Spaces:
Runtime error
Runtime error
Commit
·
41dac9c
1
Parent(s):
5976712
hf6
Browse files- app.py +229 -41
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -52,6 +52,13 @@ def get_emotion_model():
|
|
| 52 |
|
| 53 |
tokenizer_emotion,model_emotion = get_emotion_model()
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
def extract_text_from_pdf(path):
|
| 56 |
text=''
|
| 57 |
reader = PdfReader(path)
|
|
@@ -81,7 +88,7 @@ if 'filename_key' not in st.session_state:
|
|
| 81 |
st.session_state.filename_key = ''
|
| 82 |
|
| 83 |
st.write("""
|
| 84 |
-
#
|
| 85 |
""")
|
| 86 |
#uploaded_file = st.file_uploader("Choose a PDF file")
|
| 87 |
#uploaded_file = st.file_uploader("Choose a PDF file", accept_multiple_files=False, type=['pdf'])
|
|
@@ -147,24 +154,74 @@ elif len(uploaded_file)>0:
|
|
| 147 |
else:
|
| 148 |
useful_sentence.append(i)
|
| 149 |
|
|
|
|
| 150 |
del sentences
|
| 151 |
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
-
df = pd.DataFrame.from_dict(output)
|
| 167 |
-
df['Sentence']= pd.Series(useful_sentence)
|
| 168 |
|
| 169 |
############################ 3. Processing ############################
|
| 170 |
|
|
@@ -186,7 +243,10 @@ elif len(uploaded_file)>0:
|
|
| 186 |
pos_df = pos_df.sort_values('score', ascending=False)
|
| 187 |
pos_df_mean = pos_df.score.mean()
|
| 188 |
pos_df['score'] = pos_df['score'].round(4)
|
| 189 |
-
pos_df.rename(columns = {'Sentence':'Positive Sentences'}, inplace = True)
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
neg_df = df[df['label']=='negative']
|
| 192 |
neg_df = neg_df[['score', 'Sentence']]
|
|
@@ -194,6 +254,9 @@ elif len(uploaded_file)>0:
|
|
| 194 |
neg_df_mean = neg_df.score.mean()
|
| 195 |
neg_df['score'] = neg_df['score'].round(4)
|
| 196 |
neg_df.rename(columns = {'Sentence':'Negative Sentences'}, inplace = True)
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
neu_df = df[df['label']=='neutral']
|
| 199 |
neu_df = neu_df[['score', 'Sentence']]
|
|
@@ -201,16 +264,15 @@ elif len(uploaded_file)>0:
|
|
| 201 |
#neu_df_mean = neu_df.score.mean()
|
| 202 |
neu_df['score'] = neu_df['score'].round(4)
|
| 203 |
neu_df.rename(columns = {'Sentence':'Neutral Sentences'}, inplace = True)
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
df_temp = neg_df
|
| 206 |
df_temp = df_temp['score'] * -1
|
| 207 |
df_temp = pd.concat([df_temp, pos_df])
|
| 208 |
|
| 209 |
############################ 3.2. Emotion Analysis ############################
|
| 210 |
-
|
| 211 |
-
output_emotion = []
|
| 212 |
-
for temp in temp_emotion:
|
| 213 |
-
output_emotion.append(temp[0])
|
| 214 |
|
| 215 |
df_emotion = pd.DataFrame.from_dict(output_emotion)
|
| 216 |
df_emotion['Sentence']= pd.Series(useful_sentence)
|
|
@@ -250,15 +312,56 @@ elif len(uploaded_file)>0:
|
|
| 250 |
num_of_surprise_sentences = df_surprise.shape[0]
|
| 251 |
if num_of_surprise_sentences == 0:
|
| 252 |
df_surprise.loc[0] = [0.0, '-------No surprised sentences found in report-------']
|
| 253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
############################ 4. Plotting ############################
|
| 255 |
|
| 256 |
fig = make_subplots(
|
| 257 |
-
rows=
|
| 258 |
specs=[ [None, None, None, None, None, None],
|
| 259 |
[None, None, None, None, None, None],
|
| 260 |
-
[None, None, {"type": "indicator", "rowspan": 3, "colspan": 2}, None, None, None],
|
| 261 |
[None, None, None, None, None, None],
|
|
|
|
| 262 |
[None, None, None, None, None, None],
|
| 263 |
[{"type": "pie", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None],
|
| 264 |
[None, None, None, None, None, None],
|
|
@@ -278,9 +381,10 @@ elif len(uploaded_file)>0:
|
|
