Spaces:
Running
Running
File size: 10,033 Bytes
3b74d24 a8ce7ec 3fac025 a8ce7ec 67b21e5 a8ce7ec 3c116f2 a8ce7ec 3c116f2 a8ce7ec 3c116f2 3b74d24 3c116f2 a8ce7ec 3fac025 3c116f2 3fac025 3b74d24 140855d 3b74d24 140855d 3b74d24 3c116f2 3b74d24 3c116f2 3b74d24 140855d 3b74d24 3c116f2 3b74d24 3c116f2 3b74d24 2a7f4db 3c116f2 140855d 2a7f4db 3b74d24 2a7f4db 3fac025 a8ce7ec 3fac025 a8ce7ec 3b74d24 a8ce7ec 3b74d24 a8ce7ec 3b74d24 a8ce7ec 3b74d24 a8ce7ec 3b74d24 a8ce7ec 3b74d24 a8ce7ec 3b74d24 3c116f2 aa9c2da 3b74d24 2a7f4db a8ce7ec 3b74d24 aa9c2da 67b21e5 a8ce7ec 3fac025 3c116f2 2a7f4db 3c116f2 a8ce7ec 3fac025 2828dc3 a8ce7ec 3fac025 3c116f2 a8ce7ec aa9c2da 2a7f4db 3b74d24 3c116f2 67b21e5 3c116f2 3b74d24 3c116f2 a8ce7ec 3fac025 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import os, re, tempfile
import gradio as gr
import pandas as pd
import numpy as np
import torch
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from chronos import ChronosPipeline
import io, base64
from types import SimpleNamespace
# ----------------------------
# Modelo (ligero para Space free)
# ----------------------------
MODEL_ID = "amazon/chronos-t5-small" # o "amazon/chronos-t5-mini"
PIPELINE = ChronosPipeline.from_pretrained(
MODEL_ID,
device_map="auto",
dtype=torch.float32, # usar dtype (no torch_dtype)
)
# ----------------------------
# Estilo "pro" para las gráficas
# ----------------------------
plt.rcParams.update({
"figure.figsize": (9, 4.8),
"figure.facecolor": "#ffffff",
"axes.facecolor": "#ffffff",
"axes.grid": True,
"grid.color": "#e6e6e6",
"grid.linestyle": "-",
"grid.linewidth": 0.6,
"axes.spines.top": False,
"axes.spines.right": False,
"axes.spines.left": False,
"axes.spines.bottom": False,
"axes.titlesize": 16,
"axes.titleweight": "semibold",
"axes.labelsize": 12,
"legend.frameon": True,
"legend.framealpha": 0.9,
})
def _prepare_series(df: pd.DataFrame, freq: str | None):
if "date" not in df.columns or "value" not in df.columns:
raise gr.Error("El CSV debe tener columnas: date,value")
df = df.copy()
df["date"] = pd.to_datetime(df["date"])
df = df.sort_values("date")
if freq and freq.strip():
df = df.set_index("date").asfreq(freq).reset_index()
else:
inferred = pd.infer_freq(df["date"])
if inferred is None:
step = max(int((df["date"].diff().median() / pd.Timedelta(days=1)) or 1), 1)
df = df.set_index("date").asfreq(f"{step}D").reset_index()
else:
df = df.set_index("date").asfreq(inferred).reset_index()
df["value"] = pd.to_numeric(df["value"], errors="coerce")
df["value"] = df["value"].interpolate("linear").bfill().ffill()
return df
def _filter_by_sku(df: pd.DataFrame, sku: str | None):
if "sku" in df.columns:
if not sku:
raise gr.Error("Selecciona un SKU del listado.")
