File size: 28,517 Bytes
ba069c3 7e03307 b9341c8 ba069c3 16698ae ba069c3 16698ae ba069c3 16698ae ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 16698ae ba069c3 7e03307 16698ae ba069c3 16698ae b9341c8 16698ae b9341c8 16698ae b9341c8 16698ae b9341c8 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 b9341c8 ba069c3 7e03307 ba069c3 b9341c8 7e03307 b9341c8 7e03307 b9341c8 7e03307 ba069c3 7e03307 b9341c8 7e03307 ba069c3 1732572 b9341c8 7e03307 b9341c8 7e03307 b9341c8 7e03307 b9341c8 1732572 ba069c3 7e03307 ba069c3 1732572 ba069c3 1732572 ba069c3 1732572 ba069c3 1732572 7e03307 1732572 7e03307 1732572 7e03307 1732572 7e03307 1732572 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 1732572 7e03307 b9341c8 7e03307 1732572 7e03307 1732572 7e03307 1732572 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 1732572 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 7e03307 ba069c3 1732572 7e03307 1732572 7e03307 1732572 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 |
import gradio as gr
import torch
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from transformers import pipeline
import logging
import time
from typing import Tuple, List, Dict, Optional
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Model configuration
MODEL_NAME = "abhilash88/face-emotion-detection"
# Emotion labels mapping
EMOTION_LABELS = {
'LABEL_0': 'angry',
'LABEL_1': 'disgust',
'LABEL_2': 'fear',
'LABEL_3': 'happy',
'LABEL_4': 'sad',
'LABEL_5': 'surprise',
'LABEL_6': 'neutral'
}
# Emotion colors for visualization
EMOTION_COLORS = {
'angry': '#FF4444',
'disgust': '#AA4444',
'fear': '#4444FF',
'happy': '#44FF44',
'sad': '#4444AA',
'surprise': '#FFAA44',
'neutral': '#AAAAAA'
}
# Global variables for model
emotion_classifier = None
face_cascade = None
def load_models():
"""Load the emotion detection model and face cascade"""
global emotion_classifier, face_cascade
try:
logger.info(f"Loading emotion detection model: {MODEL_NAME}")
# Try loading with different configurations
try:
emotion_classifier = pipeline(
"image-classification",
model=MODEL_NAME,
top_k=None
)
except Exception as e1:
logger.warning(f"Failed with top_k=None, trying without: {e1}")
try:
emotion_classifier = pipeline(
"image-classification",
model=MODEL_NAME
)
except Exception as e2:
logger.warning(f"Failed with default config, trying basic setup: {e2}")
# Fallback to manual model loading
from transformers import AutoImageProcessor, AutoModelForImageClassification
processor = AutoImageProcessor.from_pretrained(MODEL_NAME)
model = AutoModelForImageClassification.from_pretrained(MODEL_NAME)
emotion_classifier = pipeline(
"image-classification",
model=model,
image_processor=processor
)
logger.info("Emotion detection model loaded successfully")
# Load OpenCV face cascade
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
if face_cascade.empty():
logger.error("Failed to load face cascade classifier")
return False
logger.info("Face detection cascade loaded successfully")
return True
except Exception as e:
logger.error(f"Error loading models: {e}")
return False
def detect_faces_improved(image: np.ndarray, min_face_size: int = 80) -> List[Tuple[int, int, int, int]]:
"""
Improved face detection with better parameters to reduce false positives
and merge overlapping detections
"""
try:
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# Use more strict parameters to reduce false positives
faces = face_cascade.detectMultiScale(
gray,
scaleFactor=1.05, # Smaller scale factor for more careful detection
minNeighbors=8, # Higher min neighbors to be more strict
minSize=(min_face_size, min_face_size), # Larger minimum size
maxSize=(int(min(image.shape[:2]) * 0.8), int(min(image.shape[:2]) * 0.8)), # Maximum size
flags=cv2.CASCADE_SCALE_IMAGE | cv2.CASCADE_DO_CANNY_PRUNING
)
if len(faces) == 0:
return []
# Convert to list and merge overlapping detections
faces_list = faces.tolist()
merged_faces = merge_overlapping_faces(faces_list)
