| 161 |
+
function selectNodes(nodes) {
|
| 162 |
+
network.selectNodes(nodes);
|
| 163 |
+
filterHighlight({nodes: nodes});
|
| 164 |
+
return nodes;
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
function highlightFilter(filter) {
|
| 168 |
+
let selectedNodes = []
|
| 169 |
+
let selectedProp = filter['property']
|
| 170 |
+
if (filter['item'] === 'node') {
|
| 171 |
+
let allNodes = nodes.get({ returnType: "Object" });
|
| 172 |
+
for (let nodeId in allNodes) {
|
| 173 |
+
if (allNodes[nodeId][selectedProp] && filter['value'].includes((allNodes[nodeId][selectedProp]).toString())) {
|
| 174 |
+
selectedNodes.push(nodeId)
|
| 175 |
+
}
|
| 176 |
+
}
|
| 177 |
+
}
|
| 178 |
+
else if (filter['item'] === 'edge'){
|
| 179 |
+
let allEdges = edges.get({returnType: 'object'});
|
| 180 |
+
// check if the selected property exists for selected edge and select the nodes connected to the edge
|
| 181 |
+
for (let edge in allEdges) {
|
| 182 |
+
if (allEdges[edge][selectedProp] && filter['value'].includes((allEdges[edge][selectedProp]).toString())) {
|
| 183 |
+
selectedNodes.push(allEdges[edge]['from'])
|
| 184 |
+
selectedNodes.push(allEdges[edge]['to'])
|
| 185 |
+
}
|
| 186 |
+
}
|
| 187 |
+
}
|
| 188 |
+
selectNodes(selectedNodes)
|
| 189 |
+
}
|
data/notebooks/lib/tom-select/tom-select.complete.min.js
ADDED
|
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/**
|
| 2 |
+
* Tom Select v2.0.0-rc.4
|
| 3 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
*/
|
| 5 |
+
!function(e,t){"object"==typeof exports&&"undefined"!=typeof module?module.exports=t():"function"==typeof define&&define.amd?define(t):(e="undefined"!=typeof globalThis?globalThis:e||self).TomSelect=t()}(this,(function(){"use strict"
|
| 6 |
+
function e(e,t){e.split(/\s+/).forEach((e=>{t(e)}))}class t{constructor(){this._events={}}on(t,i){e(t,(e=>{this._events[e]=this._events[e]||[],this._events[e].push(i)}))}off(t,i){var s=arguments.length
|
| 7 |
+
0!==s?e(t,(e=>{if(1===s)return delete this._events[e]
|
| 8 |
+
e in this._events!=!1&&this._events[e].splice(this._events[e].indexOf(i),1)})):this._events={}}trigger(t,...i){var s=this
|
| 9 |
+
e(t,(e=>{if(e in s._events!=!1)for(let t of s._events[e])t.apply(s,i)}))}}var i
|
| 10 |
+
const s="[̀-ͯ·ʾ]",n=new RegExp(s,"g")
|
| 11 |
+
var o
|
| 12 |
+
const r={"æ":"ae","ⱥ":"a","ø":"o"},l=new RegExp(Object.keys(r).join("|"),"g"),a=[[67,67],[160,160],[192,438],[452,652],[961,961],[1019,1019],[1083,1083],[1281,1289],[1984,1984],[5095,5095],[7429,7441],[7545,7549],[7680,7935],[8580,8580],[9398,9449],[11360,11391],[42792,42793],[42802,42851],[42873,42897],[42912,42922],[64256,64260],[65313,65338],[65345,65370]],c=e=>e.normalize("NFKD").replace(n,"").toLowerCase().replace(l,(function(e){return r[e]})),d=(e,t="|")=>{if(1==e.length)return e[0]
|
| 13 |
+
var i=1
|
| 14 |
+
return e.forEach((e=>{i=Math.max(i,e.length)})),1==i?"["+e.join("")+"]":"(?:"+e.join(t)+")"},p=e=>{if(1===e.length)return[[e]]
|
| 15 |
+
var t=[]
|
| 16 |
+
return p(e.substring(1)).forEach((function(i){var s=i.slice(0)
|
| 17 |
+
s[0]=e.charAt(0)+s[0],t.push(s),(s=i.slice(0)).unshift(e.charAt(0)),t.push(s)})),t},u=e=>{void 0===o&&(o=(()=>{var e={}
|
| 18 |
+
a.forEach((t=>{for(let s=t[0];s<=t[1];s++){let t=String.fromCharCode(s),n=c(t)
|
| 19 |
+
if(n!=t.toLowerCase()){n in e||(e[n]=[n])
|
| 20 |
+
var i=new RegExp(d(e[n]),"iu")
|
| 21 |
+
t.match(i)||e[n].push(t)}}}))
|
| 22 |
+
var t=Object.keys(e)
|
| 23 |
+
t=t.sort(((e,t)=>t.length-e.length)),i=new RegExp("("+d(t)+"[̀-ͯ·ʾ]*)","g")
|
| 24 |
+
var s={}
|
| 25 |
+
return t.sort(((e,t)=>e.length-t.length)).forEach((t=>{var i=p(t).map((t=>(t=t.map((t=>e.hasOwnProperty(t)?d(e[t]):t)),d(t,""))))
|
| 26 |
+
s[t]=d(i)})),s})())
|
| 27 |
+
return e.normalize("NFKD").toLowerCase().split(i).map((e=>{if(""==e)return""
|
| 28 |
+
const t=c(e)
|
| 29 |
+
if(o.hasOwnProperty(t))return o[t]
|
| 30 |
+
const i=e.normalize("NFC")
|
| 31 |
+
return i!=e?d([e,i]):e})).join("")},h=(e,t)=>{if(e)return e[t]},g=(e,t)=>{if(e){for(var i,s=t.split(".");(i=s.shift())&&(e=e[i]););return e}},f=(e,t,i)=>{var s,n
|
| 32 |
+
return e?-1===(n=(e+="").search(t.regex))?0:(s=t.string.length/e.length,0===n&&(s+=.5),s*i):0},v=e=>(e+"").replace(/([\$\(-\+\.\?\[-\^\{-\}])/g,"\\$1"),m=(e,t)=>{var i=e[t]
|
| 33 |
+
if("function"==typeof i)return i
|
| 34 |
+
i&&!Array.isArray(i)&&(e[t]=[i])},y=(e,t)=>{if(Array.isArray(e))e.forEach(t)
|
| 35 |
+
else for(var i in e)e.hasOwnProperty(i)&&t(e[i],i)},O=(e,t)=>"number"==typeof e&&"number"==typeof t?e>t?1:e<t?-1:0:(e=c(e+"").toLowerCase())>(t=c(t+"").toLowerCase())?1:t>e?-1:0
|
| 36 |
+
class b{constructor(e,t){this.items=e,this.settings=t||{diacritics:!0}}tokenize(e,t,i){if(!e||!e.length)return[]
|
| 37 |
+
const s=[],n=e.split(/\s+/)
|
| 38 |
+
var o
|
| 39 |
+
return i&&(o=new RegExp("^("+Object.keys(i).map(v).join("|")+"):(.*)$")),n.forEach((e=>{let i,n=null,r=null
|
| 40 |
+
o&&(i=e.match(o))&&(n=i[1],e=i[2]),e.length>0&&(r=v(e),this.settings.diacritics&&(r=u(r)),t&&(r="\\b"+r)),s.push({string:e,regex:r?new RegExp(r,"iu"):null,field:n})})),s}getScoreFunction(e,t){var i=this.prepareSearch(e,t)
|
| 41 |
+
return this._getScoreFunction(i)}_getScoreFunction(e){const t=e.tokens,i=t.length
|
| 42 |
+
if(!i)return function(){return 0}
|
| 43 |
+
const s=e.options.fields,n=e.weights,o=s.length,r=e.getAttrFn
|
| 44 |
+
if(!o)return function(){return 1}
|
| 45 |
+
const l=1===o?function(e,t){const i=s[0].field
|
| 46 |
+
return f(r(t,i),e,n[i])}:function(e,t){var i=0
|
| 47 |
+
if(e.field){const s=r(t,e.field)
|
| 48 |
+
!e.regex&&s?i+=1/o:i+=f(s,e,1)}else y(n,((s,n)=>{i+=f(r(t,n),e,s)}))
|
| 49 |
+
return i/o}
|
| 50 |
+
return 1===i?function(e){return l(t[0],e)}:"and"===e.options.conjunction?function(e){for(var s,n=0,o=0;n<i;n++){if((s=l(t[n],e))<=0)return 0
|
| 51 |
+
o+=s}return o/i}:function(e){var s=0
|
| 52 |
+
return y(t,(t=>{s+=l(t,e)})),s/i}}getSortFunction(e,t){var i=this.prepareSearch(e,t)
|
| 53 |
+
return this._getSortFunction(i)}_getSortFunction(e){var t,i,s
|
| 54 |
+
const n=this,o=e.options,r=!e.query&&o.sort_empty?o.sort_empty:o.sort,l=[],a=[]
|
| 55 |
+
if("function"==typeof r)return r.bind(this)
|
| 56 |
+
const c=function(t,i){return"$score"===t?i.score:e.getAttrFn(n.items[i.id],t)}
|
| 57 |
+
if(r)for(t=0,i=r.length;t<i;t++)(e.query||"$score"!==r[t].field)&&l.push(r[t])
|
| 58 |
+
if(e.query){for(s=!0,t=0,i=l.length;t<i;t++)if("$score"===l[t].field){s=!1
|
| 59 |
+
break}s&&l.unshift({field:"$score",direction:"desc"})}else for(t=0,i=l.length;t<i;t++)if("$score"===l[t].field){l.splice(t,1)
|
| 60 |
+
break}for(t=0,i=l.length;t<i;t++)a.push("desc"===l[t].direction?-1:1)
|
| 61 |
+
const d=l.length
|
| 62 |
+
if(d){if(1===d){const e=l[0].field,t=a[0]
|
| 63 |
+
return function(i,s){return t*O(c(e,i),c(e,s))}}return function(e,t){var i,s,n
|
| 64 |
+
for(i=0;i<d;i++)if(n=l[i].field,s=a[i]*O(c(n,e),c(n,t)))return s
|
| 65 |
+
return 0}}return null}prepareSearch(e,t){const i={}
|
| 66 |
+
var s=Object.assign({},t)
|
| 67 |
+
if(m(s,"sort"),m(s,"sort_empty"),s.fields){m(s,"fields")
|
| 68 |
+
const e=[]
|
| 69 |
+
s.fields.forEach((t=>{"string"==typeof t&&(t={field:t,weight:1}),e.push(t),i[t.field]="weight"in t?t.weight:1})),s.fields=e}return{options:s,query:e.toLowerCase().trim(),tokens:this.tokenize(e,s.respect_word_boundaries,i),total:0,items:[],weights:i,getAttrFn:s.nesting?g:h}}search(e,t){var i,s,n=this
|
| 70 |
+
s=this.prepareSearch(e,t),t=s.options,e=s.query
|
| 71 |
+
const o=t.score||n._getScoreFunction(s)
|
| 72 |
+
e.length?y(n.items,((e,n)=>{i=o(e),(!1===t.filter||i>0)&&s.items.push({score:i,id:n})})):y(n.items,((e,t)=>{s.items.push({score:1,id:t})}))
|
| 73 |
+
const r=n._getSortFunction(s)
|
| 74 |
+
return r&&s.items.sort(r),s.total=s.items.length,"number"==typeof t.limit&&(s.items=s.items.slice(0,t.limit)),s}}const w=e=>{if(e.jquery)return e[0]
|
| 75 |
+
if(e instanceof HTMLElement)return e
|
| 76 |
+
if(e.indexOf("<")>-1){let t=document.createElement("div")
|
| 77 |
+
return t.innerHTML=e.trim(),t.firstChild}return document.querySelector(e)},_=(e,t)=>{var i=document.createEvent("HTMLEvents")
|
| 78 |
+
i.initEvent(t,!0,!1),e.dispatchEvent(i)},I=(e,t)=>{Object.assign(e.style,t)},C=(e,...t)=>{var i=A(t);(e=x(e)).map((e=>{i.map((t=>{e.classList.add(t)}))}))},S=(e,...t)=>{var i=A(t);(e=x(e)).map((e=>{i.map((t=>{e.classList.remove(t)}))}))},A=e=>{var t=[]
|
| 79 |
+
return y(e,(e=>{"string"==typeof e&&(e=e.trim().split(/[\11\12\14\15\40]/)),Array.isArray(e)&&(t=t.concat(e))})),t.filter(Boolean)},x=e=>(Array.isArray(e)||(e=[e]),e),k=(e,t,i)=>{if(!i||i.contains(e))for(;e&&e.matches;){if(e.matches(t))return e
|
| 80 |
+
e=e.parentNode}},F=(e,t=0)=>t>0?e[e.length-1]:e[0],L=(e,t)=>{if(!e)return-1
|
| 81 |
+
t=t||e.nodeName
|
| 82 |
+
for(var i=0;e=e.previousElementSibling;)e.matches(t)&&i++
|
| 83 |
+
return i},P=(e,t)=>{y(t,((t,i)=>{null==t?e.removeAttribute(i):e.setAttribute(i,""+t)}))},E=(e,t)=>{e.parentNode&&e.parentNode.replaceChild(t,e)},T=(e,t)=>{if(null===t)return
|
| 84 |
+
if("string"==typeof t){if(!t.length)return
|
| 85 |
+
t=new RegExp(t,"i")}const i=e=>3===e.nodeType?(e=>{var i=e.data.match(t)
|
| 86 |
+
if(i&&e.data.length>0){var s=document.createElement("span")
|
| 87 |
+
s.className="highlight"
|
| 88 |
+
var n=e.splitText(i.index)
|
| 89 |
+
n.splitText(i[0].length)
|
| 90 |
+
var o=n.cloneNode(!0)
|
| 91 |
+
return s.appendChild(o),E(n,s),1}return 0})(e):((e=>{if(1===e.nodeType&&e.childNodes&&!/(script|style)/i.test(e.tagName)&&("highlight"!==e.className||"SPAN"!==e.tagName))for(var t=0;t<e.childNodes.length;++t)t+=i(e.childNodes[t])})(e),0)
|
| 92 |
+
i(e)},V="undefined"!=typeof navigator&&/Mac/.test(navigator.userAgent)?"metaKey":"ctrlKey"
|
| 93 |
+
var j={options:[],optgroups:[],plugins:[],delimiter:",",splitOn:null,persist:!0,diacritics:!0,create:null,createOnBlur:!1,createFilter:null,highlight:!0,openOnFocus:!0,shouldOpen:null,maxOptions:50,maxItems:null,hideSelected:null,duplicates:!1,addPrecedence:!1,selectOnTab:!1,preload:null,allowEmptyOption:!1,loadThrottle:300,loadingClass:"loading",dataAttr:null,optgroupField:"optgroup",valueField:"value",labelField:"text",disabledField:"disabled",optgroupLabelField:"label",optgroupValueField:"value",lockOptgroupOrder:!1,sortField:"$order",searchField:["text"],searchConjunction:"and",mode:null,wrapperClass:"ts-wrapper",controlClass:"ts-control",dropdownClass:"ts-dropdown",dropdownContentClass:"ts-dropdown-content",itemClass:"item",optionClass:"option",dropdownParent:null,copyClassesToDropdown:!1,placeholder:null,hidePlaceholder:null,shouldLoad:function(e){return e.length>0},render:{}}
