"""
Vera - AI Coaching Dashboard
A real-time speech emotion analysis tool for coaching sessions.
"""
import os
# Set cache directory to something writable in your Space
os.environ["HF_HOME"] = "/app/cache"
os.environ["TRANSFORMERS_CACHE"] = "/app/cache"
os.environ["XDG_CACHE_HOME"] = "/app/cache"
# Make sure it exists
os.makedirs("/app/cache", exist_ok=True)
from transformers import pipeline
classifier = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
import io
import wave
import pyaudio
import threading
import time
import logging
from datetime import datetime
from collections import deque
from typing import Dict, Optional, List, Tuple
from dataclasses import dataclass
from contextlib import contextmanager
from dotenv import load_dotenv
from openai import OpenAI
import streamlit as st
from transformers import pipeline
import pandas as pd
import plotly.graph_objects as go
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
load_dotenv()
@dataclass
class SentimentResult:
"""Data class for sentiment analysis results."""
label: str
score: float
def __post_init__(self):
"""Validate sentiment result."""
if self.label not in ["POSITIVE", "NEGATIVE", "NEUTRAL"]:
self.label = "NEUTRAL"
self.score = max(0.0, min(1.0, self.score))
@dataclass
class TranscriptionEntry:
"""Data class for a single transcription entry."""
text: str
sentiment: SentimentResult
timestamp: datetime
class AudioConfig:
"""Configuration for audio recording."""
def __init__(
self,
chunk_duration: int = 3,
sample_rate: int = 16000,
channels: int = 1,
chunk_size: int = 1024,
format: int = pyaudio.paInt16
):
self.chunk_duration = chunk_duration
self.sample_rate = sample_rate
self.channels = channels
self.chunk_size = chunk_size
self.format = format
class SentimentAnalyzer:
"""Handles sentiment analysis with enhanced neutral detection."""
NEUTRAL_KEYWORDS = [
'okay', 'ok', 'fine', 'alright', 'whatever', 'maybe', 'perhaps',
'guess', 'not sure', "don't know", 'dunno', 'meh', 'so-so',
'neither', 'middle', 'normal', 'average', 'moderate', 'fair'
]
CONFIDENCE_THRESHOLD = 0.8
MIN_WORD_COUNT = 3
def __init__(self, model_name: str = "distilbert-base-uncased-finetuned-sst-2-english"):
"""Initialize sentiment analyzer with specified model."""
self.model = pipeline("sentiment-analysis", model=model_name)
def analyze(self, text: str) -> SentimentResult:
"""
Analyze sentiment of text with enhanced neutral detection.
Args:
text: Input text to analyze
Returns:
SentimentResult with label and confidence score
"""
if not text or not text.strip():
return SentimentResult(label="NEUTRAL", score=0.5)
try:
# Get raw sentiment from model (truncate to avoid token limit)
result = self.model(text[:512])[0]
label = result["label"]
score = result["score"]
# Enhanced neutral detection
if self._should_be_neutral(text, score):
return SentimentResult(label="NEUTRAL", score=score)
return SentimentResult(label=label, score=score)
except Exception as e:
logger.error(f"Sentiment analysis error: {e}")
return SentimentResult(label="NEUTRAL", score=0.5)
def _should_be_neutral(self, text: str, score: float) -> bool:
"""Determine if text should be classified as neutral."""
text_lower = text.lower()
word_count = len(text.split())
has_neutral_keyword = any(
keyword in text_lower for keyword in self.NEUTRAL_KEYWORDS
)
return (
has_neutral_keyword or
score < self.CONFIDENCE_THRESHOLD or
word_count < self.MIN_WORD_COUNT
)
@st.cache_resource
def get_sentiment_analyzer() -> SentimentAnalyzer:
"""Get cached sentiment analyzer instance."""
return SentimentAnalyzer()
class AudioTranscriber:
"""Handles audio transcription using OpenAI Whisper."""
def __init__(self, client: OpenAI, audio_config: AudioConfig):
"""
Initialize transcriber.
Args:
client: OpenAI client instance
audio_config: Audio configuration
"""
self.client = client
self.audio_config = audio_config
self._audio = pyaudio.PyAudio()
def transcribe(self, audio_data: bytes) -> Optional[str]:
"""
Transcribe audio data to text.