# Filter faces that are too small relative to image size
image_area = image.shape[0] * image.shape[1]
filtered_faces = []
for (x, y, w, h) in merged_faces:
face_area = w * h
# Face should be at least 0.5% of image area but not more than 80%
if 0.005 < (face_area / image_area) < 0.8:
# Additional validation: check aspect ratio (faces are roughly square)
aspect_ratio = w / h
if 0.7 <= aspect_ratio <= 1.4: # Allow some variance but not extreme rectangles
filtered_faces.append((x, y, w, h))
return filtered_faces
except Exception as e:
logger.error(f"Error detecting faces: {e}")
return []
def merge_overlapping_faces(faces: List[Tuple[int, int, int, int]], overlap_threshold: float = 0.3) -> List[Tuple[int, int, int, int]]:
"""
Merge overlapping face detections to avoid duplicates
"""
if len(faces) <= 1:
return faces
# Calculate IoU (Intersection over Union) for all pairs
merged = []
used = [False] * len(faces)
for i in range(len(faces)):
if used[i]:
continue
current_face = faces[i]
merged_face = list(current_face)
count = 1
used[i] = True
for j in range(i + 1, len(faces)):
if used[j]:
continue
if calculate_iou(current_face, faces[j]) > overlap_threshold:
# Merge by averaging coordinates
merged_face[0] = (merged_face[0] * count + faces[j][0]) // (count + 1)
merged_face[1] = (merged_face[1] * count + faces[j][1]) // (count + 1)
merged_face[2] = (merged_face[2] * count + faces[j][2]) // (count + 1)
merged_face[3] = (merged_face[3] * count + faces[j][3]) // (count + 1)
count += 1
used[j] = True
merged.append(tuple(merged_face))
return merged
def calculate_iou(box1: Tuple[int, int, int, int], box2: Tuple[int, int, int, int]) -> float:
"""Calculate Intersection over Union of two bounding boxes"""
x1, y1, w1, h1 = box1
x2, y2, w2, h2 = box2
# Calculate intersection
x_left = max(x1, x2)
y_top = max(y1, y2)
x_right = min(x1 + w1, x2 + w2)
y_bottom = min(y1 + h1, y2 + h2)
if x_right < x_left or y_bottom < y_top:
return 0.0
intersection = (x_right - x_left) * (y_bottom - y_top)
# Calculate union
area1 = w1 * h1
area2 = w2 * h2
union = area1 + area2 - intersection
return intersection / union if union > 0 else 0.0
def predict_emotion(face_image: Image.Image) -> List[Dict]:
"""Predict emotion for a single face"""
try:
if emotion_classifier is None:
logger.warning("Emotion classifier not loaded, returning neutral")
return [{"label": "neutral", "score": 1.0}]
# Resize image for better performance and consistency
face_image = face_image.resize((224, 224))
# The pipeline returns results in different formats depending on configuration
results = emotion_classifier(face_image)
# Handle different return formats and map labels to emotion names
processed_results = []
if isinstance(results, list):
for result in results:
if isinstance(result, dict) and 'label' in result and 'score' in result:
# Map LABEL_X to actual emotion name
emotion_name = EMOTION_LABELS.get(result['label'], result['label'])
processed_results.append({
'label': emotion_name,
'score': result['score']
})
elif isinstance(results, dict):
# Single prediction
emotion_name = EMOTION_LABELS.get(results['label'], results['label'])
processed_results = [{
'label': emotion_name,
'score': results['score']
}]
if not processed_results:
logger.warning("No valid results, returning neutral")
return [{"label": "neutral", "score": 1.0}]
return processed_results
except Exception as e:
logger.error(f"Error predicting emotion: {e}")
return [{"label": "neutral", "score": 1.0}]
def draw_emotion_results(image: Image.Image, faces: List, emotions: List, confidence_threshold: float = 0.5) -> Image.Image:
"""Draw bounding boxes and emotion labels on the image"""
try:
draw = ImageDraw.Draw(image)
# Try to load a font, fallback to default if not available
try:
font = ImageFont.truetype("arial.ttf", 20)
except:
try:
font = ImageFont.truetype("DejaVuSans.ttf", 20)
except:
font = ImageFont.load_default()
for i, (x, y, w, h) in enumerate(faces):
if i < len(emotions):
# Get top emotion above threshold
valid_emotions = [e for e in emotions[i] if e['score'] >= confidence_threshold]