|
| 94 |
+
const q=e=>null==e?null:D(e),D=e=>"boolean"==typeof e?e?"1":"0":e+"",N=e=>(e+"").replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,"""),z=(e,t)=>{var i
|
| 95 |
+
return function(s,n){var o=this
|
| 96 |
+
i&&(o.loading=Math.max(o.loading-1,0),clearTimeout(i)),i=setTimeout((function(){i=null,o.loadedSearches[s]=!0,e.call(o,s,n)}),t)}},R=(e,t,i)=>{var s,n=e.trigger,o={}
|
| 97 |
+
for(s in e.trigger=function(){var i=arguments[0]
|
| 98 |
+
if(-1===t.indexOf(i))return n.apply(e,arguments)
|
| 99 |
+
o[i]=arguments},i.apply(e,[]),e.trigger=n,o)n.apply(e,o[s])},H=(e,t=!1)=>{e&&(e.preventDefault(),t&&e.stopPropagation())},B=(e,t,i,s)=>{e.addEventListener(t,i,s)},K=(e,t)=>!!t&&(!!t[e]&&1===(t.altKey?1:0)+(t.ctrlKey?1:0)+(t.shiftKey?1:0)+(t.metaKey?1:0)),M=(e,t)=>{const i=e.getAttribute("id")
|
| 100 |
+
return i||(e.setAttribute("id",t),t)},Q=e=>e.replace(/[\\"']/g,"\\$&"),G=(e,t)=>{t&&e.append(t)}
|
| 101 |
+
function U(e,t){var i=Object.assign({},j,t),s=i.dataAttr,n=i.labelField,o=i.valueField,r=i.disabledField,l=i.optgroupField,a=i.optgroupLabelField,c=i.optgroupValueField,d=e.tagName.toLowerCase(),p=e.getAttribute("placeholder")||e.getAttribute("data-placeholder")
|
| 102 |
+
if(!p&&!i.allowEmptyOption){let t=e.querySelector('option[value=""]')
|
| 103 |
+
t&&(p=t.textContent)}var u,h,g,f,v,m,O={placeholder:p,options:[],optgroups:[],items:[],maxItems:null}
|
| 104 |
+
return"select"===d?(h=O.options,g={},f=1,v=e=>{var t=Object.assign({},e.dataset),i=s&&t[s]
|
| 105 |
+
return"string"==typeof i&&i.length&&(t=Object.assign(t,JSON.parse(i))),t},m=(e,t)=>{var s=q(e.value)
|
| 106 |
+
if(null!=s&&(s||i.allowEmptyOption)){if(g.hasOwnProperty(s)){if(t){var a=g[s][l]
|
| 107 |
+
a?Array.isArray(a)?a.push(t):g[s][l]=[a,t]:g[s][l]=t}}else{var c=v(e)
|
| 108 |
+
c[n]=c[n]||e.textContent,c[o]=c[o]||s,c[r]=c[r]||e.disabled,c[l]=c[l]||t,c.$option=e,g[s]=c,h.push(c)}e.selected&&O.items.push(s)}},O.maxItems=e.hasAttribute("multiple")?null:1,y(e.children,(e=>{var t,i,s
|
| 109 |
+
"optgroup"===(u=e.tagName.toLowerCase())?((s=v(t=e))[a]=s[a]||t.getAttribute("label")||"",s[c]=s[c]||f++,s[r]=s[r]||t.disabled,O.optgroups.push(s),i=s[c],y(t.children,(e=>{m(e,i)}))):"option"===u&&m(e)}))):(()=>{const t=e.getAttribute(s)
|
| 110 |
+
if(t)O.options=JSON.parse(t),y(O.options,(e=>{O.items.push(e[o])}))
|
| 111 |
+
else{var r=e.value.trim()||""
|
| 112 |
+
if(!i.allowEmptyOption&&!r.length)return
|
| 113 |
+
const t=r.split(i.delimiter)
|
| 114 |
+
y(t,(e=>{const t={}
|
| 115 |
+
t[n]=e,t[o]=e,O.options.push(t)})),O.items=t}})(),Object.assign({},j,O,t)}var W=0
|
| 116 |
+
class J extends(function(e){return e.plugins={},class extends e{constructor(...e){super(...e),this.plugins={names:[],settings:{},requested:{},loaded:{}}}static define(t,i){e.plugins[t]={name:t,fn:i}}initializePlugins(e){var t,i
|
| 117 |
+
const s=this,n=[]
|
| 118 |
+
if(Array.isArray(e))e.forEach((e=>{"string"==typeof e?n.push(e):(s.plugins.settings[e.name]=e.options,n.push(e.name))}))
|
| 119 |
+
else if(e)for(t in e)e.hasOwnProperty(t)&&(s.plugins.settings[t]=e[t],n.push(t))
|
| 120 |
+
for(;i=n.shift();)s.require(i)}loadPlugin(t){var i=this,s=i.plugins,n=e.plugins[t]
|
| 121 |
+
if(!e.plugins.hasOwnProperty(t))throw new Error('Unable to find "'+t+'" plugin')
|
| 122 |
+
s.requested[t]=!0,s.loaded[t]=n.fn.apply(i,[i.plugins.settings[t]||{}]),s.names.push(t)}require(e){var t=this,i=t.plugins
|
| 123 |
+
if(!t.plugins.loaded.hasOwnProperty(e)){if(i.requested[e])throw new Error('Plugin has circular dependency ("'+e+'")')
|
| 124 |
+
t.loadPlugin(e)}return i.loaded[e]}}}(t)){constructor(e,t){var i
|
| 125 |
+
super(),this.order=0,this.isOpen=!1,this.isDisabled=!1,this.isInvalid=!1,this.isValid=!0,this.isLocked=!1,this.isFocused=!1,this.isInputHidden=!1,this.isSetup=!1,this.ignoreFocus=!1,this.hasOptions=!1,this.lastValue="",this.caretPos=0,this.loading=0,this.loadedSearches={},this.activeOption=null,this.activeItems=[],this.optgroups={},this.options={},this.userOptions={},this.items=[],W++
|
| 126 |
+
var s=w(e)
|
| 127 |
+
if(s.tomselect)throw new Error("Tom Select already initialized on this element")
|
| 128 |
+
s.tomselect=this,i=(window.getComputedStyle&&window.getComputedStyle(s,null)).getPropertyValue("direction")
|
| 129 |
+
const n=U(s,t)
|
| 130 |
+
this.settings=n,this.input=s,this.tabIndex=s.tabIndex||0,this.is_select_tag="select"===s.tagName.toLowerCase(),this.rtl=/rtl/i.test(i),this.inputId=M(s,"tomselect-"+W),this.isRequired=s.required,this.sifter=new b(this.options,{diacritics:n.diacritics}),n.mode=n.mode||(1===n.maxItems?"single":"multi"),"boolean"!=typeof n.hideSelected&&(n.hideSelected="multi"===n.mode),"boolean"!=typeof n.hidePlaceholder&&(n.hidePlaceholder="multi"!==n.mode)
|
| 131 |
+
var o=n.createFilter
|
| 132 |
+
"function"!=typeof o&&("string"==typeof o&&(o=new RegExp(o)),o instanceof RegExp?n.createFilter=e=>o.test(e):n.createFilter=()=>!0),this.initializePlugins(n.plugins),this.setupCallbacks(),this.setupTemplates()
|
| 133 |
+
const r=w("<div>"),l=w("<div>"),a=this._render("dropdown"),c=w('<div role="listbox" tabindex="-1">'),d=this.input.getAttribute("class")||"",p=n.mode
|
| 134 |
+
var u
|
| 135 |
+
if(C(r,n.wrapperClass,d,p),C(l,n.controlClass),G(r,l),C(a,n.dropdownClass,p),n.copyClassesToDropdown&&C(a,d),C(c,n.dropdownContentClass),G(a,c),w(n.dropdownParent||r).appendChild(a),n.hasOwnProperty("controlInput"))n.controlInput?(u=w(n.controlInput),this.focus_node=u):(u=w("<input/>"),this.focus_node=l)
|
| 136 |
+
else{u=w('<input type="text" autocomplete="off" size="1" />')
|
| 137 |
+
y(["autocorrect","autocapitalize","autocomplete"],(e=>{s.getAttribute(e)&&P(u,{[e]:s.getAttribute(e)})})),u.tabIndex=-1,l.appendChild(u),this.focus_node=u}this.wrapper=r,this.dropdown=a,this.dropdown_content=c,this.control=l,this.control_input=u,this.setup()}setup(){const e=this,t=e.settings,i=e.control_input,s=e.dropdown,n=e.dropdown_content,o=e.wrapper,r=e.control,l=e.input,a=e.focus_node,c={passive:!0},d=e.inputId+"-ts-dropdown"
|
| 138 |
+
P(n,{id:d}),P(a,{role:"combobox","aria-haspopup":"listbox","aria-expanded":"false","aria-controls":d})
|
| 139 |
+
const p=M(a,e.inputId+"-ts-control"),u="label[for='"+(e=>e.replace(/['"\\]/g,"\\$&"))(e.inputId)+"']",h=document.querySelector(u),g=e.focus.bind(e)
|
| 140 |
+
if(h){B(h,"click",g),P(h,{for:p})
|
| 141 |
+
const t=M(h,e.inputId+"-ts-label")
|
| 142 |
+
P(a,{"aria-labelledby":t}),P(n,{"aria-labelledby":t})}if(o.style.width=l.style.width,e.plugins.names.length){const t="plugin-"+e.plugins.names.join(" plugin-")
|
| 143 |
+
C([o,s],t)}(null===t.maxItems||t.maxItems>1)&&e.is_select_tag&&P(l,{multiple:"multiple"}),e.settings.placeholder&&P(i,{placeholder:t.placeholder}),!e.settings.splitOn&&e.settings.delimiter&&(e.settings.splitOn=new RegExp("\\s*"+v(e.settings.delimiter)+"+\\s*")),t.load&&t.loadThrottle&&(t.load=z(t.load,t.loadThrottle)),e.control_input.type=l.type,B(s,"click",(t=>{const i=k(t.target,"[data-selectable]")
|
| 144 |
+
i&&(e.onOptionSelect(t,i),H(t,!0))})),B(r,"click",(t=>{var s=k(t.target,"[data-ts-item]",r)
|
| 145 |
+
s&&e.onItemSelect(t,s)?H(t,!0):""==i.value&&(e.onClick(),H(t,!0))})),B(i,"mousedown",(e=>{""!==i.value&&e.stopPropagation()})),B(a,"keydown",(t=>e.onKeyDown(t))),B(i,"keypress",(t=>e.onKeyPress(t))),B(i,"input",(t=>e.onInput(t))),B(a,"resize",(()=>e.positionDropdown()),c),B(a,"blur",(t=>e.onBlur(t))),B(a,"focus",(t=>e.onFocus(t))),B(a,"paste",(t=>e.onPaste(t)))
|
| 146 |
+
const f=t=>{const i=t.composedPath()[0]
|
| 147 |
+
if(!o.contains(i)&&!s.contains(i))return e.isFocused&&e.blur(),void e.inputState()
|
| 148 |
+
H(t,!0)}
|
| 149 |
+
var m=()=>{e.isOpen&&e.positionDropdown()}
|
| 150 |
+
B(document,"mousedown",f),B(window,"scroll",m,c),B(window,"resize",m,c),this._destroy=()=>{document.removeEventListener("mousedown",f),window.removeEventListener("sroll",m),window.removeEventListener("resize",m),h&&h.removeEventListener("click",g)},this.revertSettings={innerHTML:l.innerHTML,tabIndex:l.tabIndex},l.tabIndex=-1,l.insertAdjacentElement("afterend",e.wrapper),e.sync(!1),t.items=[],delete t.optgroups,delete t.options,B(l,"invalid",(t=>{e.isValid&&(e.isValid=!1,e.isInvalid=!0,e.refreshState())})),e.updateOriginalInput(),e.refreshItems(),e.close(!1),e.inputState(),e.isSetup=!0,l.disabled?e.disable():e.enable(),e.on("change",this.onChange),C(l,"tomselected","ts-hidden-accessible"),e.trigger("initialize"),!0===t.preload&&e.preload()}setupOptions(e=[],t=[]){this.addOptions(e),y(t,(e=>{this.registerOptionGroup(e)}))}setupTemplates(){var e=this,t=e.settings.labelField,i=e.settings.optgroupLabelField,s={optgroup:e=>{let t=document.createElement("div")
|
| 151 |
+
return t.className="optgroup",t.appendChild(e.options),t},optgroup_header:(e,t)=>'<div class="optgroup-header">'+t(e[i])+"</div>",option:(e,i)=>"<div>"+i(e[t])+"</div>",item:(e,i)=>"<div>"+i(e[t])+"</div>",option_create:(e,t)=>'<div class="create">Add <strong>'+t(e.input)+"</strong>…</div>",no_results:()=>'<div class="no-results">No results found</div>',loading:()=>'<div class="spinner"></div>',not_loading:()=>{},dropdown:()=>"<div></div>"}
|
| 152 |
+
e.settings.render=Object.assign({},s,e.settings.render)}setupCallbacks(){var e,t,i={initialize:"onInitialize",change:"onChange",item_add:"onItemAdd",item_remove:"onItemRemove",item_select:"onItemSelect",clear:"onClear",option_add:"onOptionAdd",option_remove:"onOptionRemove",option_clear:"onOptionClear",optgroup_add:"onOptionGroupAdd",optgroup_remove:"onOptionGroupRemove",optgroup_clear:"onOptionGroupClear",dropdown_open:"onDropdownOpen",dropdown_close:"onDropdownClose",type:"onType",load:"onLoad",focus:"onFocus",blur:"onBlur"}
|
| 153 |
+
for(e in i)(t=this.settings[i[e]])&&this.on(e,t)}sync(e=!0){const t=this,i=e?U(t.input,{delimiter:t.settings.delimiter}):t.settings
