Spaces:
Runtime error
Runtime error
Commit
·
7b79cf7
1
Parent(s):
f19cfab
TSLA stock sentiment
Browse files- TSLA_streamlit_app.py +0 -203
- requirements.txt +9 -0
TSLA_streamlit_app.py
DELETED
|
@@ -1,203 +0,0 @@
|
|
| 1 |
-
from datetime import date
|
| 2 |
-
from datetime import datetime
|
| 3 |
-
import re
|
| 4 |
-
|
| 5 |
-
import numpy as np
|
| 6 |
-
import pandas as pd
|
| 7 |
-
from PIL import Image
|
| 8 |
-
import plotly.express as px
|
| 9 |
-
import plotly.graph_objects as go
|
| 10 |
-
import streamlit as st
|
| 11 |
-
import time
|
| 12 |
-
|
| 13 |
-
from plotly.subplots import make_subplots
|
| 14 |
-
|
| 15 |
-
# Read CSV file into pandas and extract timestamp data
|
| 16 |
-
# dfSentiment = ### YOUR LINE OF CODE HERE
|
| 17 |
-
dfSentiment = pd.read_csv('../Phase_I-Proof_of_concept/TSLASentimentAnalyzer/sentiment_data.csv')
|
| 18 |
-
dfSentiment['timestamp'] = [datetime.strptime(dt, '%Y-%m-%d') for dt in dfSentiment['timestamp'].tolist()]
|
| 19 |
-
|
| 20 |
-
# Multi-select columns to build chart
|
| 21 |
-
col_list = dfSentiment.columns.tolist()
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
r_sentiment = re.compile(".*sentiment")
|
| 25 |
-
sentiment_cols = list(filter(r_sentiment.match, col_list))
|
| 26 |
-
|
| 27 |
-
r_post = re.compile(".*post")
|
| 28 |
-
post_list = ist(filter(r_post.match, col_list))
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
r_perc= re.compile(".*perc")
|
| 32 |
-
perc_list = list(filter(r_perc.match, col_list))
|
| 33 |
-
|
| 34 |
-
r_close = re.compile(".*close")
|
| 35 |
-
close_list = list(filter(r_close.match, col_list))
|
| 36 |
-
|
| 37 |
-
r_volume = re.compile(".*volume")
|
| 38 |
-
volume_list = list(filter(r_volume.match, col_list))
|
| 39 |
-
|
| 40 |
-
sentiment_cols = sentiment_cols + post_list
|
| 41 |
-
stocks_cols = close_list + volume_list
|
| 42 |
-
|
| 43 |
-
# Config for page
|
| 44 |
-
st.set_page_config(
|
| 45 |
-
page_title= 'TSLA Bot',
|
| 46 |
-
page_icon='✅',
|
| 47 |
-
layout='wide',
|
| 48 |
-
)
|
| 49 |
-
|
| 50 |
-
with st.sidebar:
|
| 51 |
-
# FourthBrain logo to sidebar
|
| 52 |
-
fourthbrain_logo = Image.open('./images/fourthbrain_logo.png')
|
| 53 |
-
st.image([fourthbrain_logo], width=300)
|
| 54 |
-
|
| 55 |
-
# Date selection filters
|
| 56 |
-
start_date_filter = st.date_input(
|
| 57 |
-
'Start Date',
|
| 58 |
-
min(dfSentiment['timestamp']),
|
| 59 |
-
min_value=min(dfSentiment['timestamp']),
|
| 60 |
-
max_value=max(dfSentiment['timestamp'])
|
| 61 |
-
)
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
end_date_filter = st.date_input(
|
| 65 |
-
'End Date',
|
| 66 |
-
max(dfSentiment['timestamp']),
|
| 67 |
-
min_value=min(dfSentiment['timestamp']),
|
| 68 |
-
max_value=max(dfSentiment['timestamp'])
|
| 69 |
-
)
|
| 70 |
-
|
| 71 |
-
sentiment_select = st.selectbox('Select Sentiment/Reddit Data', sentiment_cols)
|
| 72 |
-
stock_select = st.selectbox('Select Stock Data', stocks_cols)
|
| 73 |
-
|
| 74 |
-
# Banner with TSLA and Reddit images
|
| 75 |
-
tsla_logo = Image.open('./images/tsla_logo.png')
|
| 76 |
-
reddit_logo = Image.open('./images/reddit_logo.png')
|
| 77 |
-
st.image([tsla_logo, reddit_logo], width=200)
|
| 78 |
-
|
| 79 |
-
# dashboard title
|
| 80 |
-
st.title('TSLA Subreddit and Stock Price')
|
| 81 |
-
|
| 82 |
-
## dataframe filter
|
| 83 |
-
# start date
|
| 84 |
-
dfSentiment = dfSentiment[dfSentiment['timestamp'] >= datetime(start_date_filter.year, start_date_filter.month, start_date_filter.day)]
|
| 85 |
-
|
| 86 |
-
# end date
|
| 87 |
-
dfSentiment = dfSentiment[dfSentiment['timestamp'] <= datetime(end_date_filter.year, end_date_filter.month, end_date_filter.day)]
|
| 88 |
-
dfSentiment = dfSentiment.reset_index(drop=True)
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
# creating a single-element container
|