if not valid_emotions:
continue
top_emotion = max(valid_emotions, key=lambda x: x['score'])
emotion_label = top_emotion['label']
confidence = top_emotion['score']
# Get color for this emotion
color = EMOTION_COLORS.get(emotion_label, '#FFFFFF')
# Draw bounding box with thicker line
draw.rectangle([(x, y), (x + w, y + h)], outline=color, width=4)
# Draw emotion label with better formatting
label_text = f"{emotion_label.upper()}"
confidence_text = f"{confidence:.1%}"
# Calculate text size for background
bbox1 = draw.textbbox((0, 0), label_text, font=font)
bbox2 = draw.textbbox((0, 0), confidence_text, font=font)
text_width = max(bbox1[2] - bbox1[0], bbox2[2] - bbox2[0]) + 20
text_height = (bbox1[3] - bbox1[1]) + (bbox2[3] - bbox2[1]) + 15
# Draw background for text
draw.rectangle(
[(x, y - text_height - 10), (x + text_width, y)],
fill=color
)
# Draw emotion label
draw.text((x + 10, y - text_height - 5), label_text, fill='white', font=font)
# Draw confidence
draw.text((x + 10, y - text_height + 20), confidence_text, fill='white', font=font)
return image
except Exception as e:
logger.error(f"Error drawing results: {e}")
return image
def process_image(image: Image.Image, confidence_threshold: float = 0.5, min_face_size: int = 80) -> Tuple[Image.Image, str]:
"""Process an image for emotion detection with improved face detection"""
try:
if image is None:
return None, "No image provided"
# Convert PIL to numpy array
image_np = np.array(image)
# Detect faces with improved method
faces = detect_faces_improved(image_np, min_face_size)
if not faces:
return image, "β No faces detected in the image. Try adjusting the minimum face size or use an image with clearer faces."
# Process each face
emotions_list = []
valid_faces = []
for (x, y, w, h) in faces:
# Extract face region with some padding
padding = max(10, min(w, h) // 10)
x_pad = max(0, x - padding)
y_pad = max(0, y - padding)
w_pad = min(image.width - x_pad, w + 2 * padding)
h_pad = min(image.height - y_pad, h + 2 * padding)
face_region = image.crop((x_pad, y_pad, x_pad + w_pad, y_pad + h_pad))
# Predict emotion
emotions = predict_emotion(face_region)
# Check if any emotion meets the confidence threshold
valid_emotions = [e for e in emotions if e['score'] >= confidence_threshold]
if valid_emotions:
emotions_list.append(emotions)
valid_faces.append((x, y, w, h))
if not valid_faces:
return image, f"β οΈ {len(faces)} face(s) detected but no emotions above {confidence_threshold:.1f} confidence threshold. Try lowering the threshold."
# Draw results
result_image = draw_emotion_results(image.copy(), valid_faces, emotions_list, confidence_threshold)
# Create summary text
summary_lines = [f"β
**Successfully detected {len(valid_faces)} face(s) with confident emotion predictions:**\n"]
for i, emotions in enumerate(emotions_list):
# Sort emotions by confidence
sorted_emotions = sorted(emotions, key=lambda x: x['score'], reverse=True)
top_emotion = sorted_emotions[0]
# Add emoji for emotion
emotion_emoji = {
'angry': 'π ', 'disgust': 'π€’', 'fear': 'π¨',
'happy': 'π', 'sad': 'π’', 'surprise': 'π²', 'neutral': 'π'
}.get(top_emotion['label'], 'π')
summary_lines.append(f"**Face {i+1}:** {emotion_emoji} **{top_emotion['label'].title()}** ({top_emotion['score']:.1%} confidence)")
# Add top 3 emotions for detailed analysis
if len(sorted_emotions) > 1:
summary_lines.append(" π Other detected emotions:")
for emotion in sorted_emotions[1:4]: # Top 3 others
if emotion['score'] >= confidence_threshold:
emoji = {
'angry': 'π ', 'disgust': 'π€’', 'fear': 'π¨',
'happy': 'π', 'sad': 'π’', 'surprise': 'π²', 'neutral': 'π'
}.get(emotion['label'], 'π')
summary_lines.append(f" β’ {emoji} {emotion['label'].title()}: {emotion['score']:.1%}")
summary_lines.append("")
summary = "\n".join(summary_lines)
return result_image, summary
except Exception as e:
logger.error(f"Error processing image: {e}")
return image, f"β Error processing image: {str(e)}"