|
| 154 |
+
t.setupOptions(i.options,i.optgroups),t.setValue(i.items,!0),t.lastQuery=null}onClick(){var e=this
|
| 155 |
+
if(e.activeItems.length>0)return e.clearActiveItems(),void e.focus()
|
| 156 |
+
e.isFocused&&e.isOpen?e.blur():e.focus()}onMouseDown(){}onChange(){_(this.input,"input"),_(this.input,"change")}onPaste(e){var t=this
|
| 157 |
+
t.isFull()||t.isInputHidden||t.isLocked?H(e):t.settings.splitOn&&setTimeout((()=>{var e=t.inputValue()
|
| 158 |
+
if(e.match(t.settings.splitOn)){var i=e.trim().split(t.settings.splitOn)
|
| 159 |
+
y(i,(e=>{t.createItem(e)}))}}),0)}onKeyPress(e){var t=this
|
| 160 |
+
if(!t.isLocked){var i=String.fromCharCode(e.keyCode||e.which)
|
| 161 |
+
return t.settings.create&&"multi"===t.settings.mode&&i===t.settings.delimiter?(t.createItem(),void H(e)):void 0}H(e)}onKeyDown(e){var t=this
|
| 162 |
+
if(t.isLocked)9!==e.keyCode&&H(e)
|
| 163 |
+
else{switch(e.keyCode){case 65:if(K(V,e))return H(e),void t.selectAll()
|
| 164 |
+
break
|
| 165 |
+
case 27:return t.isOpen&&(H(e,!0),t.close()),void t.clearActiveItems()
|
| 166 |
+
case 40:if(!t.isOpen&&t.hasOptions)t.open()
|
| 167 |
+
else if(t.activeOption){let e=t.getAdjacent(t.activeOption,1)
|
| 168 |
+
e&&t.setActiveOption(e)}return void H(e)
|
| 169 |
+
case 38:if(t.activeOption){let e=t.getAdjacent(t.activeOption,-1)
|
| 170 |
+
e&&t.setActiveOption(e)}return void H(e)
|
| 171 |
+
case 13:return void(t.isOpen&&t.activeOption?(t.onOptionSelect(e,t.activeOption),H(e)):t.settings.create&&t.createItem()&&H(e))
|
| 172 |
+
case 37:return void t.advanceSelection(-1,e)
|
| 173 |
+
case 39:return void t.advanceSelection(1,e)
|
| 174 |
+
case 9:return void(t.settings.selectOnTab&&(t.isOpen&&t.activeOption&&(t.onOptionSelect(e,t.activeOption),H(e)),t.settings.create&&t.createItem()&&H(e)))
|
| 175 |
+
case 8:case 46:return void t.deleteSelection(e)}t.isInputHidden&&!K(V,e)&&H(e)}}onInput(e){var t=this
|
| 176 |
+
if(!t.isLocked){var i=t.inputValue()
|
| 177 |
+
t.lastValue!==i&&(t.lastValue=i,t.settings.shouldLoad.call(t,i)&&t.load(i),t.refreshOptions(),t.trigger("type",i))}}onFocus(e){var t=this,i=t.isFocused
|
| 178 |
+
if(t.isDisabled)return t.blur(),void H(e)
|
| 179 |
+
t.ignoreFocus||(t.isFocused=!0,"focus"===t.settings.preload&&t.preload(),i||t.trigger("focus"),t.activeItems.length||(t.showInput(),t.refreshOptions(!!t.settings.openOnFocus)),t.refreshState())}onBlur(e){if(!1!==document.hasFocus()){var t=this
|
| 180 |
+
if(t.isFocused){t.isFocused=!1,t.ignoreFocus=!1
|
| 181 |
+
var i=()=>{t.close(),t.setActiveItem(),t.setCaret(t.items.length),t.trigger("blur")}
|
| 182 |
+
t.settings.create&&t.settings.createOnBlur?t.createItem(null,!1,i):i()}}}onOptionSelect(e,t){var i,s=this
|
| 183 |
+
t&&(t.parentElement&&t.parentElement.matches("[data-disabled]")||(t.classList.contains("create")?s.createItem(null,!0,(()=>{s.settings.closeAfterSelect&&s.close()})):void 0!==(i=t.dataset.value)&&(s.lastQuery=null,s.addItem(i),s.settings.closeAfterSelect&&s.close(),!s.settings.hideSelected&&e.type&&/click/.test(e.type)&&s.setActiveOption(t))))}onItemSelect(e,t){var i=this
|
| 184 |
+
return!i.isLocked&&"multi"===i.settings.mode&&(H(e),i.setActiveItem(t,e),!0)}canLoad(e){return!!this.settings.load&&!this.loadedSearches.hasOwnProperty(e)}load(e){const t=this
|
| 185 |
+
if(!t.canLoad(e))return
|
| 186 |
+
C(t.wrapper,t.settings.loadingClass),t.loading++
|
| 187 |
+
const i=t.loadCallback.bind(t)
|
| 188 |
+
t.settings.load.call(t,e,i)}loadCallback(e,t){const i=this
|
| 189 |
+
i.loading=Math.max(i.loading-1,0),i.lastQuery=null,i.clearActiveOption(),i.setupOptions(e,t),i.refreshOptions(i.isFocused&&!i.isInputHidden),i.loading||S(i.wrapper,i.settings.loadingClass),i.trigger("load",e,t)}preload(){var e=this.wrapper.classList
|
| 190 |
+
e.contains("preloaded")||(e.add("preloaded"),this.load(""))}setTextboxValue(e=""){var t=this.control_input
|
| 191 |
+
t.value!==e&&(t.value=e,_(t,"update"),this.lastValue=e)}getValue(){return this.is_select_tag&&this.input.hasAttribute("multiple")?this.items:this.items.join(this.settings.delimiter)}setValue(e,t){R(this,t?[]:["change"],(()=>{this.clear(t),this.addItems(e,t)}))}setMaxItems(e){0===e&&(e=null),this.settings.maxItems=e,this.refreshState()}setActiveItem(e,t){var i,s,n,o,r,l,a=this
|
| 192 |
+
if("single"!==a.settings.mode){if(!e)return a.clearActiveItems(),void(a.isFocused&&a.showInput())
|
| 193 |
+
if("click"===(i=t&&t.type.toLowerCase())&&K("shiftKey",t)&&a.activeItems.length){for(l=a.getLastActive(),(n=Array.prototype.indexOf.call(a.control.children,l))>(o=Array.prototype.indexOf.call(a.control.children,e))&&(r=n,n=o,o=r),s=n;s<=o;s++)e=a.control.children[s],-1===a.activeItems.indexOf(e)&&a.setActiveItemClass(e)
|
| 194 |
+
H(t)}else"click"===i&&K(V,t)||"keydown"===i&&K("shiftKey",t)?e.classList.contains("active")?a.removeActiveItem(e):a.setActiveItemClass(e):(a.clearActiveItems(),a.setActiveItemClass(e))
|
| 195 |
+
a.hideInput(),a.isFocused||a.focus()}}setActiveItemClass(e){const t=this,i=t.control.querySelector(".last-active")
|
| 196 |
+
i&&S(i,"last-active"),C(e,"active last-active"),t.trigger("item_select",e),-1==t.activeItems.indexOf(e)&&t.activeItems.push(e)}removeActiveItem(e){var t=this.activeItems.indexOf(e)
|
| 197 |
+
this.activeItems.splice(t,1),S(e,"active")}clearActiveItems(){S(this.activeItems,"active"),this.activeItems=[]}setActiveOption(e){e!==this.activeOption&&(this.clearActiveOption(),e&&(this.activeOption=e,P(this.focus_node,{"aria-activedescendant":e.getAttribute("id")}),P(e,{"aria-selected":"true"}),C(e,"active"),this.scrollToOption(e)))}scrollToOption(e,t){if(!e)return
|
| 198 |
+
const i=this.dropdown_content,s=i.clientHeight,n=i.scrollTop||0,o=e.offsetHeight,r=e.getBoundingClientRect().top-i.getBoundingClientRect().top+n
|
| 199 |
+
r+o>s+n?this.scroll(r-s+o,t):r<n&&this.scroll(r,t)}scroll(e,t){const i=this.dropdown_content
|
| 200 |
+
t&&(i.style.scrollBehavior=t),i.scrollTop=e,i.style.scrollBehavior=""}clearActiveOption(){this.activeOption&&(S(this.activeOption,"active"),P(this.activeOption,{"aria-selected":null})),this.activeOption=null,P(this.focus_node,{"aria-activedescendant":null})}selectAll(){if("single"===this.settings.mode)return
|
| 201 |
+
const e=this.controlChildren()
|
| 202 |
+
e.length&&(this.hideInput(),this.close(),this.activeItems=e,C(e,"active"))}inputState(){var e=this
|
| 203 |
+
e.control.contains(e.control_input)&&(P(e.control_input,{placeholder:e.settings.placeholder}),e.activeItems.length>0||!e.isFocused&&e.settings.hidePlaceholder&&e.items.length>0?(e.setTextboxValue(),e.isInputHidden=!0):(e.settings.hidePlaceholder&&e.items.length>0&&P(e.control_input,{placeholder:""}),e.isInputHidden=!1),e.wrapper.classList.toggle("input-hidden",e.isInputHidden))}hideInput(){this.inputState()}showInput(){this.inputState()}inputValue(){return this.control_input.value.trim()}focus(){var e=this
|
| 204 |
+
e.isDisabled||(e.ignoreFocus=!0,e.control_input.offsetWidth?e.control_input.focus():e.focus_node.focus(),setTimeout((()=>{e.ignoreFocus=!1,e.onFocus()}),0))}blur(){this.focus_node.blur(),this.onBlur()}getScoreFunction(e){return this.sifter.getScoreFunction(e,this.getSearchOptions())}getSearchOptions(){var e=this.settings,t=e.sortField
|
| 205 |
+
return"string"==typeof e.sortField&&(t=[{field:e.sortField}]),{fields:e.searchField,conjunction:e.searchConjunction,sort:t,nesting:e.nesting}}search(e){var t,i,s,n=this,o=this.getSearchOptions()
|
| 206 |
+
if(n.settings.score&&"function"!=typeof(s=n.settings.score.call(n,e)))throw new Error('Tom Select "score" setting must be a function that returns a function')
|
| 207 |
+
if(e!==n.lastQuery?(n.lastQuery=e,i=n.sifter.search(e,Object.assign(o,{score:s})),n.currentResults=i):i=Object.assign({},n.currentResults),n.settings.hideSelected)for(t=i.items.length-1;t>=0;t--){let e=q(i.items[t].id)
|
| 208 |
+
e&&-1!==n.items.indexOf(e)&&i.items.splice(t,1)}return i}refreshOptions(e=!0){var t,i,s,n,o,r,l,a,c,d,p
|
| 209 |
+
const u={},h=[]
|
| 210 |
+
var g,f=this,v=f.inputValue(),m=f.search(v),O=f.activeOption,b=f.settings.shouldOpen||!1,w=f.dropdown_content
|
| 211 |
+
for(O&&(c=O.dataset.value,d=O.closest("[data-group]")),n=m.items.length,"number"==typeof f.settings.maxOptions&&(n=Math.min(n,f.settings.maxOptions)),n>0&&(b=!0),t=0;t<n;t++){let e=m.items[t].id,n=f.options[e],l=f.getOption(e,!0)
|
| 212 |
+
for(f.settings.hideSelected||l.classList.toggle("selected",f.items.includes(e)),o=n[f.settings.optgroupField]||"",i=0,s=(r=Array.isArray(o)?o:[o])&&r.length;i<s;i++)o=r[i],f.optgroups.hasOwnProperty(o)||(o=""),u.hasOwnProperty(o)||(u[o]=document.createDocumentFragment(),h.push(o)),i>0&&(l=l.cloneNode(!0),P(l,{id:n.$id+"-clone-"+i,"aria-selected":null}),l.classList.add("ts-cloned"),S(l,"active")),c==e&&d&&d.dataset.group===o&&(O=l),u[o].appendChild(l)}this.settings.lockOptgroupOrder&&h.sort(((e,t)=>(f.optgroups[e]&&f.optgroups[e].$order||0)-(f.optgroups[t]&&f.optgroups[t].$order||0))),l=document.createDocumentFragment(),y(h,(e=>{if(f.optgroups.hasOwnProperty(e)&&u[e].children.length){let t=document.createDocumentFragment(),i=f.render("optgroup_header",f.optgroups[e])
|
| 213 |
+
G(t,i),G(t,u[e])
|
| 214 |
+
let s=f.render("optgroup",{group:f.optgroups[e],options:t})
|
| 215 |
+
G(l,s)}else G(l,u[e])})),w.innerHTML="",G(w,l),f.settings.highlight&&(g=w.querySelectorAll("span.highlight"),Array.prototype.forEach.call(g,(function(e){var t=e.parentNode
|
| 216 |
+
t.replaceChild(e.firstChild,e),t.normalize()})),m.query.length&&m.tokens.length&&y(m.tokens,(e=>{T(w,e.regex)})))
|
| 217 |
+
var _=e=>{let t=f.render(e,{input:v})
|
| 218 |
+
return t&&(b=!0,w.insertBefore(t,w.firstChild)),t}
|
| 219 |
+
if(f.loading?_("loading"):f.settings.shouldLoad.call(f,v)?0===m.items.length&&_("no_results"):_("not_loading"),(a=f.canCreate(v))&&(p=_("option_create")),f.hasOptions=m.items.length>0||a,b){if(m.items.length>0){if(!w.contains(O)&&"single"===f.settings.mode&&f.items.length&&(O=f.getOption(f.items[0])),!w.contains(O)){let e=0
|
| 220 |
+
p&&!f.settings.addPrecedence&&(e=1),O=f.selectable()[e]}}else p&&(O=p)
|
| 221 |
+
