File size: 8,254 Bytes
eb09c29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
#!/usr/bin/env python3
"""
Test script to verify video processing functionality.
Creates a synthetic test video and tests the prediction pipeline.
"""
import sys
import tempfile
import logging
from pathlib import Path
import numpy as np
from PIL import Image, ImageDraw
import cv2
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def create_synthetic_video(output_path: Path, duration_seconds: float = 2.0, fps: int = 24):
"""Create a synthetic test video with simple animation."""
width, height = 640, 480
total_frames = int(duration_seconds * fps)
# Create video writer
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(str(output_path), fourcc, fps, (width, height))
logging.info(f"Creating synthetic video: {total_frames} frames at {fps} FPS")
for frame_num in range(total_frames):
# Create a frame with animated content
frame = np.zeros((height, width, 3), dtype=np.uint8)
# Add background gradient
for y in range(height):
intensity = int(255 * (y / height))
frame[y, :] = [intensity // 3, intensity // 2, intensity]
# Add moving circle (simulating an action)
center_x = int(width * (0.2 + 0.6 * frame_num / total_frames))
center_y = height // 2
radius = 30 + int(20 * np.sin(frame_num * 0.3))
# Convert to PIL for drawing
pil_frame = Image.fromarray(frame)
draw = ImageDraw.Draw(pil_frame)
# Draw moving circle
left = center_x - radius
top = center_y - radius
right = center_x + radius
bottom = center_y + radius
draw.ellipse([left, top, right, bottom], fill=(255, 255, 0))
# Add some text to simulate action
draw.text((50, 50), f"Frame {frame_num}", fill=(255, 255, 255))
draw.text((50, 80), "Synthetic Action", fill=(255, 255, 255))
# Convert back to numpy and BGR for OpenCV
frame = np.array(pil_frame)
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
out.write(frame_bgr)
out.release()
logging.info(f"β Created synthetic video: {output_path}")
return output_path
def test_video_reading():
"""Test video reading functionality without full model inference."""
logging.info("=== Testing Video Reading ===")
try:
from predict import _read_video_frames, normalize_frames
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_path = Path(tmp_dir)
video_path = tmp_path / "test_video.mp4"
# Create test video
create_synthetic_video(video_path, duration_seconds=1.0, fps=12) # Short video
# Test reading frames
logging.info("Testing frame reading...")
frames = _read_video_frames(video_path, num_frames=8)
if not frames:
logging.error("β No frames extracted")
return False
logging.info(f"β Extracted {len(frames)} frames")
# Test frame normalization
logging.info("Testing frame normalization...")
normalized = normalize_frames(frames, required_frames=8)
if len(normalized) != 8:
logging.error(f"β Expected 8 frames, got {len(normalized)}")
return False
logging.info("β Frame normalization successful")
# Check frame properties
for i, frame in enumerate(normalized):
if frame.size != (224, 224):
logging.error(f"β Frame {i} has wrong size: {frame.size}")
return False
if frame.mode != 'RGB':
logging.error(f"β Frame {i} has wrong mode: {frame.mode}")
return False
logging.info("β All frames have correct properties")
return True
except Exception as e:
logging.error(f"β Video reading test failed: {e}")
return False
def test_tensor_creation():
"""Test tensor creation from frames."""
logging.info("=== Testing Tensor Creation ===")
try:
from predict import create_tensor_from_frames
import torch
# Create dummy frames
frames = []
for i in range(8):
frame = Image.new('RGB', (224, 224), (i*30 % 255, 100, 150))
frames.append(frame)
logging.info("Testing tensor creation...")
tensor = create_tensor_from_frames(frames, processor=None) # Use manual creation
# Check tensor properties
expected_shape = (1, 3, 8, 224, 224) # (batch, channels, frames, height, width)
if tensor.shape != expected_shape:
logging.error(f"β Expected shape {expected_shape}, got {tensor.shape}")
return False
logging.info(f"β Tensor created with correct shape: {tensor.shape}")
# Check tensor values are in reasonable range
if tensor.min() < 0 or tensor.max() > 1:
logging.warning(f"β Tensor values outside [0,1]: [{tensor.min():.3f}, {tensor.max():.3f}]")
logging.info("β Tensor creation successful")
return True
except Exception as e:
logging.error(f"β Tensor creation test failed: {e}")
return False
def test_full_pipeline():
"""Test the complete prediction pipeline with a synthetic video."""
logging.info("=== Testing Full Pipeline ===")
try:
from predict import predict_actions
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_path = Path(tmp_dir)
video_path = tmp_path / "test_video.mp4"
# Create test video
create_synthetic_video(video_path, duration_seconds=2.0, fps=15)
logging.info("Running full prediction pipeline...")
# Run prediction with smaller top_k for faster testing
results = predict_actions(str(video_path), top_k=3)
if not results:
logging.error("β No predictions returned")
return False
logging.info(f"β Got {len(results)} predictions")
# Display results
for i, (label, confidence) in enumerate(results, 1):
logging.info(f" {i}. {label}: {confidence:.3f}")
# Basic validation
if len(results) != 3:
logging.error(f"β Expected 3 results, got {len(results)}")
return False
for label, confidence in results:
if not isinstance(label, str) or not isinstance(confidence, float):
logging.error(f"β Invalid result format: {label}, {confidence}")
return False
if confidence < 0 or confidence > 1:
logging.error(f"β Invalid confidence: {confidence}")
return False
logging.info("β Full pipeline test successful")
return True
except Exception as e:
logging.error(f"β Full pipeline test failed: {e}")
logging.exception("Full error traceback:")
return False
def main():
"""Run all tests."""
print("π§ͺ Video Processing Test Suite")
print("=" * 50)
tests = [
("Video Reading", test_video_reading),
("Tensor Creation", test_tensor_creation),
("Full Pipeline", test_full_pipeline),
]
passed = 0
total = len(tests)
for test_name, test_func in tests:
print(f"\nπ Running: {test_name}")
print("-" * 30)
try:
if test_func():
print(f"β
{test_name} PASSED")
passed += 1
else:
print(f"β {test_name} FAILED")
except Exception as e:
print(f"π₯ {test_name} CRASHED: {e}")
logging.exception(f"Test {test_name} crashed:")
print(f"\nπ Test Results: {passed}/{total} tests passed")
if passed == total:
print("π All tests passed! Video processing is working correctly.")
return 0
else:
print("β οΈ Some tests failed. Check the logs above for details.")
return 1
if __name__ == "__main__":
exit(main())
|