File size: 8,775 Bytes
2dbc854
 
 
 
 
 
 
 
e77f67a
2dbc854
 
 
 
 
 
a86b9b2
2dbc854
 
 
 
a86b9b2
 
 
 
 
2dbc854
 
 
 
 
 
 
a86b9b2
2dbc854
a86b9b2
2dbc854
 
 
e77f67a
2dbc854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c8191e
 
2dbc854
 
 
 
 
a86b9b2
2dbc854
 
 
 
 
 
 
 
 
a86b9b2
 
 
2dbc854
 
 
 
 
 
 
 
 
a86b9b2
2dbc854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a86b9b2
2dbc854
 
 
 
a86b9b2
2dbc854
a86b9b2
 
 
 
 
 
 
2dbc854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a86b9b2
2dbc854
 
 
 
 
 
 
 
 
8248ec5
2dbc854
 
 
 
3c8191e
 
2dbc854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
925553b
 
2dbc854
925553b
2dbc854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d75323a
 
 
 
 
 
 
 
 
2dbc854
 
 
 
 
 
 
a86b9b2
3c8191e
a86b9b2
2dbc854
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
"""
Gradio demo for CountEM Automatic Music Transcription.

This demo allows users to upload audio files and transcribe them to MIDI
using pre-trained models from Hugging Face Hub.
"""

import gradio as gr
import spaces
import tempfile
import os
from pathlib import Path
import numpy as np
import soundfile as sf
import librosa
import logging
from onsets_and_frames.hf_model import CountEMModel
from onsets_and_frames.constants import SAMPLE_RATE


# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


# Cache for loaded models to avoid reloading
model_cache = {}


def load_model(model_name: str) -> CountEMModel:
    """Load model from cache or download from Hugging Face Hub."""
    if model_name not in model_cache:
        logger.info(f"Loading model: {model_name}")
        model_cache[model_name] = CountEMModel.from_pretrained(model_name)
        logger.info(f"Model loaded successfully")
    return model_cache[model_name]


@spaces.GPU
def transcribe_audio(
    audio_input,
    model_choice: str,
    onset_threshold: float,
    frame_threshold: float,
) -> tuple:
    """
    Transcribe audio to MIDI.

    Args:
        audio_input: Tuple of (sample_rate, audio_data) from Gradio Audio component
        model_choice: Model to use ("MusicNet" or "Synth")
        onset_threshold: Threshold for onset detection
        frame_threshold: Threshold for frame detection

    Returns:
        Tuple of (output_midi_path, status_message)
    """
    try:
        # Handle empty input
        if audio_input is None:
            return None, "Error: Please upload an audio file"

        # Map model choice to HuggingFace repo ID
        model_map = {
            "MusicNet (Recommended)": "Yoni232/countem-musicnet",
            "Synth": "Yoni232/countem-synth",
        }
        model_name = model_map[model_choice]

        # Extract audio data
        # Gradio Audio component returns (sample_rate, audio_array) or audio file path
        input_filename = None
        if isinstance(audio_input, tuple):
            sr, audio = audio_input
            # Convert to float32 if needed
            if audio.dtype == np.int16:
                audio = audio.astype(np.float32) / 32768.0
            elif audio.dtype == np.int32:
                audio = audio.astype(np.float32) / 2147483648.0
        elif isinstance(audio_input, str):
            # Audio file path provided
            audio, sr = librosa.load(audio_input, sr=None, mono=True)
            # Extract filename for output naming
            input_filename = Path(audio_input).stem
        else:
            return None, f"Error: Unexpected audio input type: {type(audio_input)}"

        # Convert stereo to mono if needed
        if len(audio.shape) > 1:
            audio = audio.mean(axis=1)

        # Resample to 16kHz if needed
        if sr != SAMPLE_RATE:
            logger.info(f"Resampling from {sr}Hz to {SAMPLE_RATE}Hz")
            audio = librosa.resample(audio, orig_sr=sr, target_sr=SAMPLE_RATE)
            sr = SAMPLE_RATE

        # Check audio length
        duration = len(audio) / sr
        if duration < 0.5:
            return None, "Error: Audio is too short (minimum 0.5 seconds)"
        if duration > 600:  # 10 minutes
            return (
                None,
                f"Error: Audio is too long ({duration:.1f}s). Maximum is 10 minutes (600s).",
            )

        # Load model
        status = f"Loading {model_choice} model..."
        logger.info(status)
        model = load_model(model_name)