e&&!f.isOpen&&(f.open(),f.scrollToOption(O,"auto")),f.setActiveOption(O)}else f.clearActiveOption(),e&&f.isOpen&&f.close(!1)}selectable(){return this.dropdown_content.querySelectorAll("[data-selectable]")}addOption(e,t=!1){const i=this
|
| 222 |
+
if(Array.isArray(e))return i.addOptions(e,t),!1
|
| 223 |
+
const s=q(e[i.settings.valueField])
|
| 224 |
+
return null!==s&&!i.options.hasOwnProperty(s)&&(e.$order=e.$order||++i.order,e.$id=i.inputId+"-opt-"+e.$order,i.options[s]=e,i.lastQuery=null,t&&(i.userOptions[s]=t,i.trigger("option_add",s,e)),s)}addOptions(e,t=!1){y(e,(e=>{this.addOption(e,t)}))}registerOption(e){return this.addOption(e)}registerOptionGroup(e){var t=q(e[this.settings.optgroupValueField])
|
| 225 |
+
return null!==t&&(e.$order=e.$order||++this.order,this.optgroups[t]=e,t)}addOptionGroup(e,t){var i
|
| 226 |
+
t[this.settings.optgroupValueField]=e,(i=this.registerOptionGroup(t))&&this.trigger("optgroup_add",i,t)}removeOptionGroup(e){this.optgroups.hasOwnProperty(e)&&(delete this.optgroups[e],this.clearCache(),this.trigger("optgroup_remove",e))}clearOptionGroups(){this.optgroups={},this.clearCache(),this.trigger("optgroup_clear")}updateOption(e,t){const i=this
|
| 227 |
+
var s,n
|
| 228 |
+
const o=q(e),r=q(t[i.settings.valueField])
|
| 229 |
+
if(null===o)return
|
| 230 |
+
if(!i.options.hasOwnProperty(o))return
|
| 231 |
+
if("string"!=typeof r)throw new Error("Value must be set in option data")
|
| 232 |
+
const l=i.getOption(o),a=i.getItem(o)
|
| 233 |
+
if(t.$order=t.$order||i.options[o].$order,delete i.options[o],i.uncacheValue(r),i.options[r]=t,l){if(i.dropdown_content.contains(l)){const e=i._render("option",t)
|
| 234 |
+
E(l,e),i.activeOption===l&&i.setActiveOption(e)}l.remove()}a&&(-1!==(n=i.items.indexOf(o))&&i.items.splice(n,1,r),s=i._render("item",t),a.classList.contains("active")&&C(s,"active"),E(a,s)),i.lastQuery=null}removeOption(e,t){const i=this
|
| 235 |
+
e=D(e),i.uncacheValue(e),delete i.userOptions[e],delete i.options[e],i.lastQuery=null,i.trigger("option_remove",e),i.removeItem(e,t)}clearOptions(){this.loadedSearches={},this.userOptions={},this.clearCache()
|
| 236 |
+
var e={}
|
| 237 |
+
y(this.options,((t,i)=>{this.items.indexOf(i)>=0&&(e[i]=this.options[i])})),this.options=this.sifter.items=e,this.lastQuery=null,this.trigger("option_clear")}getOption(e,t=!1){const i=q(e)
|
| 238 |
+
if(null!==i&&this.options.hasOwnProperty(i)){const e=this.options[i]
|
| 239 |
+
if(e.$div)return e.$div
|
| 240 |
+
if(t)return this._render("option",e)}return null}getAdjacent(e,t,i="option"){var s
|
| 241 |
+
if(!e)return null
|
| 242 |
+
s="item"==i?this.controlChildren():this.dropdown_content.querySelectorAll("[data-selectable]")
|
| 243 |
+
for(let i=0;i<s.length;i++)if(s[i]==e)return t>0?s[i+1]:s[i-1]
|
| 244 |
+
return null}getItem(e){if("object"==typeof e)return e
|
| 245 |
+
var t=q(e)
|
| 246 |
+
return null!==t?this.control.querySelector(`[data-value="${Q(t)}"]`):null}addItems(e,t){var i=this,s=Array.isArray(e)?e:[e]
|
| 247 |
+
for(let e=0,n=(s=s.filter((e=>-1===i.items.indexOf(e)))).length;e<n;e++)i.isPending=e<n-1,i.addItem(s[e],t)}addItem(e,t){R(this,t?[]:["change"],(()=>{var i,s
|
| 248 |
+
const n=this,o=n.settings.mode,r=q(e)
|
| 249 |
+
if((!r||-1===n.items.indexOf(r)||("single"===o&&n.close(),"single"!==o&&n.settings.duplicates))&&null!==r&&n.options.hasOwnProperty(r)&&("single"===o&&n.clear(t),"multi"!==o||!n.isFull())){if(i=n._render("item",n.options[r]),n.control.contains(i)&&(i=i.cloneNode(!0)),s=n.isFull(),n.items.splice(n.caretPos,0,r),n.insertAtCaret(i),n.isSetup){if(!n.isPending&&n.settings.hideSelected){let e=n.getOption(r),t=n.getAdjacent(e,1)
|
| 250 |
+
t&&n.setActiveOption(t)}n.isPending||n.refreshOptions(n.isFocused&&"single"!==o),0!=n.settings.closeAfterSelect&&n.isFull()?n.close():n.isPending||n.positionDropdown(),n.trigger("item_add",r,i),n.isPending||n.updateOriginalInput({silent:t})}(!n.isPending||!s&&n.isFull())&&(n.inputState(),n.refreshState())}}))}removeItem(e=null,t){const i=this
|
| 251 |
+
if(!(e=i.getItem(e)))return
|
| 252 |
+
var s,n
|
| 253 |
+
const o=e.dataset.value
|
| 254 |
+
s=L(e),e.remove(),e.classList.contains("active")&&(n=i.activeItems.indexOf(e),i.activeItems.splice(n,1),S(e,"active")),i.items.splice(s,1),i.lastQuery=null,!i.settings.persist&&i.userOptions.hasOwnProperty(o)&&i.removeOption(o,t),s<i.caretPos&&i.setCaret(i.caretPos-1),i.updateOriginalInput({silent:t}),i.refreshState(),i.positionDropdown(),i.trigger("item_remove",o,e)}createItem(e=null,t=!0,i=(()=>{})){var s,n=this,o=n.caretPos
|
| 255 |
+
if(e=e||n.inputValue(),!n.canCreate(e))return i(),!1
|
| 256 |
+
n.lock()
|
| 257 |
+
var r=!1,l=e=>{if(n.unlock(),!e||"object"!=typeof e)return i()
|
| 258 |
+
var s=q(e[n.settings.valueField])
|
| 259 |
+
if("string"!=typeof s)return i()
|
| 260 |
+
n.setTextboxValue(),n.addOption(e,!0),n.setCaret(o),n.addItem(s),n.refreshOptions(t&&"single"!==n.settings.mode),i(e),r=!0}
|
| 261 |
+
return s="function"==typeof n.settings.create?n.settings.create.call(this,e,l):{[n.settings.labelField]:e,[n.settings.valueField]:e},r||l(s),!0}refreshItems(){var e=this
|
| 262 |
+
e.lastQuery=null,e.isSetup&&e.addItems(e.items),e.updateOriginalInput(),e.refreshState()}refreshState(){const e=this
|
| 263 |
+
e.refreshValidityState()
|
| 264 |
+
const t=e.isFull(),i=e.isLocked
|
| 265 |
+
e.wrapper.classList.toggle("rtl",e.rtl)
|
| 266 |
+
const s=e.wrapper.classList
|
| 267 |
+
var n
|
| 268 |
+
s.toggle("focus",e.isFocused),s.toggle("disabled",e.isDisabled),s.toggle("required",e.isRequired),s.toggle("invalid",!e.isValid),s.toggle("locked",i),s.toggle("full",t),s.toggle("input-active",e.isFocused&&!e.isInputHidden),s.toggle("dropdown-active",e.isOpen),s.toggle("has-options",(n=e.options,0===Object.keys(n).length)),s.toggle("has-items",e.items.length>0)}refreshValidityState(){var e=this
|
| 269 |
+
e.input.checkValidity&&(e.isValid=e.input.checkValidity(),e.isInvalid=!e.isValid)}isFull(){return null!==this.settings.maxItems&&this.items.length>=this.settings.maxItems}updateOriginalInput(e={}){const t=this
|
| 270 |
+
var i,s
|
| 271 |
+
const n=t.input.querySelector('option[value=""]')
|
| 272 |
+
if(t.is_select_tag){const e=[]
|
| 273 |
+
function o(i,s,o){return i||(i=w('<option value="'+N(s)+'">'+N(o)+"</option>")),i!=n&&t.input.append(i),e.push(i),i.selected=!0,i}t.input.querySelectorAll("option:checked").forEach((e=>{e.selected=!1})),0==t.items.length&&"single"==t.settings.mode?o(n,"",""):t.items.forEach((n=>{if(i=t.options[n],s=i[t.settings.labelField]||"",e.includes(i.$option)){o(t.input.querySelector(`option[value="${Q(n)}"]:not(:checked)`),n,s)}else i.$option=o(i.$option,n,s)}))}else t.input.value=t.getValue()
|
| 274 |
+
t.isSetup&&(e.silent||t.trigger("change",t.getValue()))}open(){var e=this
|
| 275 |
+
e.isLocked||e.isOpen||"multi"===e.settings.mode&&e.isFull()||(e.isOpen=!0,P(e.focus_node,{"aria-expanded":"true"}),e.refreshState(),I(e.dropdown,{visibility:"hidden",display:"block"}),e.positionDropdown(),I(e.dropdown,{visibility:"visible",display:"block"}),e.focus(),e.trigger("dropdown_open",e.dropdown))}close(e=!0){var t=this,i=t.isOpen
|
| 276 |
+
e&&(t.setTextboxValue(),"single"===t.settings.mode&&t.items.length&&t.hideInput()),t.isOpen=!1,P(t.focus_node,{"aria-expanded":"false"}),I(t.dropdown,{display:"none"}),t.settings.hideSelected&&t.clearActiveOption(),t.refreshState(),i&&t.trigger("dropdown_close",t.dropdown)}positionDropdown(){if("body"===this.settings.dropdownParent){var e=this.control,t=e.getBoundingClientRect(),i=e.offsetHeight+t.top+window.scrollY,s=t.left+window.scrollX
|
| 277 |
+
I(this.dropdown,{width:t.width+"px",top:i+"px",left:s+"px"})}}clear(e){var t=this
|
| 278 |
+
if(t.items.length){var i=t.controlChildren()
|
| 279 |
+
y(i,(e=>{t.removeItem(e,!0)})),t.showInput(),e||t.updateOriginalInput(),t.trigger("clear")}}insertAtCaret(e){const t=this,i=t.caretPos,s=t.control
|
| 280 |
+
s.insertBefore(e,s.children[i]),t.setCaret(i+1)}deleteSelection(e){var t,i,s,n,o,r=this
|
| 281 |
+
t=e&&8===e.keyCode?-1:1,i={start:(o=r.control_input).selectionStart||0,length:(o.selectionEnd||0)-(o.selectionStart||0)}
|
| 282 |
+
const l=[]
|
| 283 |
+
if(r.activeItems.length)n=F(r.activeItems,t),s=L(n),t>0&&s++,y(r.activeItems,(e=>l.push(e)))
|
| 284 |
+
else if((r.isFocused||"single"===r.settings.mode)&&r.items.length){const e=r.controlChildren()
|
| 285 |
+
t<0&&0===i.start&&0===i.length?l.push(e[r.caretPos-1]):t>0&&i.start===r.inputValue().length&&l.push(e[r.caretPos])}const a=l.map((e=>e.dataset.value))
|
| 286 |
+
if(!a.length||"function"==typeof r.settings.onDelete&&!1===r.settings.onDelete.call(r,a,e))return!1
|
| 287 |
+
for(H(e,!0),void 0!==s&&r.setCaret(s);l.length;)r.removeItem(l.pop())
|
| 288 |
+
return r.showInput(),r.positionDropdown(),r.refreshOptions(!1),!0}advanceSelection(e,t){var i,s,n=this
|
| 289 |
+
n.rtl&&(e*=-1),n.inputValue().length||(K(V,t)||K("shiftKey",t)?(s=(i=n.getLastActive(e))?i.classList.contains("active")?n.getAdjacent(i,e,"item"):i:e>0?n.control_input.nextElementSibling:n.control_input.previousElementSibling)&&(s.classList.contains("active")&&n.removeActiveItem(i),n.setActiveItemClass(s)):n.moveCaret(e))}moveCaret(e){}getLastActive(e){let t=this.control.querySelector(".last-active")
|
| 290 |
+
if(t)return t
|
| 291 |
+
var i=this.control.querySelectorAll(".active")
|
| 292 |
+
return i?F(i,e):void 0}setCaret(e){this.caretPos=this.items.length}controlChildren(){return Array.from(this.control.querySelectorAll("[data-ts-item]"))}lock(){this.close(),this.isLocked=!0,this.refreshState()}unlock(){this.isLocked=!1,this.refreshState()}disable(){var e=this
|
| 293 |
+
e.input.disabled=!0,e.control_input.disabled=!0,e.focus_node.tabIndex=-1,e.isDisabled=!0,e.lock()}enable(){var e=this
|
| 294 |
+
e.input.disabled=!1,e.control_input.disabled=!1,e.focus_node.tabIndex=e.tabIndex,e.isDisabled=!1,e.unlock()}destroy(){var e=this,t=e.revertSettings
|
| 295 |
+
e.trigger("destroy"),e.off(),e.wrapper.remove(),e.dropdown.remove(),e.input.innerHTML=t.innerHTML,e.input.tabIndex=t.tabIndex,S(e.input,"tomselected","ts-hidden-accessible"),e._destroy(),delete e.input.tomselect}render(e,t){return"function"!=typeof this.settings.render[e]?null:this._render(e,t)}_render(e,t){var i,s,n=""
|
| 296 |
+
const o=this
|