Args:
audio_data: Raw audio bytes
Returns:
Transcribed text or None if transcription fails
"""
try:
wav_buffer = self._create_wav_buffer(audio_data)
response = self.client.audio.transcriptions.create(
model="whisper-1",
file=("audio.wav", wav_buffer.read(), "audio/wav"),
language="en",
)
return response.text.strip() if response.text else None
except Exception as e:
logger.error(f"Transcription error: {e}")
return None
def _create_wav_buffer(self, audio_data: bytes) -> io.BytesIO:
"""Create WAV format buffer from raw audio data."""
wav_buffer = io.BytesIO()
with wave.open(wav_buffer, "wb") as wav_file:
wav_file.setnchannels(self.audio_config.channels)
wav_file.setsampwidth(
self._audio.get_sample_size(self.audio_config.format)
)
wav_file.setframerate(self.audio_config.sample_rate)
wav_file.writeframes(audio_data)
wav_buffer.seek(0)
return wav_buffer
def cleanup(self):
"""Clean up PyAudio resources."""
if self._audio:
self._audio.terminate()
class CoachingDashboard:
"""Main dashboard for real-time coaching emotion analysis."""
def __init__(
self,
chunk_duration: int = 3,
sample_rate: int = 16000,
max_history: int = 50
):
"""
Initialize coaching dashboard.
Args:
chunk_duration: Duration of each audio chunk in seconds
sample_rate: Audio sample rate in Hz
max_history: Maximum number of transcriptions to keep
"""
self.audio_config = AudioConfig(
chunk_duration=chunk_duration,
sample_rate=sample_rate
)
self.max_history = max_history
# Initialize API client
try:
api_key = st.secrets.get("OPENAI_API_KEY") or os.getenv("OPENAI_API_KEY")
except Exception:
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise ValueError("OPENAI_API_KEY not found in environment or secrets")
self.client = OpenAI(api_key=api_key)
# Initialize components
self.transcriber = AudioTranscriber(self.client, self.audio_config)
self.sentiment_analyzer = get_sentiment_analyzer()
# Audio recording state
self.stream: Optional[pyaudio.Stream] = None
self.is_recording = False
self.audio_buffer_lock = threading.Lock()
self.audio_buffer: List[bytes] = []
# Session data
self.entries: deque[TranscriptionEntry] = deque(maxlen=max_history)
self.current_sentiment = SentimentResult(label="NEUTRAL", score=0.5)
self.session_start: Optional[datetime] = None
def start_recording(self) -> bool:
"""
Start audio recording session.
Returns:
True if recording started successfully, False otherwise
"""
if self.is_recording:
logger.warning("Recording already in progress")
return False
try:
audio = pyaudio.PyAudio()
self.stream = audio.open(
format=self.audio_config.format,
channels=self.audio_config.channels,
rate=self.audio_config.sample_rate,
input=True,
frames_per_buffer=self.audio_config.chunk_size,
)
self.is_recording = True
self.session_start = datetime.now()
# Start background threads
threading.Thread(target=self._record_audio, daemon=True).start()
threading.Thread(target=self._process_transcription, daemon=True).start()
logger.info("Recording started successfully")
return True
except Exception as e:
logger.error(f"Failed to start recording: {e}")
self.stop_recording()
raise
def stop_recording(self):
"""Stop audio recording session."""
if not self.is_recording:
return
self.is_recording = False
if self.stream:
try:
self.stream.stop_stream()
self.stream.close()
except Exception as e:
logger.error(f"Error closing stream: {e}")
logger.info("Recording stopped")
def _record_audio(self):
"""Background thread for recording audio chunks."""
frames = []
frames_per_chunk = int(
self.audio_config.sample_rate * self.audio_config.chunk_duration
)
while self.is_recording:
try:
if not self.stream:
break
data = self.stream.read(
self.audio_config.chunk_size,
exception_on_overflow=False
)
frames.append(data)
# When we have enough frames, add to buffer
if len(frames) * self.audio_config.chunk_size >= frames_per_chunk:
audio_chunk = b"".join(frames)
with self.audio_buffer_lock:
self.audio_buffer.append(audio_chunk)
frames = []
except Exception as e:
logger.error(f"Error recording audio: {e}")
break
def _process_transcription(self):
"""Background thread for processing transcriptions."""
while self.is_recording:
# Get audio chunk from buffer
audio_data = None
with self.audio_buffer_lock:
if self.audio_buffer:
audio_data = self.audio_buffer.pop(0)
if audio_data:
self._process_audio_chunk(audio_data)
else:
time.sleep(0.1)
def _process_audio_chunk(self, audio_data: bytes):
"""Process a single audio chunk through transcription and sentiment analysis."""
try:
# Transcribe
text = self.transcriber.transcribe(audio_data)
if not text:
return
# Analyze sentiment
sentiment = self.sentiment_analyzer.analyze(text)
# Store entry
entry = TranscriptionEntry(
text=text,
sentiment=sentiment,
timestamp=datetime.now()
)
self.entries.append(entry)
self.current_sentiment = sentiment
logger.info(f"Processed: {text[:50]}... ({sentiment.label})")
except Exception as e:
logger.error(f"Error processing audio chunk: {e}")
def get_session_duration(self) -> int:
"""Get current session duration in seconds."""
