Update app.py
Browse files
app.py
CHANGED
|
@@ -6,6 +6,7 @@ from datetime import datetime
|
|
| 6 |
# Model description
|
| 7 |
description = """
|
| 8 |
# 🇫🇷 Lucie-7B-Instruct
|
|
|
|
| 9 |
Lucie is a French language model based on Mistral-7B, fine-tuned on French data and instructions.
|
| 10 |
This demo allows you to interact with the model and adjust various generation parameters.
|
| 11 |
"""
|
|
@@ -23,13 +24,37 @@ On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Buil
|
|
| 23 |
model_id = "OpenLLM-France/Lucie-7B-Instruct-v1"
|
| 24 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
model = AutoModelForCausalLM.from_pretrained(
|
| 28 |
model_id,
|
|
|
|
| 29 |
device_map="auto",
|
| 30 |
-
torch_dtype=torch.bfloat16
|
|
|
|
| 31 |
)
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
@spaces.GPU
|
| 34 |
def generate_response(system_prompt, user_prompt, temperature, max_new_tokens, top_p, repetition_penalty, top_k):
|
| 35 |
# Construct the full prompt with system and user messages
|
|
@@ -59,7 +84,24 @@ def generate_response(system_prompt, user_prompt, temperature, max_new_tokens, t
|
|
| 59 |
|
| 60 |
# Create the Gradio interface
|
| 61 |
with gr.Blocks() as demo:
|
| 62 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
with gr.Row():
|
| 65 |
with gr.Column():
|
|
@@ -123,18 +165,67 @@ with gr.Blocks() as demo:
|
|
| 123 |
lines=10
|
| 124 |
)
|
| 125 |
|
| 126 |
-
# Example prompts
|
| 127 |
gr.Examples(
|
| 128 |
examples=[
|
| 129 |
-
|
| 130 |
-
[
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
],
|
| 135 |
-
inputs=[system_prompt, user_prompt],
|
| 136 |
outputs=output,
|
| 137 |
-
label="Exemples de prompts"
|
| 138 |
)
|
| 139 |
|
| 140 |
# Set up the generation event
|
|
|
|
| 6 |
# Model description
|
| 7 |
description = """
|
| 8 |
# 🇫🇷 Lucie-7B-Instruct
|
| 9 |
+
|
| 10 |
Lucie is a French language model based on Mistral-7B, fine-tuned on French data and instructions.
|
| 11 |
This demo allows you to interact with the model and adjust various generation parameters.
|
| 12 |
"""
|
|
|
|
| 24 |
model_id = "OpenLLM-France/Lucie-7B-Instruct-v1"
|
| 25 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 26 |
|
| 27 |
+
# Get the token from environment variables
|
| 28 |
+
hf_token = os.getenv('READTOKEN')
|
| 29 |
+
if not hf_token:
|
| 30 |
+
raise ValueError("Please set the READTOKEN environment variable")
|
| 31 |
+
|
| 32 |
+
# Initialize tokenizer and model with token authentication
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 34 |
+
model_id,
|
| 35 |
+
token=hf_token,
|
| 36 |
+
trust_remote_code=True
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
model = AutoModelForCausalLM.from_pretrained(
|
| 40 |
model_id,
|
| 41 |
+
token=hf_token,
|
| 42 |
device_map="auto",
|
| 43 |
+
torch_dtype=torch.bfloat16,
|
| 44 |
+
trust_remote_code=True
|
| 45 |
)
|
| 46 |
|
| 47 |
+
def format_model_info(config):
|
| 48 |
+
info = []
|
| 49 |
+
important_keys = [
|
| 50 |
+
"model_type", "vocab_size", "hidden_size", "num_attention_heads",
|
| 51 |
+
"num_hidden_layers", "max_position_embeddings", "torch_dtype"
|
| 52 |
+
]
|
| 53 |
+
for key in important_keys:
|
| 54 |
+
if key in config:
|
| 55 |
+
info.append(f"**{key}:** {config[key]}")
|
| 56 |
+
return "\n".join(info)
|
| 57 |
+
|
| 58 |
@spaces.GPU
|
| 59 |
def generate_response(system_prompt, user_prompt, temperature, max_new_tokens, top_p, repetition_penalty, top_k):
|
| 60 |