sdf = df[df["sku"].astype(str) == str(sku)].copy()
if sdf.empty:
raise gr.Error(f"No hay datos para el SKU: {sku}")
return sdf[["date", "value"]]
return df[["date", "value"]].copy()
def _nice_plot(df_hist: pd.DataFrame, df_fc: pd.DataFrame, std: np.ndarray) -> plt.Figure:
"""
Gráfica con:
- líneas P10, P50, P90
- banda ±1σ alrededor de P50
- eje X con año corto
- conexión visual hist→P50 (t a t+1) con línea punteada
"""
fig, ax = plt.subplots()
# Histórico
ax.plot(df_hist["date"], df_hist["value"], label="Histórico", linewidth=2.2, color="C0")
# Líneas de cuantiles
ax.plot(df_fc["date"], df_fc["p10"], label="P10", linewidth=1.8, color="C2")
ax.plot(df_fc["date"], df_fc["p50"], label="P50 (mediana)", linewidth=2.4, color="C1")
ax.plot(df_fc["date"], df_fc["p90"], label="P90", linewidth=1.8, color="C3")
# Banda ±1σ alrededor de P50
lo = df_fc["p50"] - std
hi = df_fc["p50"] + std
ax.fill_between(df_fc["date"], lo, hi, alpha=0.18, label="±1σ alrededor de P50",
color="C1", edgecolor="none")
# Conexión visual del último real al primer P50 (t -> t+1)
last_date = df_hist["date"].iloc[-1]
last_val = df_hist["value"].iloc[-1]
first_date = df_fc["date"].iloc[0]
first_p50 = df_fc["p50"].iloc[0]
ax.plot([last_date, first_date], [last_val, first_p50],
linestyle="--", linewidth=1.6, color="C1", alpha=0.9,
label="Conexión hist→P50")
# Formato fechas (año corto)
ax.xaxis.set_major_locator(mdates.AutoDateLocator())
ax.xaxis.set_major_formatter(mdates.DateFormatter("%y-%m"))
ax.set_title("Pronóstico con Chronos-T5 (P10 / P50 / P90 + ±1σ)")
ax.set_xlabel("Fecha"); ax.set_ylabel("Valor")
ax.legend(loc="upper left")
fig.tight_layout(pad=1.2)
return fig
def _safe_name(text: str) -> str:
import re
return re.sub(r"[^A-Za-z0-9._-]+", "-", str(text))[:50]
def forecast_fn(file, sku: str, horizon: int = 12, freq: str = "MS"):
if file is None:
raise gr.Error("Sube un CSV con columnas: (sku,) date, value")
raw = pd.read_csv(file.name)
df = _filter_by_sku(raw, sku)
df = _prepare_series(df, freq.strip() or None)
# Serie a tensor
y = torch.tensor(df["value"].values, dtype=torch.float32)
# Predicción probabilística (múltiples trayectorias)
samples = PIPELINE.predict(y, prediction_length=horizon, num_samples=200) # [1, N, H]
samples = samples[0].numpy() # [N, H]
p10, p50, p90 = np.quantile(samples, [0.10, 0.50, 0.90], axis=0)
std = samples.std(axis=0) # desviación estándar de la distribución predictiva en cada paso
# Fechas futuras
inferred = pd.infer_freq(df["date"])
if inferred is None:
step = max(int((df["date"].diff().median() / pd.Timedelta(days=1)) or 1), 1)
future_index = pd.date_range(df["date"].iloc[-1], periods=horizon+1, freq=f"{step}D")[1:]
else:
future_index = pd.date_range(df["date"].iloc[-1], periods=horizon+1, freq=inferred)[1:]
out = pd.DataFrame({
"date": future_index,
"p10": np.round(p10, 4),
"p50": np.round(p50, 4),
"p90": np.round(p90, 4),
"std": np.round(std, 4) # <-- añadimos σ al resultado
})
# Gráfica
fig = _nice_plot(df, out, std)
import tempfile, os
# Guardar la figura como PNG temporal
tmp_plot_dir = tempfile.mkdtemp(prefix="plot_")
plot_path = os.path.join(tmp_plot_dir, "forecast.png")
fig.savefig(plot_path, dpi=150, bbox_inches="tight")
plt.close(fig) # libera memoria
# Archivo para descargar
sku_name = _safe_name(sku) if sku else "serie"
fname = f"forecast_{sku_name}.csv"
tmp_dir = tempfile.mkdtemp(prefix="fcst_")
tmp_path = os.path.join(tmp_dir, fname)
out.to_csv(tmp_path, index=False, encoding="utf-8")
# Resumen en Markdown (primer paso + σ promedio del horizonte)
md = (
f"**Resumen (primer paso):** \n"
f"- P10: **{out['p10'].iloc[0]:.2f}** \n"
f"- P50: **{out['p50'].iloc[0]:.2f}** \n"
f"- P90: **{out['p90'].iloc[0]:.2f}** \n"
f"- σ (desv. estándar): **{out['std'].iloc[0]:.2f}** \n\n"
f"**σ promedio en el horizonte:** **{out['std'].mean():.2f}**"
)
return out, plot_path, tmp_path, md
def forecast_from_text(csv_text_or_b64: str, sku: str, horizon: int = 12, freq: str = "MS"):
"""
Recibe CSV como texto o base64 (sin 'data:'), lo escribe a un archivo temporal,
y llama a forecast_fn reutilizando toda tu lógica actual.