| 297 |
+
return"option"!==e&&"item"!=e||(n=D(t[o.settings.valueField])),null==(s=o.settings.render[e].call(this,t,N))||(s=w(s),"option"===e||"option_create"===e?t[o.settings.disabledField]?P(s,{"aria-disabled":"true"}):P(s,{"data-selectable":""}):"optgroup"===e&&(i=t.group[o.settings.optgroupValueField],P(s,{"data-group":i}),t.group[o.settings.disabledField]&&P(s,{"data-disabled":""})),"option"!==e&&"item"!==e||(P(s,{"data-value":n}),"item"===e?(C(s,o.settings.itemClass),P(s,{"data-ts-item":""})):(C(s,o.settings.optionClass),P(s,{role:"option",id:t.$id}),o.options[n].$div=s))),s}clearCache(){y(this.options,((e,t)=>{e.$div&&(e.$div.remove(),delete e.$div)}))}uncacheValue(e){const t=this.getOption(e)
|
| 298 |
+
t&&t.remove()}canCreate(e){return this.settings.create&&e.length>0&&this.settings.createFilter.call(this,e)}hook(e,t,i){var s=this,n=s[t]
|
| 299 |
+
s[t]=function(){var t,o
|
| 300 |
+
return"after"===e&&(t=n.apply(s,arguments)),o=i.apply(s,arguments),"instead"===e?o:("before"===e&&(t=n.apply(s,arguments)),t)}}}return J.define("change_listener",(function(){B(this.input,"change",(()=>{this.sync()}))})),J.define("checkbox_options",(function(){var e=this,t=e.onOptionSelect
|
| 301 |
+
e.settings.hideSelected=!1
|
| 302 |
+
var i=function(e){setTimeout((()=>{var t=e.querySelector("input")
|
| 303 |
+
e.classList.contains("selected")?t.checked=!0:t.checked=!1}),1)}
|
| 304 |
+
e.hook("after","setupTemplates",(()=>{var t=e.settings.render.option
|
| 305 |
+
e.settings.render.option=(i,s)=>{var n=w(t.call(e,i,s)),o=document.createElement("input")
|
| 306 |
+
o.addEventListener("click",(function(e){H(e)})),o.type="checkbox"
|
| 307 |
+
const r=q(i[e.settings.valueField])
|
| 308 |
+
return r&&e.items.indexOf(r)>-1&&(o.checked=!0),n.prepend(o),n}})),e.on("item_remove",(t=>{var s=e.getOption(t)
|
| 309 |
+
s&&(s.classList.remove("selected"),i(s))})),e.hook("instead","onOptionSelect",((s,n)=>{if(n.classList.contains("selected"))return n.classList.remove("selected"),e.removeItem(n.dataset.value),e.refreshOptions(),void H(s,!0)
|
| 310 |
+
t.call(e,s,n),i(n)}))})),J.define("clear_button",(function(e){const t=this,i=Object.assign({className:"clear-button",title:"Clear All",html:e=>`<div class="${e.className}" title="${e.title}">×</div>`},e)
|
| 311 |
+
t.on("initialize",(()=>{var e=w(i.html(i))
|
| 312 |
+
e.addEventListener("click",(e=>{t.clear(),"single"===t.settings.mode&&t.settings.allowEmptyOption&&t.addItem(""),e.preventDefault(),e.stopPropagation()})),t.control.appendChild(e)}))})),J.define("drag_drop",(function(){var e=this
|
| 313 |
+
if(!$.fn.sortable)throw new Error('The "drag_drop" plugin requires jQuery UI "sortable".')
|
| 314 |
+
if("multi"===e.settings.mode){var t=e.lock,i=e.unlock
|
| 315 |
+
e.hook("instead","lock",(()=>{var i=$(e.control).data("sortable")
|
| 316 |
+
return i&&i.disable(),t.call(e)})),e.hook("instead","unlock",(()=>{var t=$(e.control).data("sortable")
|
| 317 |
+
return t&&t.enable(),i.call(e)})),e.on("initialize",(()=>{var t=$(e.control).sortable({items:"[data-value]",forcePlaceholderSize:!0,disabled:e.isLocked,start:(e,i)=>{i.placeholder.css("width",i.helper.css("width")),t.css({overflow:"visible"})},stop:()=>{t.css({overflow:"hidden"})
|
| 318 |
+
var i=[]
|
| 319 |
+
t.children("[data-value]").each((function(){this.dataset.value&&i.push(this.dataset.value)})),e.setValue(i)}})}))}})),J.define("dropdown_header",(function(e){const t=this,i=Object.assign({title:"Untitled",headerClass:"dropdown-header",titleRowClass:"dropdown-header-title",labelClass:"dropdown-header-label",closeClass:"dropdown-header-close",html:e=>'<div class="'+e.headerClass+'"><div class="'+e.titleRowClass+'"><span class="'+e.labelClass+'">'+e.title+'</span><a class="'+e.closeClass+'">×</a></div></div>'},e)
|
| 320 |
+
t.on("initialize",(()=>{var e=w(i.html(i)),s=e.querySelector("."+i.closeClass)
|
| 321 |
+
s&&s.addEventListener("click",(e=>{H(e,!0),t.close()})),t.dropdown.insertBefore(e,t.dropdown.firstChild)}))})),J.define("caret_position",(function(){var e=this
|
| 322 |
+
e.hook("instead","setCaret",(t=>{"single"!==e.settings.mode&&e.control.contains(e.control_input)?(t=Math.max(0,Math.min(e.items.length,t)))==e.caretPos||e.isPending||e.controlChildren().forEach(((i,s)=>{s<t?e.control_input.insertAdjacentElement("beforebegin",i):e.control.appendChild(i)})):t=e.items.length,e.caretPos=t})),e.hook("instead","moveCaret",(t=>{if(!e.isFocused)return
|
| 323 |
+
const i=e.getLastActive(t)
|
| 324 |
+
if(i){const s=L(i)
|
| 325 |
+
e.setCaret(t>0?s+1:s),e.setActiveItem()}else e.setCaret(e.caretPos+t)}))})),J.define("dropdown_input",(function(){var e=this
|
| 326 |
+
e.settings.shouldOpen=!0,e.hook("before","setup",(()=>{e.focus_node=e.control,C(e.control_input,"dropdown-input")
|
| 327 |
+
const t=w('<div class="dropdown-input-wrap">')
|
| 328 |
+
t.append(e.control_input),e.dropdown.insertBefore(t,e.dropdown.firstChild)})),e.on("initialize",(()=>{e.control_input.addEventListener("keydown",(t=>{switch(t.keyCode){case 27:return e.isOpen&&(H(t,!0),e.close()),void e.clearActiveItems()
|
| 329 |
+
case 9:e.focus_node.tabIndex=-1}return e.onKeyDown.call(e,t)})),e.on("blur",(()=>{e.focus_node.tabIndex=e.isDisabled?-1:e.tabIndex})),e.on("dropdown_open",(()=>{e.control_input.focus()}))
|
| 330 |
+
const t=e.onBlur
|
| 331 |
+
e.hook("instead","onBlur",(i=>{if(!i||i.relatedTarget!=e.control_input)return t.call(e)})),B(e.control_input,"blur",(()=>e.onBlur())),e.hook("before","close",(()=>{e.isOpen&&e.focus_node.focus()}))}))})),J.define("input_autogrow",(function(){var e=this
|
| 332 |
+
e.on("initialize",(()=>{var t=document.createElement("span"),i=e.control_input
|
| 333 |
+
t.style.cssText="position:absolute; top:-99999px; left:-99999px; width:auto; padding:0; white-space:pre; ",e.wrapper.appendChild(t)
|
| 334 |
+
for(const e of["letterSpacing","fontSize","fontFamily","fontWeight","textTransform"])t.style[e]=i.style[e]
|
| 335 |
+
var s=()=>{e.items.length>0?(t.textContent=i.value,i.style.width=t.clientWidth+"px"):i.style.width=""}
|
| 336 |
+
s(),e.on("update item_add item_remove",s),B(i,"input",s),B(i,"keyup",s),B(i,"blur",s),B(i,"update",s)}))})),J.define("no_backspace_delete",(function(){var e=this,t=e.deleteSelection
|
| 337 |
+
this.hook("instead","deleteSelection",(i=>!!e.activeItems.length&&t.call(e,i)))})),J.define("no_active_items",(function(){this.hook("instead","setActiveItem",(()=>{})),this.hook("instead","selectAll",(()=>{}))})),J.define("optgroup_columns",(function(){var e=this,t=e.onKeyDown
|
| 338 |
+
e.hook("instead","onKeyDown",(i=>{var s,n,o,r
|
| 339 |
+
if(!e.isOpen||37!==i.keyCode&&39!==i.keyCode)return t.call(e,i)
|
| 340 |
+
r=k(e.activeOption,"[data-group]"),s=L(e.activeOption,"[data-selectable]"),r&&(r=37===i.keyCode?r.previousSibling:r.nextSibling)&&(n=(o=r.querySelectorAll("[data-selectable]"))[Math.min(o.length-1,s)])&&e.setActiveOption(n)}))})),J.define("remove_button",(function(e){const t=Object.assign({label:"×",title:"Remove",className:"remove",append:!0},e)
|
| 341 |
+
var i=this
|
| 342 |
+
if(t.append){var s='<a href="javascript:void(0)" class="'+t.className+'" tabindex="-1" title="'+N(t.title)+'">'+t.label+"</a>"
|
| 343 |
+
i.hook("after","setupTemplates",(()=>{var e=i.settings.render.item
|
| 344 |
+
i.settings.render.item=(t,n)=>{var o=w(e.call(i,t,n)),r=w(s)
|
| 345 |
+
return o.appendChild(r),B(r,"mousedown",(e=>{H(e,!0)})),B(r,"click",(e=>{if(H(e,!0),!i.isLocked){var t=o.dataset.value
|
| 346 |
+
i.removeItem(t),i.refreshOptions(!1)}})),o}}))}})),J.define("restore_on_backspace",(function(e){const t=this,i=Object.assign({text:e=>e[t.settings.labelField]},e)
|
| 347 |
+
t.on("item_remove",(function(e){if(""===t.control_input.value.trim()){var s=t.options[e]
|
| 348 |
+
s&&t.setTextboxValue(i.text.call(t,s))}}))})),J.define("virtual_scroll",(function(){const e=this,t=e.canLoad,i=e.clearActiveOption,s=e.loadCallback
|
| 349 |
+
var n,o={},r=!1
|
| 350 |
+
if(!e.settings.firstUrl)throw"virtual_scroll plugin requires a firstUrl() method"
|
| 351 |
+
function l(t){return!("number"==typeof e.settings.maxOptions&&n.children.length>=e.settings.maxOptions)&&!(!(t in o)||!o[t])}e.settings.sortField=[{field:"$order"},{field:"$score"}],e.setNextUrl=function(e,t){o[e]=t},e.getUrl=function(t){if(t in o){const e=o[t]
|
| 352 |
+
return o[t]=!1,e}return o={},e.settings.firstUrl(t)},e.hook("instead","clearActiveOption",(()=>{if(!r)return i.call(e)})),e.hook("instead","canLoad",(i=>i in o?l(i):t.call(e,i))),e.hook("instead","loadCallback",((t,i)=>{r||e.clearOptions(),s.call(e,t,i),r=!1})),e.hook("after","refreshOptions",(()=>{const t=e.lastValue
|
| 353 |
+
var i
|
| 354 |
+
l(t)?(i=e.render("loading_more",{query:t}))&&i.setAttribute("data-selectable",""):t in o&&!n.querySelector(".no-results")&&(i=e.render("no_more_results",{query:t})),i&&(C(i,e.settings.optionClass),n.append(i))})),e.on("initialize",(()=>{n=e.dropdown_content,e.settings.render=Object.assign({},{loading_more:function(){return'<div class="loading-more-results">Loading more results ... </div>'},no_more_results:function(){return'<div class="no-more-results">No more results</div>'}},e.settings.render),n.addEventListener("scroll",(function(){n.clientHeight/(n.scrollHeight-n.scrollTop)<.95||l(e.lastValue)&&(r||(r=!0,e.load.call(e,e.lastValue)))}))}))})),J}))
|
| 355 |
+
var tomSelect=function(e,t){return new TomSelect(e,t)}
|
| 356 |
+
//# sourceMappingURL=tom-select.complete.min.js.map
|
data/notebooks/lib/tom-select/tom-select.css
ADDED
|
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/**
|
| 2 |
+
* tom-select.css (v2.0.0-rc.4)
|
| 3 |
+
* Copyright (c) contributors
|
| 4 |
+
*
|
| 5 |
+
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
|
| 6 |
+
* file except in compliance with the License. You may obtain a copy of the License at:
|
| 7 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
*
|
| 9 |
+
* Unless required by applicable law or agreed to in writing, software distributed under
|
| 10 |
+
* the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
|
| 11 |
+
* ANY KIND, either express or implied. See the License for the specific language
|
| 12 |
+
* governing permissions and limitations under the License.