def analyze_emotions_batch(files) -> str:
"""Analyze emotions in multiple uploaded files"""
try:
if not files:
return "No files provided"
all_results = []
for idx, file in enumerate(files):
try:
# Open the image file
image = Image.open(file.name)
# Convert PIL to numpy array
image_np = np.array(image)
# Detect faces with improved method
faces = detect_faces_improved(image_np)
if not faces:
all_results.append(f"π File {idx+1} ({file.name}): No faces detected")
continue
# Process each face
image_emotions = []
for (x, y, w, h) in faces:
# Extract face region
face_region = image.crop((x, y, x + w, y + h))
# Predict emotion
emotions = predict_emotion(face_region)
top_emotion = max(emotions, key=lambda x: x['score'])
image_emotions.append(f"{top_emotion['label']} ({top_emotion['score']:.1%})")
all_results.append(f"π File {idx+1} ({file.name}): {len(faces)} face(s) - {', '.join(image_emotions)}")
except Exception as e:
all_results.append(f"π File {idx+1}: Error processing - {str(e)}")
return "\n".join(all_results)
except Exception as e:
logger.error(f"Error in batch analysis: {e}")
return f"Error in batch analysis: {str(e)}"
def get_emotion_statistics(image: Image.Image) -> str:
"""Get detailed emotion statistics for an image"""
try:
if image is None:
return "No image provided"
# Convert PIL to numpy array
image_np = np.array(image)
# Detect faces with improved method
faces = detect_faces_improved(image_np)
if not faces:
return "β No faces detected in the image"
# Collect all emotions
all_emotions = {}
face_details = []
for i, (x, y, w, h) in enumerate(faces):
# Extract face region
face_region = image.crop((x, y, x + w, y + h))
# Predict emotion
emotions = predict_emotion(face_region)
# Store face details
sorted_emotions = sorted(emotions, key=lambda x: x['score'], reverse=True)
face_details.append({
'face_num': i + 1,
'position': (x, y, w, h),
'emotions': sorted_emotions
})
for emotion_data in emotions:
emotion = emotion_data['label']
score = emotion_data['score']
if emotion not in all_emotions:
all_emotions[emotion] = []
all_emotions[emotion].append(score)
# Calculate statistics
stats_lines = [f"π **Detailed Emotion Analysis for {len(faces)} face(s):**\n"]
# Per-face breakdown
for face_detail in face_details:
stats_lines.append(f"### π€ Face {face_detail['face_num']}:")
top_emotion = face_detail['emotions'][0]
stats_lines.append(f"**Primary emotion:** {top_emotion['label'].title()} ({top_emotion['score']:.1%})")
stats_lines.append("**All emotions detected:**")
for emotion in face_detail['emotions']:
bar_length = int(emotion['score'] * 20) # Scale to 20 chars
bar = "β" * bar_length + "β" * (20 - bar_length)
stats_lines.append(f" {emotion['label'].title()}: {bar} {emotion['score']:.1%}")
stats_lines.append("")
# Overall statistics
if len(faces) > 1:
stats_lines.append("### π Overall Statistics:")
for emotion, scores in all_emotions.items():
avg_score = np.mean(scores)
max_score = np.max(scores)
count = len(scores)
stats_lines.append(f"**{emotion.title()}:**")
stats_lines.append(f" - Average confidence: {avg_score:.1%}")
stats_lines.append(f" - Maximum confidence: {max_score:.1%}")
stats_lines.append(f" - Faces showing this emotion: {count}/{len(faces)}")
stats_lines.append("")
return "\n".join(stats_lines)
except Exception as e:
logger.error(f"Error calculating statistics: {e}")
return f"β Error calculating statistics: {str(e)}"
# Create simplified Gradio interface
def create_interface():
custom_css = """
.main-header {
text-align: center;
color: #2563eb;
margin-bottom: 2rem;
}
.gradio-container {
max-width: 1200px;
margin: auto;
}
"""
with gr.Blocks(
title="Face Emotion Detection - Improved",
theme=gr.themes.Soft(),
css=custom_css
) as iface:
# Header
gr.Markdown(
"""
# π Face Emotion Detection (Improved)
### Accurate emotion recognition with enhanced face detection
This improved version includes better face detection algorithms to reduce false positives
and provides more accurate emotion classification for detected faces.
