SantoshKumar1310's picture
Create app.py
05a84b0 verified
import os
import gradio as gr
import requests
import pandas as pd
from typing import Dict, List
import asyncio
# custom imports
from agents import Agent
from tool import get_tools
from model import get_model
# --- Constants ---
DEFAULT_API_URL = "https://huggingface.co/proxy/agents-course-unit4-scoring.hf.space"
MODEL_ID = "groq/llama-3.3-70b-versatile" # Groq's fastest model
RATE_LIMIT_DELAY = 1 # Groq has generous rate limits
# --- Async Question Processing ---
async def process_question(agent, question: str, task_id: str) -> Dict:
"""Process a single question and return both answer AND full log entry"""
try:
answer = agent(question)
return {
"submission": {"task_id": task_id, "submitted_answer": answer},
"log": {"Task ID": task_id, "Question": question, "Submitted Answer": answer}
}
except Exception as e:
error_msg = f"ERROR: {str(e)}"
return {
"submission": {"task_id": task_id, "submitted_answer": error_msg},
"log": {"Task ID": task_id, "Question": question, "Submitted Answer": error_msg}
}
async def run_questions_async(agent, questions_data: List[Dict]) -> tuple:
"""Process questions sequentially with minimal rate limiting"""
submissions = []
logs = []
total = len(questions_data)
for idx, q in enumerate(questions_data):
print(f"Processing {idx+1}/{total}: {q['question'][:80]}...")
# Add small delay between requests
if idx > 0:
await asyncio.sleep(RATE_LIMIT_DELAY)
result = await process_question(agent, q["question"], q["task_id"])
submissions.append(result["submission"])
logs.append(result["log"])
return submissions, logs
async def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the Agent on them, submits all answers,
and displays the results.
"""
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = Agent(
model=get_model("LiteLLMModel", MODEL_ID),
tools=get_tools()
)
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code: {agent_code}")
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
estimated_time = len(questions_data) * RATE_LIMIT_DELAY / 60
print(f"⏱️ Estimated time: {estimated_time:.1f} minutes")
except Exception as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
# 3. Run Agent
print(f"Running agent on {len(questions_data)} questions...")
answers_payload, results_log = await run_questions_async(agent, questions_data)
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
print(f"Submitting {len(answers_payload)} answers for user '{username}'...")
# 5. Submit
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"βœ… Submission Successful!\n\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n\n"
f"Message: {result_data.get('message', 'No message received.')}\n\n"
f"Leaderboard: {api_url}/leaderboard"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
status_message = f"❌ Submission Failed: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸ€– GAIA Agent Evaluation")
gr.Markdown(
f"""
**Instructions:**
1. Log in to your Hugging Face account using the button below
2. Click 'Run Evaluation & Submit' to test your agent
3. The agent will use web search and other tools to answer questions
**Current Setup:**
- Model: Llama 3.3 70B (via Groq)
- Tools: Web search, Wikipedia, calculation, and more
- Rate Limiting: {RATE_LIMIT_DELAY}s between requests
⚠️ **Note:** Make sure you have set your GROQ_API_KEY in the Space secrets.
"""
)
gr.LoginButton()
run_button = gr.Button("πŸš€ Run Evaluation & Submit", variant="primary")
status_output = gr.Textbox(label="πŸ“Š Status / Results", lines=8, interactive=False)
results_table = gr.DataFrame(label="πŸ“‹ Questions and Answers", wrap=True, max_height=400)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "="*70)
print("πŸ€– GAIA Agent Starting")
print("="*70)
print(f"πŸ“ Using Model: {MODEL_ID}")
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
if space_host:
print(f"βœ… Runtime URL: https://{space_host}.hf.space")
if space_id:
print(f"βœ… Repo URL: https://huggingface.co/spaces/{space_id}")
print("="*70 + "\n")
demo.launch(debug=True, share=False)