Update app.R
Browse files
app.R
CHANGED
|
@@ -1,58 +1,145 @@
|
|
|
|
|
|
|
|
| 1 |
library(shiny)
|
| 2 |
-
library(bslib)
|
| 3 |
library(dplyr)
|
| 4 |
library(ggplot2)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
),
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
)
|
| 26 |
|
| 27 |
server <- function(input, output, session) {
|
| 28 |
-
subsetted <- reactive({
|
| 29 |
-
req(input$species)
|
| 30 |
-
df |> filter(Species %in% input$species)
|
| 31 |
-
})
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
}
|
| 57 |
|
| 58 |
-
shinyApp(ui, server)
|
|
|
|
| 1 |
+
# install.packages(c("shiny", "dplyr", "ggplot2", "DT"))
|
| 2 |
+
|
| 3 |
library(shiny)
|
|
|
|
| 4 |
library(dplyr)
|
| 5 |
library(ggplot2)
|
| 6 |
+
library(DT)
|
| 7 |
+
|
| 8 |
+
ui <- fluidPage(
|
| 9 |
+
titlePanel("Country Representation Rankings Explorer"),
|
| 10 |
|
| 11 |
+
sidebarLayout(
|
| 12 |
+
sidebarPanel(
|
| 13 |
+
h4("Controls"),
|
| 14 |
+
selectInput(
|
| 15 |
+
inputId = "metric",
|
| 16 |
+
label = "Select a Representation Metric:",
|
| 17 |
+
choices = c(
|
| 18 |
+
"Overall",
|
| 19 |
+
"Representation Gap",
|
| 20 |
+
"Ethnicity",
|
| 21 |
+
"Gender",
|
| 22 |
+
"Religion",
|
| 23 |
+
"Language"
|
| 24 |
+
),
|
| 25 |
+
selected = "Overall"
|
| 26 |
+
),
|
| 27 |
+
checkboxInput(
|
| 28 |
+
inputId = "sort_desc",
|
| 29 |
+
label = "Sort in descending order",
|
| 30 |
+
value = TRUE
|
| 31 |
+
),
|
| 32 |
+
hr(),
|
| 33 |
+
sliderInput(
|
| 34 |
+
inputId = "top_n",
|
| 35 |
+
label = "Number of Countries to Display in Plot:",
|
| 36 |
+
min = 5,
|
| 37 |
+
max = 50,
|
| 38 |
+
value = 10,
|
| 39 |
+
step = 1
|
| 40 |
+
)
|
| 41 |
),
|
| 42 |
+
|
| 43 |
+
mainPanel(
|
| 44 |
+
tabsetPanel(
|
| 45 |
+
tabPanel(
|
| 46 |
+
title = "Plot",
|
| 47 |
+
plotOutput("bar_plot", height = "600px")
|
| 48 |
+
),
|
| 49 |
+
tabPanel(
|
| 50 |
+
title = "Data Table",
|
| 51 |
+
DTOutput("data_table")
|
| 52 |
+
),
|
| 53 |
+
tabPanel(
|
| 54 |
+
title = "Summary",
|
| 55 |
+
verbatimTextOutput("summary_text")
|
| 56 |
+
)
|
| 57 |
+
)
|
| 58 |
+
)
|
| 59 |
+
)
|
| 60 |
)
|
| 61 |
|
| 62 |
server <- function(input, output, session) {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
# Load the data (adjust the path as necessary)
|
| 65 |
+
data_raw <- reactive({
|
| 66 |
+
read.csv("CountryRepresentationRankings.csv", stringsAsFactors = FALSE)
|
| 67 |
+
})
|
| 68 |
+
|
| 69 |
+
# Reactively prepare the data for plotting and table display
|
| 70 |
+
data_prepared <- reactive({
|
| 71 |
+
req(data_raw())
|
| 72 |
+
# Convert to tibble for convenience
|
| 73 |
+
df <- tibble::as_tibble(data_raw())
|
| 74 |
+
|
| 75 |
+
# Ensure the selected metric is numeric for plotting
|
| 76 |
+
# (This is typically already numeric, but we can do a safe check.)
|
| 77 |
+
# Also handle potential issues with missing values.
|
| 78 |
+
df <- df %>%
|
| 79 |
+
mutate(
|
| 80 |
+
across(all_of(input$metric), as.numeric)
|
| 81 |
+
) %>%
|
| 82 |
+
filter(!is.na(.data[[input$metric]]))
|
| 83 |
+
|
| 84 |
+
# Sort ascending or descending
|
| 85 |
+
if (input$sort_desc) {
|
| 86 |
+
df <- df %>% arrange(desc(.data[[input$metric]]))
|
| 87 |
+
} else {
|
| 88 |
+
df <- df %>% arrange(.data[[input$metric]])
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
# Keep only the top N rows for plotting
|
| 92 |
+
df <- df %>% slice_head(n = input$top_n)
|
| 93 |
+
|
| 94 |
+
df
|
| 95 |
+
})
|
| 96 |
|
| 97 |
+
# Render bar plot of the selected metric for top N countries
|
| 98 |
+
output$bar_plot <- renderPlot({
|
| 99 |
+
df <- data_prepared()
|
| 100 |
+
|
| 101 |
+
# Convert Country to factor for a nice ordered plot
|
| 102 |
+
df <- df %>%
|
| 103 |
+
mutate(Country = factor(Country, levels = Country))
|
| 104 |
+
|
| 105 |
+
ggplot(df, aes(x = Country, y = .data[[input$metric]])) +
|
| 106 |
+
geom_col(fill = "steelblue") +
|
| 107 |
+
coord_flip() +
|
| 108 |
+
labs(
|
| 109 |
+
x = "Country",
|
| 110 |
+
y = paste0(input$metric, " Index"),
|
| 111 |
+
title = paste("Top", input$top_n, "Countries by", input$metric)
|
| 112 |
+
) +
|
| 113 |
+
theme_minimal(base_size = 14)
|
| 114 |
+
})
|
| 115 |
+
|
| 116 |
+
# Render data table of the entire dataset
|
| 117 |
+
output$data_table <- renderDT({
|
| 118 |
+
req(data_raw())
|
| 119 |
+
datatable(
|
| 120 |
+
data_raw(),
|
| 121 |
+
options = list(pageLength = 10, autoWidth = TRUE),
|
| 122 |
+
filter = "top",
|
| 123 |
+
rownames = FALSE
|
| 124 |
+
)
|
| 125 |
+
})
|
| 126 |
|
| 127 |
+
# Render summary statistics text for the selected metric
|
| 128 |
+
output$summary_text <- renderPrint({
|
| 129 |
+
df <- data_raw()
|
| 130 |
+
req(df)
|
| 131 |
+
# Convert the chosen metric to numeric if needed
|
| 132 |
+
df[[input$metric]] <- suppressWarnings(as.numeric(df[[input$metric]]))
|
| 133 |
+
|
| 134 |
+
valid_metric <- df[[input$metric]][!is.na(df[[input$metric]])]
|
| 135 |
+
if (length(valid_metric) == 0) {
|
| 136 |
+
cat("No valid numeric data for the selected metric.")
|
| 137 |
+
} else {
|
| 138 |
+
summary_stats <- summary(valid_metric)
|
| 139 |
+
cat("Summary of", input$metric, "across all countries:\n")
|
| 140 |
+
print(summary_stats)
|
| 141 |
+
}
|
| 142 |
+
})
|
| 143 |
}
|
| 144 |
|
| 145 |
+
shinyApp(ui = ui, server = server)
|