""" Vera - AI Coaching Dashboard A real-time speech emotion analysis tool for coaching sessions. """ import os # Set cache directory to something writable in your Space os.environ["HF_HOME"] = "/app/cache" os.environ["TRANSFORMERS_CACHE"] = "/app/cache" os.environ["XDG_CACHE_HOME"] = "/app/cache" # Make sure it exists os.makedirs("/app/cache", exist_ok=True) from transformers import pipeline classifier = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") import io import wave import pyaudio import threading import time import logging from datetime import datetime from collections import deque from typing import Dict, Optional, List, Tuple from dataclasses import dataclass from contextlib import contextmanager from dotenv import load_dotenv from openai import OpenAI import streamlit as st from transformers import pipeline import pandas as pd import plotly.graph_objects as go # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) load_dotenv() @dataclass class SentimentResult: """Data class for sentiment analysis results.""" label: str score: float def __post_init__(self): """Validate sentiment result.""" if self.label not in ["POSITIVE", "NEGATIVE", "NEUTRAL"]: self.label = "NEUTRAL" self.score = max(0.0, min(1.0, self.score)) @dataclass class TranscriptionEntry: """Data class for a single transcription entry.""" text: str sentiment: SentimentResult timestamp: datetime class AudioConfig: """Configuration for audio recording.""" def __init__( self, chunk_duration: int = 3, sample_rate: int = 16000, channels: int = 1, chunk_size: int = 1024, format: int = pyaudio.paInt16 ): self.chunk_duration = chunk_duration self.sample_rate = sample_rate self.channels = channels self.chunk_size = chunk_size self.format = format class SentimentAnalyzer: """Handles sentiment analysis with enhanced neutral detection.""" NEUTRAL_KEYWORDS = [ 'okay', 'ok', 'fine', 'alright', 'whatever', 'maybe', 'perhaps', 'guess', 'not sure', "don't know", 'dunno', 'meh', 'so-so', 'neither', 'middle', 'normal', 'average', 'moderate', 'fair' ] CONFIDENCE_THRESHOLD = 0.8 MIN_WORD_COUNT = 3 def __init__(self, model_name: str = "distilbert-base-uncased-finetuned-sst-2-english"): """Initialize sentiment analyzer with specified model.""" self.model = pipeline("sentiment-analysis", model=model_name) def analyze(self, text: str) -> SentimentResult: """ Analyze sentiment of text with enhanced neutral detection. Args: text: Input text to analyze Returns: SentimentResult with label and confidence score """ if not text or not text.strip(): return SentimentResult(label="NEUTRAL", score=0.5) try: # Get raw sentiment from model (truncate to avoid token limit) result = self.model(text[:512])[0] label = result["label"] score = result["score"] # Enhanced neutral detection if self._should_be_neutral(text, score): return SentimentResult(label="NEUTRAL", score=score) return SentimentResult(label=label, score=score) except Exception as e: logger.error(f"Sentiment analysis error: {e}") return SentimentResult(label="NEUTRAL", score=0.5) def _should_be_neutral(self, text: str, score: float) -> bool: """Determine if text should be classified as neutral.""" text_lower = text.lower() word_count = len(text.split()) has_neutral_keyword = any( keyword in text_lower for keyword in self.NEUTRAL_KEYWORDS ) return ( has_neutral_keyword or score < self.CONFIDENCE_THRESHOLD or word_count < self.MIN_WORD_COUNT ) @st.cache_resource def get_sentiment_analyzer() -> SentimentAnalyzer: """Get cached sentiment analyzer instance.""" return SentimentAnalyzer() class AudioTranscriber: """Handles audio transcription using OpenAI Whisper.""" def __init__(self, client: OpenAI, audio_config: AudioConfig): """ Initialize transcriber. Args: client: OpenAI client instance audio_config: Audio configuration """ self.client = client self.audio_config = audio_config self._audio = pyaudio.PyAudio() def transcribe(self, audio_data: bytes) -> Optional[str]: """ Transcribe audio data to text. Args: audio_data: Raw audio bytes Returns: Transcribed text or None if transcription fails """ try: wav_buffer = self._create_wav_buffer(audio_data) response = self.client.audio.transcriptions.create( model="whisper-1", file=("audio.wav", wav_buffer.read(), "audio/wav"), language="en", ) return response.text.strip() if response.text else None except Exception as e: logger.error(f"Transcription error: {e}") return None def _create_wav_buffer(self, audio_data: bytes) -> io.BytesIO: """Create WAV format buffer from raw audio data.""" wav_buffer = io.BytesIO() with wave.open(wav_buffer, "wb") as wav_file: wav_file.setnchannels(self.audio_config.channels) wav_file.setsampwidth( self._audio.get_sample_size(self.audio_config.format) ) wav_file.setframerate(self.audio_config.sample_rate) wav_file.writeframes(audio_data) wav_buffer.seek(0) return wav_buffer def cleanup(self): """Clean up PyAudio resources.""" if self._audio: self._audio.terminate() class CoachingDashboard: """Main dashboard for real-time coaching emotion analysis.""" def __init__( self, chunk_duration: int = 3, sample_rate: int = 16000, max_history: int = 50 ): """ Initialize coaching dashboard. Args: chunk_duration: Duration of each audio chunk in seconds sample_rate: Audio sample rate in Hz max_history: Maximum number of transcriptions to keep """ self.audio_config = AudioConfig( chunk_duration=chunk_duration, sample_rate=sample_rate ) self.max_history = max_history # Initialize API client try: api_key = st.secrets.get("OPENAI_API_KEY") or os.getenv("OPENAI_API_KEY") except Exception: api_key = os.getenv("OPENAI_API_KEY") if not api_key: raise ValueError("OPENAI_API_KEY not found in environment or secrets") self.client = OpenAI(api_key=api_key) # Initialize components self.transcriber = AudioTranscriber(self.client, self.audio_config) self.sentiment_analyzer = get_sentiment_analyzer() # Audio recording state self.stream: Optional[pyaudio.Stream] = None self.is_recording = False self.audio_buffer_lock = threading.Lock() self.audio_buffer: List[bytes] = [] # Session data self.entries: deque[TranscriptionEntry] = deque(maxlen=max_history) self.current_sentiment = SentimentResult(label="NEUTRAL", score=0.5) self.session_start: Optional[datetime] = None def start_recording(self) -> bool: """ Start audio recording session. Returns: True if recording started successfully, False otherwise """ if self.is_recording: logger.warning("Recording already in progress") return False try: audio = pyaudio.PyAudio() self.stream = audio.open( format=self.audio_config.format, channels=self.audio_config.channels, rate=self.audio_config.sample_rate, input=True, frames_per_buffer=self.audio_config.chunk_size, ) self.is_recording = True self.session_start = datetime.now() # Start background threads threading.Thread(target=self._record_audio, daemon=True).start() threading.Thread(target=self._process_transcription, daemon=True).start() logger.info("Recording started successfully") return True except Exception as e: logger.error(f"Failed to start recording: {e}") self.stop_recording() raise def stop_recording(self): """Stop audio recording session.""" if not self.is_recording: return self.is_recording = False if self.stream: try: self.stream.stop_stream() self.stream.close() except Exception as e: logger.error(f"Error closing stream: {e}") logger.info("Recording stopped") def _record_audio(self): """Background thread for recording audio chunks.""" frames = [] frames_per_chunk = int( self.audio_config.sample_rate * self.audio_config.chunk_duration ) while self.is_recording: try: if not self.stream: break data = self.stream.read( self.audio_config.chunk_size, exception_on_overflow=False ) frames.append(data) # When we have enough frames, add to buffer if len(frames) * self.audio_config.chunk_size >= frames_per_chunk: audio_chunk = b"".join(frames) with self.audio_buffer_lock: self.audio_buffer.append(audio_chunk) frames = [] except Exception as e: logger.error(f"Error recording audio: {e}") break def _process_transcription(self): """Background thread for processing transcriptions.""" while self.is_recording: # Get audio chunk from buffer audio_data = None with self.audio_buffer_lock: if self.audio_buffer: audio_data = self.audio_buffer.pop(0) if audio_data: self._process_audio_chunk(audio_data) else: time.sleep(0.1) def _process_audio_chunk(self, audio_data: bytes): """Process a single audio chunk through transcription and sentiment analysis.""" try: # Transcribe text = self.transcriber.transcribe(audio_data) if not text: return # Analyze sentiment sentiment = self.sentiment_analyzer.analyze(text) # Store entry entry = TranscriptionEntry( text=text, sentiment=sentiment, timestamp=datetime.now() ) self.entries.append(entry) self.current_sentiment = sentiment logger.info(f"Processed: {text[:50]}... ({sentiment.label})") except Exception as e: logger.error(f"Error processing audio chunk: {e}") def get_session_duration(self) -> int: """Get current session duration in seconds.""" if not self.session_start: return 0 return int((datetime.now() - self.session_start).total_seconds()) def get_sentiment_stats(self) -> Dict[str, int]: """Get count of each sentiment type.""" stats = {"POSITIVE": 0, "NEUTRAL": 0, "NEGATIVE": 0} for entry in self.entries: stats[entry.sentiment.label] += 1 return stats def get_recent_entries(self, n: int = 5) -> List[TranscriptionEntry]: """Get the n most recent transcription entries.""" return list(self.entries)[-n:] def cleanup(self): """Clean up all resources.""" self.stop_recording() self.transcriber.cleanup() class DashboardUI: """Handles the Streamlit UI for the coaching dashboard.""" COLORS = { "POSITIVE": "#00C853", "NEUTRAL": "#FFC107", "NEGATIVE": "#FF1744" } EMOJIS = { "POSITIVE": { 0.95: "đŸĨŗ", 0.85: "😁", 0.70: "😊", 0.00: "🙂" }, "NEGATIVE": { 0.95: "😭", 0.85: "đŸ˜ĸ", 0.70: "😟", 0.00: "😕" }, "NEUTRAL": { 0.60: "😐", 0.00: "🤷" } } def __init__(self, dashboard: CoachingDashboard): """Initialize UI with dashboard instance.""" self.dashboard = dashboard def render(self): """Render the complete dashboard UI.""" st.set_page_config(page_title="Vera", layout="wide") self._inject_custom_css() st.title("đŸŽ¯ Vera - Your Coaching Companion") self._render_sidebar() self._render_main_content() # Auto-refresh when recording if self.dashboard.is_recording: time.sleep(2) st.rerun() def _inject_custom_css(self): """Inject custom CSS styles.""" st.markdown(""" """, unsafe_allow_html=True) def _render_sidebar(self): """Render sidebar with controls and stats.""" with st.sidebar: st.header("🎮 Controls") col1, col2 = st.columns(2) with col1: if st.button("â–ļī¸ Start", disabled=self.dashboard.is_recording, use_container_width=True): try: self.dashboard.start_recording() st.rerun() except Exception as e: st.error(f"Failed to start: {e}") with col2: if st.button("âšī¸ Stop", disabled=not self.dashboard.is_recording, use_container_width=True): self.dashboard.stop_recording() st.rerun() st.divider() # Recording status if self.dashboard.is_recording: st.success("🔴 Recording...") duration = self.dashboard.get_session_duration() st.metric("Duration", f"{duration // 60}m {duration % 60}s") else: st.info("âšĒ Stopped") st.divider() # Statistics st.header("📊 Statistics") st.metric("Total Entries", len(self.dashboard.entries)) if self.dashboard.entries: stats = self.dashboard.get_sentiment_stats() total = len(self.dashboard.entries) st.metric( "😊 Positive", f"{stats['POSITIVE']} ({stats['POSITIVE']/total*100:.0f}%)" ) st.metric( "😐 Neutral", f"{stats['NEUTRAL']} ({stats['NEUTRAL']/total*100:.0f}%)" ) st.metric( "😟 Negative", f"{stats['NEGATIVE']} ({stats['NEGATIVE']/total*100:.0f}%)" ) def _render_main_content(self): """Render main content area.""" col1, col2 = st.columns([2, 1]) with col1: self._render_emotion_timeline() with col2: self._render_current_status() st.divider() self._render_recent_transcriptions() def _render_emotion_timeline(self): """Render emotion timeline chart.""" st.subheader("📈 Emotion Timeline") if not self.dashboard.entries: st.info("Start a session to see the emotion timeline") return # Prepare data timestamps = [entry.timestamp for entry in self.dashboard.entries] scores = [self._sentiment_to_score(entry.sentiment) for entry in self.dashboard.entries] labels = [entry.sentiment.label for entry in self.dashboard.entries] # Create chart fig = go.Figure() fig.add_trace(go.Scatter( x=timestamps, y=scores, mode='lines+markers', line=dict(width=3, color='#2196F3'), marker=dict( size=12, color=[self.COLORS[label] for label in labels], line=dict(width=2, color='white') ), hovertemplate='%{text}
Score: %{y:.2f}
%{x}', text=labels )) # Add reference zones fig.add_hline(y=0, line_dash="dash", line_color="gray", opacity=0.5) fig.add_hrect(y0=0.3, y1=1, fillcolor="green", opacity=0.1, line_width=0, annotation_text="Positive") fig.add_hrect(y0=-0.3, y1=0.3, fillcolor="yellow", opacity=0.1, line_width=0, annotation_text="Neutral") fig.add_hrect(y0=-1, y1=-0.3, fillcolor="red", opacity=0.1, line_width=0, annotation_text="Negative") fig.update_layout( height=400, xaxis_title="Time", yaxis_title="Emotional Valence", yaxis=dict(range=[-1.1, 1.1]), showlegend=False, hovermode='closest' ) st.plotly_chart(fig, use_container_width=True) def _render_current_status(self): """Render current emotional status.""" st.subheader("💭 Current Status") sentiment = self.dashboard.current_sentiment color = self.COLORS[sentiment.label] emoji = self._get_emoji(sentiment) st.markdown(f"""
{emoji}
{sentiment.label}
Confidence: {sentiment.score:.0%}
""", unsafe_allow_html=True) def _render_recent_transcriptions(self): """Render recent transcription entries.""" st.subheader("đŸ’Ŧ Recent Transcriptions") if not self.dashboard.entries: st.info("No transcriptions yet. Start recording to see results.") return recent = self.dashboard.get_recent_entries(5) for entry in reversed(recent): color = self.COLORS[entry.sentiment.label] time_str = entry.timestamp.strftime("%H:%M:%S") emoji = self._get_emoji(entry.sentiment) st.markdown(f"""
{emoji} [{time_str}] {entry.sentiment.label} ({entry.sentiment.score:.0%})
{entry.text}
""", unsafe_allow_html=True) def _sentiment_to_score(self, sentiment: SentimentResult) -> float: """Convert sentiment to -1 to 1 scale for visualization.""" if sentiment.label == "POSITIVE": return sentiment.score elif sentiment.label == "NEGATIVE": return -sentiment.score else: return 0 def _get_emoji(self, sentiment: SentimentResult) -> str: """Get appropriate emoji for sentiment and confidence.""" emoji_map = self.EMOJIS.get(sentiment.label, self.EMOJIS["NEUTRAL"]) for threshold, emoji in sorted(emoji_map.items(), reverse=True): if sentiment.score >= threshold: return emoji return "😐" def main(): """Main application entry point.""" # Initialize dashboard in session state if 'dashboard' not in st.session_state: try: st.session_state.dashboard = CoachingDashboard(chunk_duration=3) except Exception as e: st.error(f"Failed to initialize dashboard: {e}") st.stop() dashboard = st.session_state.dashboard # Render UI ui = DashboardUI(dashboard) ui.render() if __name__ == "__main__": main()