|
| 13 |
+
*
|
| 14 |
+
*/
|
| 15 |
+
.ts-wrapper.plugin-drag_drop.multi > .ts-control > div.ui-sortable-placeholder {
|
| 16 |
+
visibility: visible !important;
|
| 17 |
+
background: #f2f2f2 !important;
|
| 18 |
+
background: rgba(0, 0, 0, 0.06) !important;
|
| 19 |
+
border: 0 none !important;
|
| 20 |
+
box-shadow: inset 0 0 12px 4px #fff; }
|
| 21 |
+
|
| 22 |
+
.ts-wrapper.plugin-drag_drop .ui-sortable-placeholder::after {
|
| 23 |
+
content: '!';
|
| 24 |
+
visibility: hidden; }
|
| 25 |
+
|
| 26 |
+
.ts-wrapper.plugin-drag_drop .ui-sortable-helper {
|
| 27 |
+
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2); }
|
| 28 |
+
|
| 29 |
+
.plugin-checkbox_options .option input {
|
| 30 |
+
margin-right: 0.5rem; }
|
| 31 |
+
|
| 32 |
+
.plugin-clear_button .ts-control {
|
| 33 |
+
padding-right: calc( 1em + (3 * 6px)) !important; }
|
| 34 |
+
|
| 35 |
+
.plugin-clear_button .clear-button {
|
| 36 |
+
opacity: 0;
|
| 37 |
+
position: absolute;
|
| 38 |
+
top: 8px;
|
| 39 |
+
right: calc(8px - 6px);
|
| 40 |
+
margin-right: 0 !important;
|
| 41 |
+
background: transparent !important;
|
| 42 |
+
transition: opacity 0.5s;
|
| 43 |
+
cursor: pointer; }
|
| 44 |
+
|
| 45 |
+
.plugin-clear_button.single .clear-button {
|
| 46 |
+
right: calc(8px - 6px + 2rem); }
|
| 47 |
+
|
| 48 |
+
.plugin-clear_button.focus.has-items .clear-button,
|
| 49 |
+
.plugin-clear_button:hover.has-items .clear-button {
|
| 50 |
+
opacity: 1; }
|
| 51 |
+
|
| 52 |
+
.ts-wrapper .dropdown-header {
|
| 53 |
+
position: relative;
|
| 54 |
+
padding: 10px 8px;
|
| 55 |
+
border-bottom: 1px solid #d0d0d0;
|
| 56 |
+
background: #f8f8f8;
|
| 57 |
+
border-radius: 3px 3px 0 0; }
|
| 58 |
+
|
| 59 |
+
.ts-wrapper .dropdown-header-close {
|
| 60 |
+
position: absolute;
|
| 61 |
+
right: 8px;
|
| 62 |
+
top: 50%;
|
| 63 |
+
color: #303030;
|
| 64 |
+
opacity: 0.4;
|
| 65 |
+
margin-top: -12px;
|
| 66 |
+
line-height: 20px;
|
| 67 |
+
font-size: 20px !important; }
|
| 68 |
+
|
| 69 |
+
.ts-wrapper .dropdown-header-close:hover {
|
| 70 |
+
color: black; }
|
| 71 |
+
|
| 72 |
+
.plugin-dropdown_input.focus.dropdown-active .ts-control {
|
| 73 |
+
box-shadow: none;
|
| 74 |
+
border: 1px solid #d0d0d0; }
|
| 75 |
+
|
| 76 |
+
.plugin-dropdown_input .dropdown-input {
|
| 77 |
+
border: 1px solid #d0d0d0;
|
| 78 |
+
border-width: 0 0 1px 0;
|
| 79 |
+
display: block;
|
| 80 |
+
padding: 8px 8px;
|
| 81 |
+
box-shadow: none;
|
| 82 |
+
width: 100%;
|
| 83 |
+
background: transparent; }
|
| 84 |
+
|
| 85 |
+
.ts-wrapper.plugin-input_autogrow.has-items .ts-control > input {
|
| 86 |
+
min-width: 0; }
|
| 87 |
+
|
| 88 |
+
.ts-wrapper.plugin-input_autogrow.has-items.focus .ts-control > input {
|
| 89 |
+
flex: none;
|
| 90 |
+
min-width: 4px; }
|
| 91 |
+
.ts-wrapper.plugin-input_autogrow.has-items.focus .ts-control > input::-webkit-input-placeholder {
|
| 92 |
+
color: transparent; }
|
| 93 |
+
.ts-wrapper.plugin-input_autogrow.has-items.focus .ts-control > input::-ms-input-placeholder {
|
| 94 |
+
color: transparent; }
|
| 95 |
+
.ts-wrapper.plugin-input_autogrow.has-items.focus .ts-control > input::placeholder {
|
| 96 |
+
color: transparent; }
|
| 97 |
+
|
| 98 |
+
.ts-dropdown.plugin-optgroup_columns .ts-dropdown-content {
|
| 99 |
+
display: flex; }
|
| 100 |
+
|
| 101 |
+
.ts-dropdown.plugin-optgroup_columns .optgroup {
|
| 102 |
+
border-right: 1px solid #f2f2f2;
|
| 103 |
+
border-top: 0 none;
|
| 104 |
+
flex-grow: 1;
|
| 105 |
+
flex-basis: 0;
|
| 106 |
+
min-width: 0; }
|
| 107 |
+
|
| 108 |
+
.ts-dropdown.plugin-optgroup_columns .optgroup:last-child {
|
| 109 |
+
border-right: 0 none; }
|
| 110 |
+
|
| 111 |
+
.ts-dropdown.plugin-optgroup_columns .optgroup:before {
|
| 112 |
+
display: none; }
|
| 113 |
+
|
| 114 |
+
.ts-dropdown.plugin-optgroup_columns .optgroup-header {
|
| 115 |
+
border-top: 0 none; }
|
| 116 |
+
|
| 117 |
+
.ts-wrapper.plugin-remove_button .item {
|
| 118 |
+
display: inline-flex;
|
| 119 |
+
align-items: center;
|
| 120 |
+
padding-right: 0 !important; }
|
| 121 |
+
|
| 122 |
+
.ts-wrapper.plugin-remove_button .item .remove {
|
| 123 |
+
color: inherit;
|
| 124 |
+
text-decoration: none;
|
| 125 |
+
vertical-align: middle;
|
| 126 |
+
display: inline-block;
|
| 127 |
+
padding: 2px 6px;
|
| 128 |
+
border-left: 1px solid #d0d0d0;
|
| 129 |
+
border-radius: 0 2px 2px 0;
|
| 130 |
+
box-sizing: border-box;
|
| 131 |
+
margin-left: 6px; }
|
| 132 |
+
|
| 133 |
+
.ts-wrapper.plugin-remove_button .item .remove:hover {
|
| 134 |
+
background: rgba(0, 0, 0, 0.05); }
|
| 135 |
+
|
| 136 |
+
.ts-wrapper.plugin-remove_button .item.active .remove {
|
| 137 |
+
border-left-color: #cacaca; }
|
| 138 |
+
|
| 139 |
+
.ts-wrapper.plugin-remove_button.disabled .item .remove:hover {
|
| 140 |
+
background: none; }
|
| 141 |
+
|
| 142 |
+
.ts-wrapper.plugin-remove_button.disabled .item .remove {
|
| 143 |
+
border-left-color: white; }
|
| 144 |
+
|
| 145 |
+
.ts-wrapper.plugin-remove_button .remove-single {
|
| 146 |
+
position: absolute;
|
| 147 |
+
right: 0;
|
| 148 |
+
top: 0;
|
| 149 |
+
font-size: 23px; }
|
| 150 |
+
|
| 151 |
+
.ts-wrapper {
|
| 152 |
+
position: relative; }
|
| 153 |
+
|
| 154 |
+
.ts-dropdown,
|
| 155 |
+
.ts-control,
|
| 156 |
+
.ts-control input {
|
| 157 |
+
color: #303030;
|
| 158 |
+
font-family: inherit;
|
| 159 |
+
font-size: 13px;
|
| 160 |
+
line-height: 18px;
|
| 161 |
+
font-smoothing: inherit; }
|
| 162 |
+
|
| 163 |
+
.ts-control,
|
| 164 |
+
.ts-wrapper.single.input-active .ts-control {
|
| 165 |
+
background: #fff;
|
| 166 |
+
cursor: text; }
|
| 167 |
+
|
| 168 |
+
.ts-control {
|
| 169 |
+
border: 1px solid #d0d0d0;
|
| 170 |
+
padding: 8px 8px;
|
| 171 |
+
width: 100%;
|
| 172 |
+
overflow: hidden;
|
| 173 |
+
position: relative;
|
| 174 |
+
z-index: 1;
|
| 175 |
+
box-sizing: border-box;
|
| 176 |
+
box-shadow: none;
|
| 177 |
+
border-radius: 3px;
|
| 178 |
+
display: flex;
|
| 179 |
+
flex-wrap: wrap; }
|
| 180 |
+
.ts-wrapper.multi.has-items .ts-control {
|
| 181 |
+
padding: calc( 8px - 2px - 0) 8px calc( 8px - 2px - 3px - 0); }
|
| 182 |
+
.full .ts-control {
|
| 183 |
+
background-color: #fff; }
|
| 184 |
+
.disabled .ts-control,
|
| 185 |
+
.disabled .ts-control * {
|
| 186 |
+
cursor: default !important; }
|
| 187 |
+
.focus .ts-control {
|
| 188 |
+
box-shadow: none; }
|
| 189 |
+
.ts-control > * {
|
| 190 |
+
vertical-align: baseline;
|
| 191 |
+
display: inline-block; }
|
| 192 |
+
.ts-wrapper.multi .ts-control > div {
|
| 193 |
+
cursor: pointer;
|
| 194 |
+
margin: 0 3px 3px 0;
|
| 195 |
+
padding: 2px 6px;
|
| 196 |
+
background: #f2f2f2;
|
| 197 |
+
color: #303030;
|
| 198 |
+
border: 0 solid #d0d0d0; }
|
| 199 |
+
.ts-wrapper.multi .ts-control > div.active {
|
| 200 |
+
background: #e8e8e8;
|
| 201 |
+
color: #303030;
|
| 202 |
+
border: 0 solid #cacaca; }
|
| 203 |
+
.ts-wrapper.multi.disabled .ts-control > div, .ts-wrapper.multi.disabled .ts-control > div.active {
|
| 204 |
+
color: #7d7c7c;
|
| 205 |
+
background: white;
|
| 206 |
+
border: 0 solid white; }
|
| 207 |
+
.ts-control > input {
|
| 208 |
+
flex: 1 1 auto;
|
| 209 |
+
min-width: 7rem;
|
| 210 |
+
display: inline-block !important;
