Spaces:
Sleeping
Sleeping
File size: 22,043 Bytes
b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 de52d28 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 4d42741 b103b07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 |
"""
Vera - AI Coaching Dashboard
A real-time speech emotion analysis tool for coaching sessions.
"""
import os
# Set cache directory to something writable in your Space
os.environ["HF_HOME"] = "/app/cache"
os.environ["TRANSFORMERS_CACHE"] = "/app/cache"
os.environ["XDG_CACHE_HOME"] = "/app/cache"
# Make sure it exists
os.makedirs("/app/cache", exist_ok=True)
from transformers import pipeline
classifier = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
import io
import wave
import pyaudio
import threading
import time
import logging
from datetime import datetime
from collections import deque
from typing import Dict, Optional, List, Tuple
from dataclasses import dataclass
from contextlib import contextmanager
from dotenv import load_dotenv
from openai import OpenAI
import streamlit as st
from transformers import pipeline
import pandas as pd
import plotly.graph_objects as go
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
load_dotenv()
@dataclass
class SentimentResult:
"""Data class for sentiment analysis results."""
label: str
score: float
def __post_init__(self):
"""Validate sentiment result."""
if self.label not in ["POSITIVE", "NEGATIVE", "NEUTRAL"]:
self.label = "NEUTRAL"
self.score = max(0.0, min(1.0, self.score))
@dataclass
class TranscriptionEntry:
"""Data class for a single transcription entry."""
text: str
sentiment: SentimentResult
timestamp: datetime
class AudioConfig:
"""Configuration for audio recording."""
def __init__(
self,
chunk_duration: int = 3,
sample_rate: int = 16000,
channels: int = 1,
chunk_size: int = 1024,
format: int = pyaudio.paInt16
):
self.chunk_duration = chunk_duration
self.sample_rate = sample_rate
self.channels = channels
self.chunk_size = chunk_size
self.format = format
class SentimentAnalyzer:
"""Handles sentiment analysis with enhanced neutral detection."""
NEUTRAL_KEYWORDS = [
'okay', 'ok', 'fine', 'alright', 'whatever', 'maybe', 'perhaps',
'guess', 'not sure', "don't know", 'dunno', 'meh', 'so-so',
'neither', 'middle', 'normal', 'average', 'moderate', 'fair'
]
CONFIDENCE_THRESHOLD = 0.8
MIN_WORD_COUNT = 3
def __init__(self, model_name: str = "distilbert-base-uncased-finetuned-sst-2-english"):
"""Initialize sentiment analyzer with specified model."""
self.model = pipeline("sentiment-analysis", model=model_name)
def analyze(self, text: str) -> SentimentResult:
"""
Analyze sentiment of text with enhanced neutral detection.
Args:
text: Input text to analyze
Returns:
SentimentResult with label and confidence score
"""
if not text or not text.strip():
return SentimentResult(label="NEUTRAL", score=0.5)
try:
# Get raw sentiment from model (truncate to avoid token limit)
result = self.model(text[:512])[0]
label = result["label"]
score = result["score"]
# Enhanced neutral detection
if self._should_be_neutral(text, score):
return SentimentResult(label="NEUTRAL", score=score)
return SentimentResult(label=label, score=score)
except Exception as e:
logger.error(f"Sentiment analysis error: {e}")
return SentimentResult(label="NEUTRAL", score=0.5)
def _should_be_neutral(self, text: str, score: float) -> bool:
"""Determine if text should be classified as neutral."""
text_lower = text.lower()
word_count = len(text.split())
has_neutral_keyword = any(
keyword in text_lower for keyword in self.NEUTRAL_KEYWORDS
)
return (
has_neutral_keyword or
score < self.CONFIDENCE_THRESHOLD or
word_count < self.MIN_WORD_COUNT
)
@st.cache_resource
def get_sentiment_analyzer() -> SentimentAnalyzer:
"""Get cached sentiment analyzer instance."""
return SentimentAnalyzer()
class AudioTranscriber:
"""Handles audio transcription using OpenAI Whisper."""
def __init__(self, client: OpenAI, audio_config: AudioConfig):
"""
Initialize transcriber.
Args:
client: OpenAI client instance
audio_config: Audio configuration
"""
self.client = client
self.audio_config = audio_config
self._audio = pyaudio.PyAudio()
def transcribe(self, audio_data: bytes) -> Optional[str]:
"""
Transcribe audio data to text.
