Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,115 +1,33 @@
|
|
| 1 |
-
import
|
| 2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import torch
|
| 4 |
-
import torch.nn as nn
|
| 5 |
-
import os
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
#
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
def forward(self, x):
|
| 38 |
-
x = self.relu(self.layer1(x))
|
| 39 |
-
x = self.relu(self.layer2(x))
|
| 40 |
-
x = self.relu(self.layer3(x))
|
| 41 |
-
x = self.relu(self.layer4(x))
|
| 42 |
-
x = self.relu(self.layer5(x))
|
| 43 |
-
return self.output(x)
|
| 44 |
-
|
| 45 |
-
class LargeRecurrentNN(nn.Module):
|
| 46 |
-
def __init__(self):
|
| 47 |
-
super(LargeRecurrentNN, self).__init__()
|
| 48 |
-
self.rnn = nn.RNN(input_size=512, hidden_size=2048, num_layers=3, batch_first=True)
|
| 49 |
-
self.fc = nn.Linear(2048, 1)
|
| 50 |
-
|
| 51 |
-
def forward(self, x):
|
| 52 |
-
h0 = torch.zeros(3, x.size(0), 2048).to(x.device)
|
| 53 |
-
out, _ = self.rnn(x, h0)
|
| 54 |
-
out = self.fc(out[:, -1, :])
|
| 55 |
-
return out
|
| 56 |
-
|
| 57 |
-
class LargeConvolutionalNN(nn.Module):
|
| 58 |
-
def __init__(self):
|
| 59 |
-
super(LargeConvolutionalNN, self).__init__()
|
| 60 |
-
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
|
| 61 |
-
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
|
| 62 |
-
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
|
| 63 |
-
self.fc1 = nn.Linear(128*32*32, 1024)
|
| 64 |
-
self.fc2 = nn.Linear(1024, 1)
|
| 65 |
-
self.relu = nn.ReLU()
|
| 66 |
-
|
| 67 |
-
def forward(self, x):
|
| 68 |
-
x = self.relu(self.conv1(x))
|
| 69 |
-
x = self.relu(self.conv2(x))
|
| 70 |
-
x = self.relu(self.conv3(x))
|
| 71 |
-
x = x.view(x.size(0), -1)
|
| 72 |
-
x = self.relu(self.fc1(x))
|
| 73 |
-
return self.fc2(x)
|
| 74 |
-
|
| 75 |
-
class PhiModel(nn.Module):
|
| 76 |
-
def __init__(self):
|
| 77 |
-
super(PhiModel, self).__init__()
|
| 78 |
-
self.fc = nn.Linear(512, 1024)
|
| 79 |
-
|
| 80 |
-
def forward(self, x):
|
| 81 |
-
return self.fc(x)
|
| 82 |
-
|
| 83 |
-
class GeneticAlgorithm(nn.Module):
|
| 84 |
-
def __init__(self):
|
| 85 |
-
super(GeneticAlgorithm, self).__init__()
|
| 86 |
-
self.fc = nn.Linear(512, 1024)
|
| 87 |
-
|
| 88 |
-
def forward(self, x):
|
| 89 |
-
return self.fc(x)
|
| 90 |
-
|
| 91 |
-
system_message = "You are Surefire Pulse AGI ACC 4.500, created by the ACC and Tej Andrews, the owner of the ACC. Your personal name is Pulse."
|
| 92 |
-
|
| 93 |
-
def chat(message, history):
|
| 94 |
-
prompt = f"{system_message}\n\n"
|
| 95 |
-
|
| 96 |
-
for msg in history:
|
| 97 |
-
prompt += f"User: {msg[0]}\nAssistant: {msg[1]}\n"
|
| 98 |
-
|
| 99 |
-
prompt += f"User: {message}\nAssistant:"
|
| 100 |
-
|
| 101 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
|
| 102 |
-
outputs = model.generate(**inputs, max_new_tokens=150)
|
| 103 |
-
|
| 104 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 105 |
-
|
| 106 |
-
history.append((message, response))
|
| 107 |
-
|
| 108 |
-
return response, history
|
| 109 |
-
|
| 110 |
-
gr.ChatInterface(
|
| 111 |
-
fn=chat,
|
| 112 |
-
type="messages",
|
| 113 |
-
title="Chatbot",
|
| 114 |
-
description="Interact with the AI assistant."
|
| 115 |
-
).launch()
|
|
|
|
| 1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, StopStringCriteria, StoppingCriteriaList
|
|
|
|
| 2 |
import torch
|
|
|
|
|
|
|
| 3 |
|
| 4 |
+
# Load the tokenizer and model
|
| 5 |
+
repo_name = "nvidia/Hymba-1.5B-Instruct"
|
| 6 |
+
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True)
|
| 8 |
+
model = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True)
|
| 9 |
+
model = model.cuda().to(torch.bfloat16)
|
| 10 |
+
|
| 11 |
+
# Chat with Hymba
|
| 12 |
+
prompt = input()
|
| 13 |
+
|
| 14 |
+
messages = [
|
| 15 |
+
{"role": "system", "content": "You are a helpful assistant."}
|
| 16 |
+
]
|
| 17 |
+
messages.append({"role": "user", "content": prompt})
|
| 18 |
+
|
| 19 |
+
# Apply chat template
|
| 20 |
+
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to('cuda')
|
| 21 |
+
stopping_criteria = StoppingCriteriaList([StopStringCriteria(tokenizer=tokenizer, stop_strings="</s>")])
|
| 22 |
+
outputs = model.generate(
|
| 23 |
+
tokenized_chat,
|
| 24 |
+
max_new_tokens=256,
|
| 25 |
+
do_sample=False,
|
| 26 |
+
temperature=0.7,
|
| 27 |
+
use_cache=True,
|
| 28 |
+
stopping_criteria=stopping_criteria
|
| 29 |
+
)
|
| 30 |
+
input_length = tokenized_chat.shape[1]
|
| 31 |
+
response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True)
|
| 32 |
+
|
| 33 |
+
print(f"Model response: {response}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|