|
| 211 |
+
padding: 0 !important;
|
| 212 |
+
min-height: 0 !important;
|
| 213 |
+
max-height: none !important;
|
| 214 |
+
max-width: 100% !important;
|
| 215 |
+
margin: 0 !important;
|
| 216 |
+
text-indent: 0 !important;
|
| 217 |
+
border: 0 none !important;
|
| 218 |
+
background: none !important;
|
| 219 |
+
line-height: inherit !important;
|
| 220 |
+
-webkit-user-select: auto !important;
|
| 221 |
+
-moz-user-select: auto !important;
|
| 222 |
+
-ms-user-select: auto !important;
|
| 223 |
+
user-select: auto !important;
|
| 224 |
+
box-shadow: none !important; }
|
| 225 |
+
.ts-control > input::-ms-clear {
|
| 226 |
+
display: none; }
|
| 227 |
+
.ts-control > input:focus {
|
| 228 |
+
outline: none !important; }
|
| 229 |
+
.has-items .ts-control > input {
|
| 230 |
+
margin: 0 4px !important; }
|
| 231 |
+
.ts-control.rtl {
|
| 232 |
+
text-align: right; }
|
| 233 |
+
.ts-control.rtl.single .ts-control:after {
|
| 234 |
+
left: 15px;
|
| 235 |
+
right: auto; }
|
| 236 |
+
.ts-control.rtl .ts-control > input {
|
| 237 |
+
margin: 0 4px 0 -2px !important; }
|
| 238 |
+
.disabled .ts-control {
|
| 239 |
+
opacity: 0.5;
|
| 240 |
+
background-color: #fafafa; }
|
| 241 |
+
.input-hidden .ts-control > input {
|
| 242 |
+
opacity: 0;
|
| 243 |
+
position: absolute;
|
| 244 |
+
left: -10000px; }
|
| 245 |
+
|
| 246 |
+
.ts-dropdown {
|
| 247 |
+
position: absolute;
|
| 248 |
+
top: 100%;
|
| 249 |
+
left: 0;
|
| 250 |
+
width: 100%;
|
| 251 |
+
z-index: 10;
|
| 252 |
+
border: 1px solid #d0d0d0;
|
| 253 |
+
background: #fff;
|
| 254 |
+
margin: 0.25rem 0 0 0;
|
| 255 |
+
border-top: 0 none;
|
| 256 |
+
box-sizing: border-box;
|
| 257 |
+
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
|
| 258 |
+
border-radius: 0 0 3px 3px; }
|
| 259 |
+
.ts-dropdown [data-selectable] {
|
| 260 |
+
cursor: pointer;
|
| 261 |
+
overflow: hidden; }
|
| 262 |
+
.ts-dropdown [data-selectable] .highlight {
|
| 263 |
+
background: rgba(125, 168, 208, 0.2);
|
| 264 |
+
border-radius: 1px; }
|
| 265 |
+
.ts-dropdown .option,
|
| 266 |
+
.ts-dropdown .optgroup-header,
|
| 267 |
+
.ts-dropdown .no-results,
|
| 268 |
+
.ts-dropdown .create {
|
| 269 |
+
padding: 5px 8px; }
|
| 270 |
+
.ts-dropdown .option, .ts-dropdown [data-disabled], .ts-dropdown [data-disabled] [data-selectable].option {
|
| 271 |
+
cursor: inherit;
|
| 272 |
+
opacity: 0.5; }
|
| 273 |
+
.ts-dropdown [data-selectable].option {
|
| 274 |
+
opacity: 1;
|
| 275 |
+
cursor: pointer; }
|
| 276 |
+
.ts-dropdown .optgroup:first-child .optgroup-header {
|
| 277 |
+
border-top: 0 none; }
|
| 278 |
+
.ts-dropdown .optgroup-header {
|
| 279 |
+
color: #303030;
|
| 280 |
+
background: #fff;
|
| 281 |
+
cursor: default; }
|
| 282 |
+
.ts-dropdown .create:hover,
|
| 283 |
+
.ts-dropdown .option:hover,
|
| 284 |
+
.ts-dropdown .active {
|
| 285 |
+
background-color: #f5fafd;
|
| 286 |
+
color: #495c68; }
|
| 287 |
+
.ts-dropdown .create:hover.create,
|
| 288 |
+
.ts-dropdown .option:hover.create,
|
| 289 |
+
.ts-dropdown .active.create {
|
| 290 |
+
color: #495c68; }
|
| 291 |
+
.ts-dropdown .create {
|
| 292 |
+
color: rgba(48, 48, 48, 0.5); }
|
| 293 |
+
.ts-dropdown .spinner {
|
| 294 |
+
display: inline-block;
|
| 295 |
+
width: 30px;
|
| 296 |
+
height: 30px;
|
| 297 |
+
margin: 5px 8px; }
|
| 298 |
+
.ts-dropdown .spinner:after {
|
| 299 |
+
content: " ";
|
| 300 |
+
display: block;
|
| 301 |
+
width: 24px;
|
| 302 |
+
height: 24px;
|
| 303 |
+
margin: 3px;
|
| 304 |
+
border-radius: 50%;
|
| 305 |
+
border: 5px solid #d0d0d0;
|
| 306 |
+
border-color: #d0d0d0 transparent #d0d0d0 transparent;
|
| 307 |
+
animation: lds-dual-ring 1.2s linear infinite; }
|
| 308 |
+
|
| 309 |
+
@keyframes lds-dual-ring {
|
| 310 |
+
0% {
|
| 311 |
+
transform: rotate(0deg); }
|
| 312 |
+
100% {
|
| 313 |
+
transform: rotate(360deg); } }
|
| 314 |
+
|
| 315 |
+
.ts-dropdown-content {
|
| 316 |
+
overflow-y: auto;
|
| 317 |
+
overflow-x: hidden;
|
| 318 |
+
max-height: 200px;
|
| 319 |
+
overflow-scrolling: touch;
|
| 320 |
+
scroll-behavior: smooth; }
|
| 321 |
+
|
| 322 |
+
.ts-hidden-accessible {
|
| 323 |
+
border: 0 !important;
|
| 324 |
+
clip: rect(0 0 0 0) !important;
|
| 325 |
+
-webkit-clip-path: inset(50%) !important;
|
| 326 |
+
clip-path: inset(50%) !important;
|
| 327 |
+
height: 1px !important;
|
| 328 |
+
overflow: hidden !important;
|
| 329 |
+
padding: 0 !important;
|
| 330 |
+
position: absolute !important;
|
| 331 |
+
width: 1px !important;
|
| 332 |
+
white-space: nowrap !important; }
|
| 333 |
+
|
| 334 |
+
/*# sourceMappingURL=tom-select.css.map */
|
data/notebooks/lib/vis-9.1.2/vis-network.css
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
data/notebooks/lib/vis-9.1.2/vis-network.min.js
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
data/results/network_graph.html
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<html>
|
| 2 |
+
<head>
|
| 3 |
+
<meta charset="utf-8">
|
| 4 |
+
|
| 5 |
+
<script src="lib/bindings/utils.js"></script>
|
| 6 |
+
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/vis-network/9.1.2/dist/dist/vis-network.min.css" integrity="sha512-WgxfT5LWjfszlPHXRmBWHkV2eceiWTOBvrKCNbdgDYTHrT2AeLCGbF4sZlZw3UMN3WtL0tGUoIAKsu8mllg/XA==" crossorigin="anonymous" referrerpolicy="no-referrer" />
|
| 7 |
+
<script src="https://cdnjs.cloudflare.com/ajax/libs/vis-network/9.1.2/dist/vis-network.min.js" integrity="sha512-LnvoEWDFrqGHlHmDD2101OrLcbsfkrzoSpvtSQtxK3RMnRV0eOkhhBN2dXHKRrUU8p2DGRTk35n4O8nWSVe1mQ==" crossorigin="anonymous" referrerpolicy="no-referrer"></script>
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
<center>
|
| 11 |
+
<h1></h1>
|
| 12 |
+
</center>
|
| 13 |
+
|
| 14 |
+
<!-- <link rel="stylesheet" href="../node_modules/vis/dist/vis.min.css" type="text/css" />
|
| 15 |
+
<script type="text/javascript" src="../node_modules/vis/dist/vis.js"> </script>-->
|
| 16 |
+
<link
|
| 17 |
+
href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css"
|
| 18 |
+
rel="stylesheet"
|
| 19 |
+
integrity="sha384-eOJMYsd53ii+scO/bJGFsiCZc+5NDVN2yr8+0RDqr0Ql0h+rP48ckxlpbzKgwra6"
|
| 20 |
+
crossorigin="anonymous"
|
| 21 |
+
/>
|
| 22 |
+
<script
|
| 23 |
+
src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js"
|
| 24 |
+
integrity="sha384-JEW9xMcG8R+pH31jmWH6WWP0WintQrMb4s7ZOdauHnUtxwoG2vI5DkLtS3qm9Ekf"
|
| 25 |
+
crossorigin="anonymous"
|
| 26 |
+
></script>
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
<center>
|
| 30 |
+
<h1></h1>
|
| 31 |
+
</center>
|
| 32 |
+
<style type="text/css">
|
| 33 |
+
|
| 34 |
+
#mynetwork {
|
| 35 |
+
width: 100%;
|
| 36 |
+
height: 800px;
|
| 37 |
+
background-color: #222;
|
| 38 |
+
border: 1px solid lightgray;
|
| 39 |
+
position: relative;
|
| 40 |
+
float: left;
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
</style>
|
| 49 |
+
</head>
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
<body>
|
| 53 |
+
<div class="card" style="width: 100%">
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
<div id="mynetwork" class="card-body"></div>
|
| 57 |
+
</div>
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
<script type="text/javascript">
|
| 63 |
+
|
| 64 |
+
// initialize global variables.