Args:
audio_data: Raw audio bytes
Returns:
Transcribed text or None if transcription fails
"""
try:
wav_buffer = self._create_wav_buffer(audio_data)
response = self.client.audio.transcriptions.create(
model="whisper-1",
file=("audio.wav", wav_buffer.read(), "audio/wav"),
language="en",
)
return response.text.strip() if response.text else None
except Exception as e:
logger.error(f"Transcription error: {e}")
return None
def _create_wav_buffer(self, audio_data: bytes) -> io.BytesIO:
"""Create WAV format buffer from raw audio data."""
wav_buffer = io.BytesIO()
with wave.open(wav_buffer, "wb") as wav_file:
wav_file.setnchannels(self.audio_config.channels)
wav_file.setsampwidth(
self._audio.get_sample_size(self.audio_config.format)
)
wav_file.setframerate(self.audio_config.sample_rate)
wav_file.writeframes(audio_data)
wav_buffer.seek(0)
return wav_buffer
def cleanup(self):
"""Clean up PyAudio resources."""
if self._audio:
self._audio.terminate()
class CoachingDashboard:
"""Main dashboard for real-time coaching emotion analysis."""
def __init__(
self,
chunk_duration: int = 3,
sample_rate: int = 16000,
max_history: int = 50
):
"""
Initialize coaching dashboard.
Args:
chunk_duration: Duration of each audio chunk in seconds
sample_rate: Audio sample rate in Hz
max_history: Maximum number of transcriptions to keep
"""
self.audio_config = AudioConfig(
chunk_duration=chunk_duration,
sample_rate=sample_rate
)
self.max_history = max_history
# Initialize API client
try:
api_key = st.secrets.get("OPENAI_API_KEY") or os.getenv("OPENAI_API_KEY")
except Exception:
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise ValueError("OPENAI_API_KEY not found in environment or secrets")
self.client = OpenAI(api_key=api_key)
# Initialize components
self.transcriber = AudioTranscriber(self.client, self.audio_config)
self.sentiment_analyzer = get_sentiment_analyzer()
# Audio recording state
self.stream: Optional[pyaudio.Stream] = None
self.is_recording = False
self.audio_buffer_lock = threading.Lock()
self.audio_buffer: List[bytes] = []
# Session data
self.entries: deque[TranscriptionEntry] = deque(maxlen=max_history)
self.current_sentiment = SentimentResult(label="NEUTRAL", score=0.5)
self.session_start: Optional[datetime] = None
def start_recording(self) -> bool:
"""
Start audio recording session.
Returns:
True if recording started successfully, False otherwise
"""
if self.is_recording:
logger.warning("Recording already in progress")
return False
try:
audio = pyaudio.PyAudio()
self.stream = audio.open(
format=self.audio_config.format,
channels=self.audio_config.channels,
rate=self.audio_config.sample_rate,
input=True,
frames_per_buffer=self.audio_config.chunk_size,
)
self.is_recording = True
self.session_start = datetime.now()
# Start background threads
threading.Thread(target=self._record_audio, daemon=True).start()
threading.Thread(target=self._process_transcription, daemon=True).start()
logger.info("Recording started successfully")
return True
except Exception as e:
logger.error(f"Failed to start recording: {e}")
self.stop_recording()
raise
def stop_recording(self):
"""Stop audio recording session."""
if not self.is_recording:
return
self.is_recording = False
if self.stream:
try:
self.stream.stop_stream()
self.stream.close()
except Exception as e:
logger.error(f"Error closing stream: {e}")
logger.info("Recording stopped")
def _record_audio(self):
"""Background thread for recording audio chunks."""
frames = []
frames_per_chunk = int(
self.audio_config.sample_rate * self.audio_config.chunk_duration
)
while self.is_recording:
try:
if not self.stream:
break
data = self.stream.read(
self.audio_config.chunk_size,
exception_on_overflow=False
)
frames.append(data)
# When we have enough frames, add to buffer
if len(frames) * self.audio_config.chunk_size >= frames_per_chunk:
audio_chunk = b"".join(frames)
with self.audio_buffer_lock:
self.audio_buffer.append(audio_chunk)
frames = []
except Exception as e:
logger.error(f"Error recording audio: {e}")
break
def _process_transcription(self):
"""Background thread for processing transcriptions."""
while self.is_recording:
# Get audio chunk from buffer
audio_data = None
with self.audio_buffer_lock:
if self.audio_buffer:
audio_data = self.audio_buffer.pop(0)
if audio_data:
self._process_audio_chunk(audio_data)
else:
time.sleep(0.1)
def _process_audio_chunk(self, audio_data: bytes):
"""Process a single audio chunk through transcription and sentiment analysis."""