Devuelve: (tabla, image filepath, csv filepath, markdown) en el mismo orden.
"""
txt = (csv_text_or_b64 or "").strip()
# ¿Parece base64? Intentar decodificar; si falla, tratar como texto plano.
try:
if not ("\n" in txt) and all(c.isalnum() or c in "+/=\n\r" for c in txt):
raw = base64.b64decode(txt)
csv_text = raw.decode("utf-8", errors="replace")
else:
csv_text = txt
except Exception:
csv_text = txt
# Escribir a un archivo temporal .csv
tmp = tempfile.NamedTemporaryFile("w+", suffix=".csv", delete=False)
tmp.write(csv_text)
tmp.flush()
tmp.close()
# Crear un objeto con atributo .name para que forecast_fn lo lea como gr.File
dummy_file = SimpleNamespace(name=tmp.name)
# Reusar tu pipeline original
return forecast_fn(dummy_file, sku, horizon, freq)
def list_skus(file):
if file is None:
return gr.update(choices=[], value=None), None
df = pd.read_csv(file.name)
if "sku" in df.columns:
skus = sorted(df["sku"].dropna().astype(str).unique().tolist())
if not skus:
return gr.update(choices=[], value=None), df.head(10)
return gr.update(choices=skus, value=skus[0]), df.head(10)
return gr.update(choices=[], value=None), df.head(10)
with gr.Blocks(title="Pronóstico por SKU (Chronos-T5)") as demo:
gr.Markdown(
"## Pronóstico de Demanda por **SKU** \n"
"CSV con columnas: **sku (opcional)**, **date**, **value**. "
"Selecciona el SKU y genera el forecast."
)
with gr.Row():
file = gr.File(label="CSV (sku,date,value o date,value)", file_types=[".csv"])
sku_dd = gr.Dropdown(
choices=[], value=None,
label="SKU (si el CSV tiene columna 'sku')",
allow_custom_value=True
)
horizon = gr.Slider(1, 36, value=12, step=1, label="Horizonte (pasos)")
freq = gr.Dropdown(choices=["", "D", "W", "MS", "M"], value="MS",
label="Frecuencia. ''=inferir, MS=mensual")
preview = gr.Dataframe(label="Vista previa (primeras filas)")
file.change(list_skus, inputs=file, outputs=[sku_dd, preview])
btn = gr.Button("Generar pronóstico", variant="primary")
out_table = gr.Dataframe(label="Tabla de pronóstico")
out_plot = gr.Image(type="filepath", label="Gráfica") # sin height (compat)
download_file = gr.File(label="⬇️ Descargar pronóstico (CSV)", interactive=False)
stats_md = gr.Markdown(label="Resumen")
# Endpoint solo-API que recibe CSV como texto/base64 (sin archivo)
api_csv_text = gr.Textbox(visible=False)
gr.Button(visible=False).click(
fn=forecast_from_text,
inputs=[api_csv_text, sku_dd, horizon, freq], # MISMO orden que usará Netlify
outputs=[out_table, out_plot, download_file, stats_md],
api_name="/forecast_text"
)
btn.click(
forecast_fn,
inputs=[file, sku_dd, horizon, freq],
outputs=[out_table, out_plot, download_file, stats_md],
api_name="/forecast"
)
if __name__ == "__main__":
demo.queue().launch(server_name="0.0.0.0", server_port=7860, show_error=True)
|