if not self.session_start:
return 0
return int((datetime.now() - self.session_start).total_seconds())
def get_sentiment_stats(self) -> Dict[str, int]:
"""Get count of each sentiment type."""
stats = {"POSITIVE": 0, "NEUTRAL": 0, "NEGATIVE": 0}
for entry in self.entries:
stats[entry.sentiment.label] += 1
return stats
def get_recent_entries(self, n: int = 5) -> List[TranscriptionEntry]:
"""Get the n most recent transcription entries."""
return list(self.entries)[-n:]
def cleanup(self):
"""Clean up all resources."""
self.stop_recording()
self.transcriber.cleanup()
class DashboardUI:
"""Handles the Streamlit UI for the coaching dashboard."""
COLORS = {
"POSITIVE": "#00C853",
"NEUTRAL": "#FFC107",
"NEGATIVE": "#FF1744"
}
EMOJIS = {
"POSITIVE": {
0.95: "đĨŗ",
0.85: "đ",
0.70: "đ",
0.00: "đ"
},
"NEGATIVE": {
0.95: "đ",
0.85: "đĸ",
0.70: "đ",
0.00: "đ"
},
"NEUTRAL": {
0.60: "đ",
0.00: "đ¤ˇ"
}
}
def __init__(self, dashboard: CoachingDashboard):
"""Initialize UI with dashboard instance."""
self.dashboard = dashboard
def render(self):
"""Render the complete dashboard UI."""
st.set_page_config(page_title="Vera", layout="wide")
self._inject_custom_css()
st.title("đ¯ Vera - Your Coaching Companion")
self._render_sidebar()
self._render_main_content()
# Auto-refresh when recording
if self.dashboard.is_recording:
time.sleep(2)
st.rerun()
def _inject_custom_css(self):
"""Inject custom CSS styles."""
st.markdown("""
""", unsafe_allow_html=True)
def _render_sidebar(self):
"""Render sidebar with controls and stats."""
with st.sidebar:
st.header("đŽ Controls")
col1, col2 = st.columns(2)
with col1:
if st.button("âļī¸ Start", disabled=self.dashboard.is_recording, use_container_width=True):
try:
self.dashboard.start_recording()
st.rerun()
except Exception as e:
st.error(f"Failed to start: {e}")
with col2:
if st.button("âšī¸ Stop", disabled=not self.dashboard.is_recording, use_container_width=True):
self.dashboard.stop_recording()
st.rerun()
st.divider()
# Recording status
if self.dashboard.is_recording:
st.success("đ´ Recording...")
duration = self.dashboard.get_session_duration()
st.metric("Duration", f"{duration // 60}m {duration % 60}s")
else:
st.info("âĒ Stopped")
st.divider()
# Statistics
st.header("đ Statistics")
st.metric("Total Entries", len(self.dashboard.entries))
if self.dashboard.entries:
stats = self.dashboard.get_sentiment_stats()
total = len(self.dashboard.entries)
st.metric(
"đ Positive",
f"{stats['POSITIVE']} ({stats['POSITIVE']/total*100:.0f}%)"
)
st.metric(
"đ Neutral",
f"{stats['NEUTRAL']} ({stats['NEUTRAL']/total*100:.0f}%)"
)
st.metric(
"đ Negative",
f"{stats['NEGATIVE']} ({stats['NEGATIVE']/total*100:.0f}%)"
)
def _render_main_content(self):
"""Render main content area."""
col1, col2 = st.columns([2, 1])
with col1:
self._render_emotion_timeline()
with col2:
self._render_current_status()
st.divider()
self._render_recent_transcriptions()
def _render_emotion_timeline(self):
"""Render emotion timeline chart."""
st.subheader("đ Emotion Timeline")
if not self.dashboard.entries:
st.info("Start a session to see the emotion timeline")
return
# Prepare data
timestamps = [entry.timestamp for entry in self.dashboard.entries]
scores = [self._sentiment_to_score(entry.sentiment) for entry in self.dashboard.entries]
labels = [entry.sentiment.label for entry in self.dashboard.entries]
# Create chart
fig = go.Figure()
fig.add_trace(go.Scatter(
x=timestamps,
y=scores,
mode='lines+markers',
line=dict(width=3, color='#2196F3'),
marker=dict(
size=12,
color=[self.COLORS[label] for label in labels],
line=dict(width=2, color='white')
),
hovertemplate='%{text}
Score: %{y:.2f}
%{x}