try:
# Transcribe
text = self.transcriber.transcribe(audio_data)
if not text:
return
# Analyze sentiment
sentiment = self.sentiment_analyzer.analyze(text)
# Store entry
entry = TranscriptionEntry(
text=text,
sentiment=sentiment,
timestamp=datetime.now()
)
self.entries.append(entry)
self.current_sentiment = sentiment
logger.info(f"Processed: {text[:50]}... ({sentiment.label})")
except Exception as e:
logger.error(f"Error processing audio chunk: {e}")
def get_session_duration(self) -> int:
"""Get current session duration in seconds."""
if not self.session_start:
return 0
return int((datetime.now() - self.session_start).total_seconds())
def get_sentiment_stats(self) -> Dict[str, int]:
"""Get count of each sentiment type."""
stats = {"POSITIVE": 0, "NEUTRAL": 0, "NEGATIVE": 0}
for entry in self.entries:
stats[entry.sentiment.label] += 1
return stats
def get_recent_entries(self, n: int = 5) -> List[TranscriptionEntry]:
"""Get the n most recent transcription entries."""
return list(self.entries)[-n:]
def cleanup(self):
"""Clean up all resources."""
self.stop_recording()
self.transcriber.cleanup()
class DashboardUI:
"""Handles the Streamlit UI for the coaching dashboard."""
COLORS = {
"POSITIVE": "#00C853",
"NEUTRAL": "#FFC107",
"NEGATIVE": "#FF1744"
}
EMOJIS = {
"POSITIVE": {
0.95: "๐ฅณ",
0.85: "๐",
0.70: "๐",
0.00: "๐"
},
"NEGATIVE": {
0.95: "๐ญ",
0.85: "๐ข",
0.70: "๐",
0.00: "๐"
},
"NEUTRAL": {
0.60: "๐",
0.00: "๐คท"
}
}
def __init__(self, dashboard: CoachingDashboard):
"""Initialize UI with dashboard instance."""
self.dashboard = dashboard
def render(self):
"""Render the complete dashboard UI."""
st.set_page_config(page_title="Vera", layout="wide")
self._inject_custom_css()
st.title("๐ฏ Vera - Your Coaching Companion")
self._render_sidebar()
self._render_main_content()
# Auto-refresh when recording
if self.dashboard.is_recording:
time.sleep(2)
st.rerun()
def _inject_custom_css(self):
"""Inject custom CSS styles."""
st.markdown("""
<style>
.sentiment-box {
padding: 30px;
border-radius: 15px;
text-align: center;
font-size: 20px;
font-weight: bold;
margin: 20px 0;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.transcription-card {
border-radius: 8px;
padding: 15px;
margin: 10px 0;
transition: transform 0.2s;
}
.transcription-card:hover {
transform: translateX(5px);
}
</style>
""", unsafe_allow_html=True)
def _render_sidebar(self):
"""Render sidebar with controls and stats."""
with st.sidebar:
st.header("๐ฎ Controls")
col1, col2 = st.columns(2)
with col1:
if st.button("โถ๏ธ Start", disabled=self.dashboard.is_recording, use_container_width=True):
try:
self.dashboard.start_recording()
st.rerun()
except Exception as e:
st.error(f"Failed to start: {e}")
with col2:
if st.button("โน๏ธ Stop", disabled=not self.dashboard.is_recording, use_container_width=True):
self.dashboard.stop_recording()
st.rerun()
st.divider()
# Recording status
if self.dashboard.is_recording:
st.success("๐ด Recording...")
duration = self.dashboard.get_session_duration()
st.metric("Duration", f"{duration // 60}m {duration % 60}s")
else:
st.info("โช Stopped")
st.divider()
# Statistics
st.header("๐ Statistics")
st.metric("Total Entries", len(self.dashboard.entries))
if self.dashboard.entries:
stats = self.dashboard.get_sentiment_stats()
total = len(self.dashboard.entries)
st.metric(
"๐ Positive",
f"{stats['POSITIVE']} ({stats['POSITIVE']/total*100:.0f}%)"
)
st.metric(
"๐ Neutral",
f"{stats['NEUTRAL']} ({stats['NEUTRAL']/total*100:.0f}%)"
)
st.metric(
"๐ Negative",
f"{stats['NEGATIVE']} ({stats['NEGATIVE']/total*100:.0f}%)"
)
def _render_main_content(self):
"""Render main content area."""