# Construct the full prompt with system and user messages
|
|
|
|
| 84 |
|
| 85 |
# Create the Gradio interface
|
| 86 |
with gr.Blocks() as demo:
|
| 87 |
+
gr.Markdown(Title)
|
| 88 |
+
with gr.Row():
|
| 89 |
+
with gr.Column():
|
| 90 |
+
with gr.Group():
|
| 91 |
+
gr.Markdown("### Model Configuration")
|
| 92 |
+
gr.Markdown(format_model_info(config_json))
|
| 93 |
+
|
| 94 |
+
with gr.Column():
|
| 95 |
+
with gr.Group():
|
| 96 |
+
gr.Markdown("### Tokenizer Configuration")
|
| 97 |
+
gr.Markdown(f"""
|
| 98 |
+
**Vocabulary Size:** {tokenizer.vocab_size}
|
| 99 |
+
**Model Max Length:** {tokenizer.model_max_length}
|
| 100 |
+
**Padding Token:** {tokenizer.pad_token}
|
| 101 |
+
**EOS Token:** {tokenizer.eos_token}
|
| 102 |
+
""")
|
| 103 |
+
with gr.Row():
|
| 104 |
+
gr.Markdown(join_us)
|
| 105 |
|
| 106 |
with gr.Row():
|
| 107 |
with gr.Column():
|
|
|
|
| 165 |
lines=10
|
| 166 |
)
|
| 167 |
|
| 168 |
+
# Example prompts with all parameters
|
| 169 |
gr.Examples(
|
| 170 |
examples=[
|
| 171 |
+
# Format: [system_prompt, user_prompt, temperature, max_tokens, top_p, rep_penalty, top_k]
|
| 172 |
+
[
|
| 173 |
+
"Tu es Lucie, une assistante IA française serviable et amicale.",
|
| 174 |
+
"Bonjour! Comment vas-tu aujourd'hui?",
|
| 175 |
+
0.7, # temperature
|
| 176 |
+
512, # max_new_tokens
|
| 177 |
+
0.9, # top_p
|
| 178 |
+
1.2, # repetition_penalty
|
| 179 |
+
50 # top_k
|
| 180 |
+
],
|
| 181 |
+
[
|
| 182 |
+
"Tu es une experte en intelligence artificielle.",
|
| 183 |
+
"Peux-tu m'expliquer ce qu'est l'intelligence artificielle?",
|
| 184 |
+
0.8, # higher temperature for more creative explanation
|
| 185 |
+
1024, # longer response
|
| 186 |
+
0.95, # higher top_p for more diverse output
|
| 187 |
+
1.1, # lower repetition penalty
|
| 188 |
+
40 # lower top_k for more focused output
|
| 189 |
+
],
|
| 190 |
+
[
|
| 191 |
+
"Tu es une poétesse française.",
|
| 192 |
+
"Écris un court poème sur Paris.",
|
| 193 |
+
0.9, # higher temperature for more creativity
|
| 194 |
+
256, # shorter for poetry
|
| 195 |
+
0.95, # higher top_p for more creative language
|
| 196 |
+
1.3, # higher repetition penalty for unique words
|
| 197 |
+
60 # higher top_k for more varied vocabulary
|
| 198 |
+
],
|
| 199 |
+
[
|
| 200 |
+
"Tu es une experte en gastronomie française.",
|
| 201 |
+
"Quels sont les plats traditionnels français les plus connus?",
|
| 202 |
+
0.7, # moderate temperature for factual response
|
| 203 |
+
768, # medium length
|
| 204 |
+
0.9, # balanced top_p
|
| 205 |
+
1.2, # standard repetition penalty
|
| 206 |
+
50 # standard top_k
|
| 207 |
+
],
|
| 208 |
+
[
|
| 209 |
+
"Tu es une historienne spécialisée dans l'histoire de France.",
|
| 210 |
+
"Explique-moi l'histoire de la Révolution française en quelques phrases.",
|
| 211 |
+
0.6, # lower temperature for more factual response
|
| 212 |
+
1024, # longer for historical context
|
| 213 |
+
0.85, # lower top_p for more focused output
|
| 214 |
+
1.1, # lower repetition penalty
|
| 215 |
+
30 # lower top_k for more consistent output
|
| 216 |
+
]
|
| 217 |
+
],
|
| 218 |
+
inputs=[
|
| 219 |
+
system_prompt,
|
| 220 |
+
user_prompt,
|
| 221 |
+
temperature,
|
| 222 |
+
max_new_tokens,
|
| 223 |
+
top_p,
|
| 224 |
+
repetition_penalty,
|
| 225 |
+
top_k
|
| 226 |
],
|
|
|
|
| 227 |
outputs=output,
|
| 228 |
+
label="Exemples de prompts avec paramètres optimisés"
|
| 229 |
)
|
| 230 |
|
| 231 |
# Set up the generation event
|