|
| 65 |
+
var edges;
|
| 66 |
+
var nodes;
|
| 67 |
+
var allNodes;
|
| 68 |
+
var allEdges;
|
| 69 |
+
var nodeColors;
|
| 70 |
+
var originalNodes;
|
| 71 |
+
var network;
|
| 72 |
+
var container;
|
| 73 |
+
var options, data;
|
| 74 |
+
var filter = {
|
| 75 |
+
item : '',
|
| 76 |
+
property : '',
|
| 77 |
+
value : []
|
| 78 |
+
};
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
// This method is responsible for drawing the graph, returns the drawn network
|
| 85 |
+
function drawGraph() {
|
| 86 |
+
var container = document.getElementById('mynetwork');
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
// parsing and collecting nodes and edges from the python
|
| 91 |
+
nodes = new vis.DataSet([{"color": "green", "font": {"color": "white"}, "id": "C0", "label": "Cand 0", "shape": "dot", "size": 25}, {"color": "green", "font": {"color": "white"}, "id": "C1", "label": "Cand 1", "shape": "dot", "size": 25}, {"color": "green", "font": {"color": "white"}, "id": "C2", "label": "Cand 2", "shape": "dot", "size": 25}, {"color": "green", "font": {"color": "white"}, "id": "C3", "label": "Cand 3", "shape": "dot", "size": 25}, {"color": "green", "font": {"color": "white"}, "id": "C4", "label": "Cand 4", "shape": "dot", "size": 25}, {"color": "green", "font": {"color": "white"}, "id": "C5", "label": "Cand 5", "shape": "dot", "size": 25}, {"color": "green", "font": {"color": "white"}, "id": "C6", "label": "Cand 6", "shape": "dot", "size": 25}, {"color": "green", "font": {"color": "white"}, "id": "C7", "label": "Cand 7", "shape": "dot", "size": 25}, {"color": "green", "font": {"color": "white"}, "id": "C8", "label": "Cand 8", "shape": "dot", "size": 25}, {"color": "green", "font": {"color": "white"}, "id": "C9", "label": "Cand 9", "shape": "dot", "size": 25}, {"color": "green", "font": {"color": "white"}, "id": "C10", "label": "Cand 10", "shape": "dot", "size": 25}, {"color": "green", "font": {"color": "white"}, "id": "C11", "label": "Cand 11", "shape": "dot", "size": 25}, {"color": "green", "font": {"color": "white"}, "id": "C12", "label": "Cand 12", "shape": "dot", "size": 25}, {"color": "green", "font": {"color": "white"}, "id": "C13", "label": "Cand 13", "shape": "dot", "size": 25}, {"color": "green", "font": {"color": "white"}, "id": "C14", "label": "Cand 14", "shape": "dot", "size": 25}, {"color": "green", "font": {"color": "white"}, "id": "C15", "label": "Cand 15", "shape": "dot", "size": 25}, {"color": "green", "font": {"color": "white"}, "id": "C16", "label": "Cand 16", "shape": "dot", "size": 25}, {"color": "green", "font": {"color": "white"}, "id": "C17", "label": "Cand 17", "shape": "dot", "size": 25}, {"color": "green", "font": {"color": "white"}, "id": "C18", "label": "Cand 18", "shape": "dot", "size": 25}, {"color": "green", "font": {"color": "white"}, "id": "C19", "label": "Cand 19", "shape": "dot", "size": 25}, {"color": "red", "font": {"color": "white"}, "id": "J9418", "label": "Anblicks", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J30989", "label": "iO Associates - US", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J9417", "label": "Anblicks", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J30990", "label": "iO Associates - US", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J9416", "label": "Anblicks", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J10140", "label": "Analytic Recruiting ", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J20529", "label": "Logikk", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J30163", "label": "Heliosz.AI", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J17134", "label": "BPO Recruit", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J28802", "label": "IntellectFaces, Inc", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J21756", "label": "maven", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J9454", "label": "Digital Prospectors", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J18817", "label": "Tekniforce", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J27159", "label": "Neva Recruiting", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J33214", "label": "micro1", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J26293", "label": "Ampstek", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J26294", "label": "Ampstek", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J26295", "label": "Ampstek", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J26296", "label": "Ampstek", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J27249", "label": "CivicMinds, Inc", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J23927", "label": "Swift Strategic Solu", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J237", "label": "National Security Ag", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J23926", "label": "Swift Strategic Solu", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J25745", "label": "AcctPositions", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J35525", "label": "Family Estate Planni", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J13170", "label": "Understanding Recrui", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J27248", "label": "CivicMinds, Inc", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J32967", "label": "Protechture, LLC", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J31028", "label": "GAC Solutions", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J31029", "label": "GAC Solutions", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J29286", "label": "Ram Mechanical Inc.", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J20702", "label": " EGN Consult \u0026 Recru", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J35720", "label": "Industrial Technical", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J29568", "label": "Rhino Tool House", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J15399", "label": "Professional Enginee", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J34106", "label": "Vedan Technologies", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J33708", "label": "Hire Python Develope", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J16166", "label": "Udemy", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J17102", "label": "OpenSesame", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J23925", "label": "Cephas Consultancy S", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J13500", "label": "HSI", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J10100", "label": "USM Business Systems", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J18151", "label": "SolidProfessor", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J18454", "label": "Google DeepMind", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J26422", "label": "Virtual Labs Inc.", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J20970", "label": "Lambda", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J10750", "label": "The Finders", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J34422", "label": "Cross Platform Devel", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J24818", "label": "Appzlogic ", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J13786", "label": "Datavail", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J16152", "label": "Infomatics Corp", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J16035", "label": "MongoDB", "shape": "dot", "size": 15}, {"color": "red", "font": {"color": "white"}, "id": "J9778", "label": "Pluralsight", "shape": "dot", "size": 15}]);
|
| 92 |
+
edges = new vis.DataSet([{"from": "C0", "title": "0.703", "to": "J9418", "value": 7.028056979179382}, {"from": "C0", "title": "0.703", "to": "J30989", "value": 7.0262110233306885}, {"from": "C0", "title": "0.703", "to": "J9417", "value": 7.02572226524353}, {"from": "C0", "title": "0.702", "to": "J30990", "value": 7.019376754760742}, {"from": "C0", "title": "0.701", "to": "J9416", "value": 7.010321617126465}, {"from": "C1", "title": "0.620", "to": "J10140", "value": 6.20457649230957}, {"from": "C1", "title": "0.620", "to": "J20529", "value": 6.201968193054199}, {"from": "C1", "title": "0.589", "to": "J30163", "value": 5.894620418548584}, {"from": "C1", "title": "0.577", "to": "J17134", "value": 5.765535235404968}, {"from": "C1", "title": "0.576", "to": "J28802", "value": 5.755815505981445}, {"from": "C2", "title": "0.619", "to": "J21756", "value": 6.18832528591156}, {"from": "C2", "title": "0.617", "to": "J9454", "value": 6.172588467597961}, {"from": "C2", "title": "0.613", "to": "J18817", "value": 6.127530932426453}, {"from": "C2", "title": "0.608", "to": "J27159", "value": 6.082639694213867}, {"from": "C2", "title": "0.600", "to": "J33214", "value": 6.003042459487915}, {"from": "C3", "title": "0.589", "to": "J26293", "value": 5.888209939002991}, {"from": "C3", "title": "0.589", "to": "J26294", "value": 5.888209939002991}, {"from": "C3", "title": "0.589", "to": "J26295", "value": 5.888209939002991}, {"from": "C3", "title": "0.589", "to": "J26296", "value": 5.888209939002991}, {"from": "C3", "title": "0.534", "to": "J27249", "value": 5.344255566596985}, {"from": "C4", "title": "0.515", "to": "J23927", "value": 5.154691934585571}, {"from": "C4", "title": "0.515", "to": "J237", "value": 5.150743722915649}, {"from": "C4", "title": "0.514", "to": "J23926", "value": 5.135759115219116}, {"from": "C4", "title": "0.506", "to": "J25745", "value": 5.0571417808532715}, {"from": "C4", "title": "0.495", "to": "J35525", "value": 4.94664192199707}, {"from": "C5", "title": "0.624", "to": "J13170", "value": 6.2363749742507935}, {"from": "C5", "title": "0.590", "to": "J27249", "value": 5.904499888420105}, {"from": "C5", "title": "0.589", "to": "J27248", "value": 5.891878008842468}, {"from": "C5", "title": "0.587", "to": "J32967", "value": 5.873211622238159}, {"from": "C5", "title": "0.567", "to": "J18817", "value": 5.669974684715271}, {"from": "C6", "title": "0.528", "to": "J23927", "value": 5.282142162322998}, {"from": "C6", "title": "0.528", "to": "J23926", "value": 5.279108881950378}, {"from": "C6", "title": "0.504", "to": "J237", "value": 5.036947131156921}, {"from": "C6", "title": "0.501", "to": "J31028", "value": 5.008084774017334}, {"from": "C6", "title": "0.501", "to": "J31029", "value": 5.008084774017334}, {"from": "C7", "title": "0.541", "to": "J29286", "value": 5.409826636314392}, {"from": "C7", "title": "0.513", "to": "J20702", "value": 5.132828950881958}, {"from": "C7", "title": "0.511", "to": "J35720", "value": 5.112812519073486}, {"from": "C7", "title": "0.511", "to": "J29568", "value": 5.1084864139556885}, {"from": "C7", "title": "0.510", "to": "J15399", "value": 5.098806619644165}, {"from": "C8", "title": "0.523", "to": "J34106", "value": 5.231214761734009}, {"from": "C8", "title": "0.521", "to": "J9454", "value": 5.210273861885071}, {"from": "C8", "title": "0.517", "to": "J20529", "value": 5.1720041036605835}, {"from": "C8", "title": "0.516", "to": "J13170", "value": 5.163518190383911}, {"from": "C8", "title": "0.514", "to": "J28802", "value": 5.135617256164551}, {"from": "C9", "title": "0.608", "to": "J33708", "value": 6.077218055725098}, {"from": "C9", "title": "0.585", "to": "J9454", "value": 5.8520495891571045}, {"from": "C9", "title": "0.570", "to": "J30990", "value": 5.695323944091797}, {"from": "C9", "title": "0.569", "to": "J30989", "value": 5.691220760345459}, {"from": "C9", "title": "0.566", "to": "J13170", "value": 5.657694339752197}, {"from": "C10", "title": "0.586", "to": "J27159", "value": 5.86123526096344}, {"from": "C10", "title": "0.586", "to": "J16166", "value": 5.860676169395447}, {"from": "C10", "title": "0.577", "to": "J26293", "value": 5.769027471542358}, {"from": "C10", "title": "0.577", "to": "J26294", "value": 5.769027471542358}, {"from": "C10", "title": "0.577", "to": "J26295", "value": 5.769027471542358}, {"from": "C11", "title": "0.593", "to": "J9454", "value": 5.932710766792297}, {"from": "C11", "title": "0.582", "to": "J17102", "value": 5.818200707435608}, {"from": "C11", "title": "0.564", "to": "J23925", "value": 5.643590092658997}, {"from": "C11", "title": "0.559", "to": "J13500", "value": 5.586053133010864}, {"from": "C11", "title": "0.553", "to": "J26293", "value": 5.532607436180115}, {"from": "C12", "title": "0.629", "to": "J20529", "value": 6.294257044792175}, {"from": "C12", "title": "0.623", "to": "J30163", "value": 6.232224702835083}, {"from": "C12", "title": "0.623", "to": "J10140", "value": 6.227796673774719}, {"from": "C12", "title": "0.592", "to": "J28802", "value": 5.915536284446716}, {"from": "C12", "title": "0.587", "to": "J10100", "value": 5.873672366142273}, {"from": "C13", "title": "0.511", "to": "J18151", "value": 5.108709931373596}, {"from": "C13", "title": "0.509", "to": "J13170", "value": 5.0925469398498535}, {"from": "C13", "title": "0.507", "to": "J18454", "value": 5.072507858276367}, {"from": "C13", "title": "0.491", "to": "J26422", "value": 4.905799925327301}, {"from": "C13", "title": "0.489", "to": "J20970", "value": 4.894821345806122}, {"from": "C14", "title": "0.545", "to": "J10750", "value": 5.44858992099762}, {"from": "C14", "title": "0.530", "to": "J30989", "value": 5.3042155504226685}, {"from": "C14", "title": "0.529", "to": "J30990", "value": 5.2928584814071655}, {"from": "C14", "title": "0.526", "to": "J34422", "value": 5.2603888511657715}, {"from": "C14", "title": "0.508", "to": "J24818", "value": 5.0799620151519775}, {"from": "C15", "title": "0.595", "to": "J13786", "value": 5.954039692878723}, {"from": "C15", "title": "0.566", "to": "J16152", "value": 5.656808614730835}, {"from": "C15", "title": "0.565", "to": "J30989", "value": 5.64922571182251}, {"from": "C15", "title": "0.564", "to": "J30990", "value": 5.64068078994751}, {"from": "C15", "title": "0.561", "to": "J16035", "value": 5.613973140716553}, {"from": "C16", "title": "0.654", "to": "J9454", "value": 6.5383148193359375}, {"from": "C16", "title": "0.629", "to": "J30990", "value": 6.292245984077454}, {"from": "C16", "title": "0.628", "to": "J26293", "value": 6.2770432233810425}, {"from": "C16", "title": "0.628", "to": "J26294", "value": 6.2770432233810425}, {"from": "C16", "title": "0.628", "to": "J26295", "value": 6.2770432233810425}, {"from": "C17", "title": "0.594", "to": "J21756", "value": 5.936995148658752}, {"from": "C17", "title": "0.573", "to": "J20529", "value": 5.727492570877075}, {"from": "C17", "title": "0.569", "to": "J13170", "value": 5.693559050559998}, {"from": "C17", "title": "0.569", "to": "J33214", "value": 5.69225549697876}, {"from": "C17", "title": "0.567", "to": "J18817", "value": 5.669708847999573}, {"from": "C18", "title": "0.587", "to": "J10750", "value": 5.866515636444092}, {"from": "C18", "title": "0.578", "to": "J30989", "value": 5.7807475328445435}, {"from": "C18", "title": "0.577", "to": "J30990", "value": 5.771228671073914}, {"from": "C18", "title": "0.562", "to": "J34422", "value": 5.615531802177429}, {"from": "C18", "title": "0.549", "to": "J9454", "value": 5.493091940879822}, {"from": "C19", "title": "0.626", "to": "J9454", "value": 6.2596118450164795}, {"from": "C19", "title": "0.596", "to": "J18817", "value": 5.959857702255249}, {"from": "C19", "title": "0.578", "to": "J34106", "value": 5.777912735939026}, {"from": "C19", "title": "0.574", "to": "J13170", "value": 5.7445597648620605}, {"from": "C19", "title": "0.572", "to": "J9778", "value": 5.723878741264343}]);
|
| 93 |
+
|
| 94 |
+
nodeColors = {};
|
| 95 |
+
allNodes = nodes.get({ returnType: "Object" });
|
| 96 |
+
for (nodeId in allNodes) {
|
| 97 |
+
nodeColors[nodeId] = allNodes[nodeId].color;
|
| 98 |
+
}
|
| 99 |
+
allEdges = edges.get({ returnType: "Object" });
|
| 100 |
+
// adding nodes and edges to the graph
|
| 101 |
+
data = {nodes: nodes, edges: edges};
|
| 102 |
+
|
| 103 |
+
var options = {"physics": {"enabled": true, "solver": "forceAtlas2Based"}};
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
network = new vis.Network(container, data, options);
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
return network;
|
| 122 |
+
|
| 123 |
+
}
|
| 124 |
+
drawGraph();
|
| 125 |
+
</script>
|
| 126 |
+
</body>
|
| 127 |
+
</html>
|