| 92 |
-
placeholder = st.empty()
|
| 93 |
-
|
| 94 |
-
# near real-time / live feed simulation
|
| 95 |
-
for i in range(1, len(dfSentiment)-1):
|
| 96 |
-
|
| 97 |
-
# creating KPIs
|
| 98 |
-
last_close = dfSentiment['close'][i]
|
| 99 |
-
last_close_lag1 = dfSentiment['close'][i-1]
|
| 100 |
-
last_sentiment = dfSentiment['sentiment_score'][i]
|
| 101 |
-
last_sentiment_lag1 = dfSentiment['sentiment_score'][i-1]
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
with placeholder.container():
|
| 105 |
-
|
| 106 |
-
# create columns
|
| 107 |
-
kpi1, kpi2 = st.columns(3)
|
| 108 |
-
|
| 109 |
-
# fill in those three columns with respective metrics or KPIs
|
| 110 |
-
kpi1.metric(
|
| 111 |
-
label='Sentiment Score',
|
| 112 |
-
value=round(last_sentiment, 3),
|
| 113 |
-
delta=round(last_sentiment_lag1, 3),
|
| 114 |
-
)
|
| 115 |
-
|
| 116 |
-
kpi2.metric(
|
| 117 |
-
label='Last Closing Price',
|
| 118 |
-
value=round(last_close),
|
| 119 |
-
delta=round(last_close - last_close_lag1)
|
| 120 |
-
)
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
# create two columns for charts
|
| 124 |
-
fig_col1, fig_col2 = st.columns(2)
|
| 125 |
-
|
| 126 |
-
with fig_col1:
|
| 127 |
-
# Add traces
|
| 128 |
-
fig=make_subplots(specs=[[{"secondary_y":True}]])
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
fig.add_trace(
|
| 132 |
-
go.Scatter(
|
| 133 |
-
x=dfSentiment['timestamp'][0:i],
|
| 134 |
-
y=dfSentiment[sentiment_select][0:i],
|
| 135 |
-
name=sentiment_select,
|
| 136 |
-
mode='lines',
|
| 137 |
-
hoverinfo='none',
|
| 138 |
-
)
|
| 139 |
-
)
|
| 140 |
-
|
| 141 |
-
if sentiment_select.startswith('perc') == True:
|
| 142 |
-
yaxis_label = '% Change Sentiment'
|
| 143 |
-
|
| 144 |
-
elif sentiment_select in sentiment_cols:
|
| 145 |
-
yaxis_label = 'Sentiment Score'
|
| 146 |
-
|
| 147 |
-
elif sentiment_select in post_list:
|
| 148 |
-
yaxis_label = 'Volume'
|
| 149 |
-
|
| 150 |
-
fig.layout.yaxis.title=yaxis_label
|
| 151 |
-
|
| 152 |
-
if stock_select.startswith('perc') == True:
|
| 153 |
-
fig.add_trace(
|
| 154 |
-
go.Scatter(
|
| 155 |
-
x=dfSentiment['timestamp'][0:i],
|
| 156 |
-
y=dfSentiment[stock_select][0:i],
|
| 157 |
-
name=stock_select,
|
| 158 |
-
mode='lines',
|
| 159 |
-
hoverinfo='none',
|
| 160 |
-
yaxis='y2',
|
| 161 |
-
)
|
| 162 |
-
)
|
| 163 |
-
fig.layout.yaxis2.title='% Change Stock Price ($US)'
|
| 164 |
-
|
| 165 |
-
elif stock_select == 'volume':
|
| 166 |
-
fig.add_trace(
|
| 167 |
-
go.Scatter(
|
| 168 |
-
x=dfSentiment['timestamp'][0:i],
|
| 169 |
-
y=dfSentiment[stock_select][0:i],
|
| 170 |
-
name=stock_select,
|
| 171 |
-
mode='lines',
|
| 172 |
-
hoverinfo='none',
|
| 173 |
-
yaxis='y2',
|
| 174 |
-
)
|
| 175 |
-
)
|
| 176 |
-
|
| 177 |
-
fig.layout.yaxis2.title="Shares Traded"
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
else:
|
| 181 |
-
fig.add_trace(
|
| 182 |
-
go.Scatter(
|
| 183 |
-
x=dfSentiment['timestamp'][0:i],
|
| 184 |
-
y=dfSentiment[stock_select][0:i],
|
| 185 |
-
name=stock_select,
|
| 186 |
-
mode='lines',
|
| 187 |
-
hoverinfo='none',
|
| 188 |
-
yaxis='y2',
|
| 189 |
-
)
|
| 190 |
-
)
|
| 191 |
-
|
| 192 |
-
fig.layout.yaxis2.title='Stock Price ($USD)'
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
fig.layout.xaxis.title='Timestamp'
|
| 196 |
-
|
| 197 |
-
# write the figure throught streamlit
|
| 198 |
-
st.write(fig)
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
st.markdown('### Detailed Data View')
|
| 202 |
-
st.dataframe(dfSentiment.iloc[:, 1:][0:i])
|
| 203 |
-
time.sleep(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pandas==1.4.2
|
| 2 |
+
matplotlib==3.5.2
|
| 3 |
+
streamlit==1.10.0
|
| 4 |
+
transformers==4.19.4
|
| 5 |
+
pydantic==1.9.1
|
| 6 |
+
praw==7.6.0
|
| 7 |
+
pytorch-pretrained-bert==0.6.2
|
| 8 |
+
loguru==0.6.0
|
| 9 |
+
plotly==5.9.0
|