Spaces:
Build error
Build error
fix?: history fmt
Browse files
README.md
CHANGED
|
@@ -9,5 +9,5 @@ app_file: app.py
|
|
| 9 |
pinned: false
|
| 10 |
short_description: Reason about papers using LLMs
|
| 11 |
license: agpl-3.0
|
| 12 |
-
models: [HuggingFaceTB/SmolLM2-
|
| 13 |
---
|
|
|
|
| 9 |
pinned: false
|
| 10 |
short_description: Reason about papers using LLMs
|
| 11 |
license: agpl-3.0
|
| 12 |
+
models: [HuggingFaceTB/SmolLM2-1.7B-Instruct]
|
| 13 |
---
|
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import time
|
| 2 |
from typing import Dict, List, Optional, TypeAlias
|
| 3 |
|
|
@@ -7,11 +8,13 @@ import weave
|
|
| 7 |
from papersai.utils import load_paper_as_context
|
| 8 |
from transformers import pipeline
|
| 9 |
|
|
|
|
|
|
|
| 10 |
HistoryType: TypeAlias = List[Dict[str, str]]
|
| 11 |
|
| 12 |
# Initialize the LLM and Weave client
|
| 13 |
client = weave.init("papersai")
|
| 14 |
-
checkpoint: str = "HuggingFaceTB/SmolLM2-
|
| 15 |
pipe = pipeline(
|
| 16 |
model=checkpoint,
|
| 17 |
torch_dtype=torch.bfloat16,
|
|
@@ -64,11 +67,14 @@ def invoke(history: HistoryType):
|
|
| 64 |
Returns:
|
| 65 |
BaseMessage: Response from the model
|
| 66 |
"""
|
| 67 |
-
input_text = pipe.tokenizer.apply_chat_template(
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
| 69 |
"generated_text"
|
| 70 |
]
|
| 71 |
-
response = response.split("
|
| 72 |
return response
|
| 73 |
|
| 74 |
|
|
|
|
| 1 |
+
import os
|
| 2 |
import time
|
| 3 |
from typing import Dict, List, Optional, TypeAlias
|
| 4 |
|
|
|
|
| 8 |
from papersai.utils import load_paper_as_context
|
| 9 |
from transformers import pipeline
|
| 10 |
|
| 11 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 12 |
+
|
| 13 |
HistoryType: TypeAlias = List[Dict[str, str]]
|
| 14 |
|
| 15 |
# Initialize the LLM and Weave client
|
| 16 |
client = weave.init("papersai")
|
| 17 |
+
checkpoint: str = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
|
| 18 |
pipe = pipeline(
|
| 19 |
model=checkpoint,
|
| 20 |
torch_dtype=torch.bfloat16,
|
|
|
|
| 67 |
Returns:
|
| 68 |
BaseMessage: Response from the model
|
| 69 |
"""
|
| 70 |
+
input_text = pipe.tokenizer.apply_chat_template(
|
| 71 |
+
history + [{"role": "assistant", "content": f"Context: {state.context}\n"}],
|
| 72 |
+
tokenize=False,
|
| 73 |
+
)
|
| 74 |
+
response = pipe(input_text, do_sample=True, top_p=0.95, max_new_tokens=100)[0][
|
| 75 |
"generated_text"
|
| 76 |
]
|
| 77 |
+
response = response.split("\nassistant\n")[-1]
|
| 78 |
return response
|
| 79 |
|
| 80 |
|