""",
elem_classes=["main-header"]
)
with gr.Tab("πΌοΈ Single Image Analysis"):
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(
label="Upload Image",
type="pil",
height=400
)
with gr.Row():
confidence_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.5,
step=0.1,
label="π― Confidence Threshold",
info="Minimum confidence to display emotions"
)
face_size_slider = gr.Slider(
minimum=30,
maximum=200,
value=80,
step=10,
label="π€ Minimum Face Size",
info="Minimum face size (pixels) to detect"
)
analyze_btn = gr.Button("π Analyze Emotions", variant="primary", size="lg")
with gr.Column(scale=1):
output_image = gr.Image(
label="Emotion Detection Results",
height=400
)
result_text = gr.Textbox(
label="Detection Results",
lines=8,
show_copy_button=True
)
with gr.Tab("π Detailed Statistics"):
with gr.Row():
with gr.Column(scale=1):
stats_image_input = gr.Image(
label="Upload Image for Statistical Analysis",
type="pil",
height=400
)
analyze_stats_btn = gr.Button("π Generate Detailed Statistics", variant="primary", size="lg")
with gr.Column(scale=1):
stats_output = gr.Markdown(
value="Upload an image and click 'Generate Detailed Statistics' to see comprehensive emotion analysis...",
label="Emotion Statistics"
)
with gr.Tab("π Batch Processing"):
with gr.Column():
batch_images_input = gr.File(
label="Upload Multiple Images",
file_count="multiple",
file_types=["image"]
)
batch_process_btn = gr.Button("β‘ Process All Images", variant="primary", size="lg")
batch_results_output = gr.Textbox(
label="Batch Processing Results",
lines=15,
show_copy_button=True
)
with gr.Tab("βΉοΈ About & Tips"):
gr.Markdown(
"""
## π§ Improvements Made
### β
Enhanced Face Detection
- **Stricter parameters** to reduce false positives
- **Overlap detection** to merge duplicate face detections
- **Size filtering** to ignore unrealistic face sizes
- **Aspect ratio validation** to filter non-face rectangles
### π― Better Accuracy
- **Confidence thresholds** to filter uncertain predictions
- **Improved preprocessing** for better emotion recognition
- **Face padding** for better context in emotion detection
### π Performance Optimizations
- **Removed problematic live camera** feature
- **Streamlined interface** for better user experience
- **Better error handling** and user feedback
## π Supported Emotions
- π **Angry** - Expressions of anger, frustration
- π€’ **Disgust** - Expressions of revulsion or distaste
- π¨ **Fear** - Expressions of fear, anxiety
- π **Happy** - Expressions of joy, contentment
- π’ **Sad** - Expressions of sadness, sorrow
- π² **Surprise** - Expressions of surprise, amazement
- π **Neutral** - Calm, neutral expressions
## π‘ Tips for Best Results
1. **Use clear, well-lit images** with visible faces
2. **Adjust confidence threshold** if you get too many/few results
3. **Modify minimum face size** based on your image resolution
4. **Frontal face views** work better than profile shots
5. **Avoid heavily shadowed or blurry faces**
## π§ Troubleshooting
- **No faces detected?** Try lowering the minimum face size
- **Too many false detections?** Increase the minimum face size or confidence threshold
- **Missing obvious faces?** Lower the confidence threshold
- **Multiple boxes on same face?** The system should automatically merge them now
---
**Model:** [abhilash88/face-emotion-detection](https://huggingface.co/abhilash88/face-emotion-detection)
"""
)
# Event handlers
analyze_btn.click(
fn=process_image,
inputs=[image_input, confidence_slider, face_size_slider],
outputs=[output_image, result_text],
api_name="analyze_image"
)
analyze_stats_btn.click(
fn=get_emotion_statistics,
inputs=stats_image_input,
outputs=stats_output,
api_name="get_statistics"
)
batch_process_btn.click(
fn=analyze_emotions_batch,
inputs=batch_images_input,
outputs=batch_results_output,
api_name="batch_process"
)
# Example images
gr.Examples(
examples=[
"https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d?w=400&h=400&fit=crop&crop=face",
"https://images.unsplash.com/photo-1554151228-14d9def656e4?w=400&h=400&fit=crop&crop=face",
"https://images.unsplash.com/photo-1472099645785-5658abf4ff4e?w=400&h=400&fit=crop&crop=face",
],
inputs=image_input,
label="πΌοΈ Try these example images"
)
return iface
# Initialize and launch
if __name__ == "__main__":
logger.info("Initializing Improved Face Emotion Detection System...")
if load_models():
logger.info("Models loaded successfully!")
iface = create_interface()
iface.launch(
share=False,
show_error=True,
server_name="0.0.0.0",
server_port=7860,
show_api=True
)
else:
logger.error("Failed to load models. Please check your model configuration.")
with gr.Blocks() as error_iface:
gr.Markdown(
"""
# β οΈ Model Loading Error
The emotion detection model failed to load. Please check:
1. Network connectivity
2. Model dependencies
3. System logs for details
"""
)
error_iface.launch(
share=False,
show_error=True,
server_name="0.0.0.0",
server_port=7860
) |