col1, col2 = st.columns([2, 1])
with col1:
self._render_emotion_timeline()
with col2:
self._render_current_status()
st.divider()
self._render_recent_transcriptions()
def _render_emotion_timeline(self):
"""Render emotion timeline chart."""
st.subheader("๐ Emotion Timeline")
if not self.dashboard.entries:
st.info("Start a session to see the emotion timeline")
return
# Prepare data
timestamps = [entry.timestamp for entry in self.dashboard.entries]
scores = [self._sentiment_to_score(entry.sentiment) for entry in self.dashboard.entries]
labels = [entry.sentiment.label for entry in self.dashboard.entries]
# Create chart
fig = go.Figure()
fig.add_trace(go.Scatter(
x=timestamps,
y=scores,
mode='lines+markers',
line=dict(width=3, color='#2196F3'),
marker=dict(
size=12,
color=[self.COLORS[label] for label in labels],
line=dict(width=2, color='white')
),
hovertemplate='<b>%{text}</b><br>Score: %{y:.2f}<br>%{x}<extra></extra>',
text=labels
))
# Add reference zones
fig.add_hline(y=0, line_dash="dash", line_color="gray", opacity=0.5)
fig.add_hrect(y0=0.3, y1=1, fillcolor="green", opacity=0.1, line_width=0, annotation_text="Positive")
fig.add_hrect(y0=-0.3, y1=0.3, fillcolor="yellow", opacity=0.1, line_width=0, annotation_text="Neutral")
fig.add_hrect(y0=-1, y1=-0.3, fillcolor="red", opacity=0.1, line_width=0, annotation_text="Negative")
fig.update_layout(
height=400,
xaxis_title="Time",
yaxis_title="Emotional Valence",
yaxis=dict(range=[-1.1, 1.1]),
showlegend=False,
hovermode='closest'
)
st.plotly_chart(fig, use_container_width=True)
def _render_current_status(self):
"""Render current emotional status."""
st.subheader("๐ญ Current Status")
sentiment = self.dashboard.current_sentiment
color = self.COLORS[sentiment.label]
emoji = self._get_emoji(sentiment)
st.markdown(f"""
<div class="sentiment-box" style="background-color: {color}; color: white;">
<div style="font-size: 48px;">{emoji}</div>
<div style="margin: 10px 0;">{sentiment.label}</div>
<div style="font-size: 16px; opacity: 0.9;">
Confidence: {sentiment.score:.0%}
</div>
</div>
""", unsafe_allow_html=True)
def _render_recent_transcriptions(self):
"""Render recent transcription entries."""
st.subheader("๐ฌ Recent Transcriptions")
if not self.dashboard.entries:
st.info("No transcriptions yet. Start recording to see results.")
return
recent = self.dashboard.get_recent_entries(5)
for entry in reversed(recent):
color = self.COLORS[entry.sentiment.label]
time_str = entry.timestamp.strftime("%H:%M:%S")
emoji = self._get_emoji(entry.sentiment)
st.markdown(f"""
<div class="transcription-card" style="
background-color: {color}20;
border-left: 5px solid {color};
">
<div style="color: {color}; font-weight: bold; margin-bottom: 8px;">
{emoji} [{time_str}] {entry.sentiment.label}
<span style="opacity: 0.8;">({entry.sentiment.score:.0%})</span>
</div>
<div style="font-size: 16px; color: #333;">
{entry.text}
</div>
</div>
""", unsafe_allow_html=True)
def _sentiment_to_score(self, sentiment: SentimentResult) -> float:
"""Convert sentiment to -1 to 1 scale for visualization."""
if sentiment.label == "POSITIVE":
return sentiment.score
elif sentiment.label == "NEGATIVE":
return -sentiment.score
else:
return 0
def _get_emoji(self, sentiment: SentimentResult) -> str:
"""Get appropriate emoji for sentiment and confidence."""
emoji_map = self.EMOJIS.get(sentiment.label, self.EMOJIS["NEUTRAL"])
for threshold, emoji in sorted(emoji_map.items(), reverse=True):
if sentiment.score >= threshold:
return emoji
return "๐"
def main():
"""Main application entry point."""
# Initialize dashboard in session state
if 'dashboard' not in st.session_state:
try:
st.session_state.dashboard = CoachingDashboard(chunk_duration=3)
except Exception as e:
st.error(f"Failed to initialize dashboard: {e}")
st.stop()
dashboard = st.session_state.dashboard
# Render UI
ui = DashboardUI(dashboard)
ui.render()
if __name__ == "__main__":
main() |