        # Transcribe
        status = f"Transcribing {duration:.1f} seconds of audio..."
        logger.info(status)

        # Create temporary MIDI file with original filename if available
        if input_filename:
            temp_dir = tempfile.gettempdir()
            output_path = os.path.join(temp_dir, f"{input_filename}.mid")
        else:
            with tempfile.NamedTemporaryFile(suffix=".mid", delete=False) as tmp:
                output_path = tmp.name

        model.transcribe_to_midi(
            audio,
            output_path,
            onset_threshold=onset_threshold,
            frame_threshold=frame_threshold,
        )

        # Success message
        success_msg = f"""
✓ Transcription complete!
- Model: {model_choice}
- Duration: {duration:.2f} seconds
- Sample rate: {sr} Hz
- Onset threshold: {onset_threshold}
- Frame threshold: {frame_threshold}

Download your MIDI file using the button below.
        """

        return output_path, success_msg.strip()

    except Exception as e:
        error_msg = f"Error during transcription: {str(e)}"
        logger.error(error_msg)
        return None, error_msg


# Build Gradio interface
with gr.Blocks(title="CountEM - Music Transcription") as demo:
    gr.Markdown(
        """
    # CountEM - Automatic Music Transcription

    Upload a piano/music recording and transcribe it to MIDI using a model that was trained using the CountEM framework on the MusicNet dataset.

    **Paper:** [Count the Notes: Histogram-Based Supervision for Automatic Music Transcription](https://arxiv.org/abs/2511.14250) (ISMIR 2025)

    **Models on Hugging Face:**
    - [countem-musicnet](https://huggingface.co/Yoni232/countem-musicnet) - Trained on MusicNet dataset
    - [countem-synth](https://huggingface.co/Yoni232/countem-synth) - Trained on synthetic data
    """
    )

    with gr.Row():
        with gr.Column():
            # Input section
            audio_input = gr.Audio(
                label="Upload Audio File",
                type="filepath",
                sources=["upload"],
            )

            model_choice = gr.Radio(
                choices=["MusicNet (Recommended)", "Synth"],
                value="MusicNet (Recommended)",
                label="Model Selection",
                info="MusicNet model is trained on real piano recordings, Synth on synthetic data",
            )

            with gr.Row():
                onset_threshold = gr.Slider(
                    minimum=0.1,
                    maximum=0.9,
                    value=0.5,
                    step=0.05,
                    label="Onset Threshold",
                    info="Higher = fewer notes detected",
                )
                frame_threshold = gr.Slider(
                    minimum=0.1,
                    maximum=0.9,
                    value=0.5,
                    step=0.05,
                    label="Frame Threshold",
                    info="Higher = shorter note durations",
                )

            transcribe_btn = gr.Button("Transcribe to MIDI", variant="primary")

        with gr.Column():
            # Output section
            output_midi = gr.File(label="Download MIDI", interactive=False)
            status_output = gr.Textbox(
                label="Status",
                lines=10,
                interactive=False,
                placeholder="Upload audio and click 'Transcribe to MIDI' to start...",
            )

    # Example files
    gr.Markdown(
        """
    ### Notes:
    - Audio will be automatically resampled to 16kHz if needed, and converted to mono
    - Supports common formats: WAV, FLAC, MP3, M4a
    - Maximum duration: 10 minutes
    - Best results with classical music
    - Processing time depends on audio length (typically a few seconds per minute of audio)
    """
    )

    # Connect button to function
    transcribe_btn.click(
        fn=transcribe_audio,
        inputs=[audio_input, model_choice, onset_threshold, frame_threshold],
        outputs=[output_midi, status_output],
    )

    gr.Markdown(
        """
    ---
    **Project Links:**
    - [GitHub Repository](https://github.com/Yoni-Yaffe/count-the-notes)
    - [Project Page](https://yoni-yaffe.github.io/count-the-notes/)
    - [ArXiv Paper](https://arxiv.org/abs/2511.14250)

    If you use this work, please cite:
    ```
	@misc{yaffe2025countnoteshistogrambasedsupervision,
	      title={Count The Notes: Histogram-Based Supervision for Automatic Music Transcription}, 
	      author={Jonathan Yaffe and Ben Maman and Meinard Müller and Amit H. Bermano},
	      year={2025},
	      eprint={2511.14250},
	      archivePrefix={arXiv},
	      primaryClass={cs.SD},
	      url={https://arxiv.org/abs/2511.14250}, 
	}
    ```
    """
    )


if __name__ == "__main__":
    # Pre-load the default model to speed up first transcription
    logger.info("Pre-loading default model...")
    load_model("Yoni232/countem-musicnet")
    logger.info("Model pre-loaded. Starting Gradio interface...")

    # Launch the demo
    demo.launch(
        share=False,  # Set to True to create a public link
        server_name="0.0.0.0",  # Allow access from network
        server_port=7860,
    )