| 278 |
[None, None, None, None, None, None],
|
| 279 |
[None, None, None, None, None, None],
|
| 280 |
[None, None, None, None, None, None],
|
| 281 |
-
[None, None, {"type": "indicator", "rowspan": 3, "colspan": 2}, None, None, None],
|
| 282 |
[None, None, None, None, None, None],
|
| 283 |
[None, None, None, None, None, None],
|
|
|
|
|
|
|
| 284 |
[None, None, None, None, None, None],
|
| 285 |
[{"type": "bar", "rowspan": 6, "colspan": 6}, None, None, None, None, None],
|
| 286 |
[None, None, None, None, None, None],
|
|
@@ -296,14 +400,37 @@ elif len(uploaded_file)>0:
|
|
| 296 |
[None, None, None, None, None, None],
|
| 297 |
[None, None, None, None, None, None],
|
| 298 |
[None, None, None, None, None, None],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
],
|
| 300 |
)
|
| 301 |
|
| 302 |
############################ 4.1. Sentiment Analysis ############################
|
|
|
|
| 303 |
fig.add_trace(go.Indicator(
|
| 304 |
mode = "number",
|
| 305 |
-
value =
|
| 306 |
-
|
|
|
|
|
|
|
| 307 |
|
| 308 |
colors = px.colors.diverging.Portland#RdBu
|
| 309 |
fig.add_trace(go.Pie(labels=labels, values=values, hole = 0.5,
|
|
@@ -372,15 +499,16 @@ elif len(uploaded_file)>0:
|
|
| 372 |
)
|
| 373 |
fig.add_trace(table_trace2, row=18, col=1)
|
| 374 |
|
| 375 |
-
fig.add_trace(go.Indicator(
|
| 376 |
-
mode = "number",
|
| 377 |
-
value = None,
|
| 378 |
-
title = {"text": "Emotion Analysis"}), row=24, col=3)
|
| 379 |
|
| 380 |
-
############## Under Construction ##############
|
| 381 |
|
| 382 |
-
|
| 383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
|
| 385 |
# Add bar chart
|
| 386 |
colors_emotions = ['#174ecf', '#cfc517', '#940625', '#17cfcb']
|
|
@@ -397,9 +525,9 @@ elif len(uploaded_file)>0:
|
|
| 397 |
marker_color=colors_emotions,
|
| 398 |
text=annotations,
|
| 399 |
textfont=dict(size=40)),
|
| 400 |
-
row=
|
| 401 |
-
fig.update_xaxes(title_text='Emotions', title_font=dict(size=16), row=
|
| 402 |
-
fig.update_yaxes(title_text='Number of sentences', title_font=dict(size=16), row=
|
| 403 |
|
| 404 |
# df_anger.loc[0] = [0.0, 'None']
|
| 405 |
# df_anger
|
|
@@ -409,7 +537,7 @@ elif len(uploaded_file)>0:
|
|
| 409 |
cells=dict(values=[df_joy[name] for name in df_joy.columns], fill_color='white', align='left'),
|
| 410 |
columnwidth=[1, 4]
|
| 411 |
)
|
| 412 |
-
fig.add_trace(table_trace2, row=
|
| 413 |
|
| 414 |
################## sadness table
|
| 415 |
table_trace2 = go.Table(
|
|
@@ -417,7 +545,7 @@ elif len(uploaded_file)>0:
|
|
| 417 |
cells=dict(values=[df_sadness[name] for name in df_sadness.columns], fill_color='white', align='left'),
|
| 418 |
columnwidth=[1, 4]
|
| 419 |
)
|
| 420 |
-
fig.add_trace(table_trace2, row=
|
| 421 |
|
| 422 |
################## surprise table
|
| 423 |
table_trace2 = go.Table(
|
|
@@ -425,7 +553,7 @@ elif len(uploaded_file)>0:
|
|
| 425 |
cells=dict(values=[df_surprise[name] for name in df_surprise.columns], fill_color='white', align='left'),
|
| 426 |
columnwidth=[1, 4]
|
| 427 |
)
|
| 428 |
-
fig.add_trace(table_trace2, row=
|
| 429 |
|
| 430 |
################## anger table
|
| 431 |
table_trace2 = go.Table(
|
|
@@ -433,7 +561,66 @@ elif len(uploaded_file)>0:
|
|
| 433 |
cells=dict(values=[df_anger[name] for name in df_anger.columns], fill_color='white', align='left'),
|
| 434 |
columnwidth=[1, 4]
|
| 435 |
)
|
| 436 |
-
fig.add_trace(table_trace2, row=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
|
| 438 |
import textwrap
|
| 439 |
if len(title) > 120:
|
|
@@ -443,7 +630,8 @@ elif len(uploaded_file)>0:
|
|
| 443 |
# Add HTML tags to force line breaks in the title text
|
| 444 |
wrapped_title = "<br>".join(wrapped_title.split("\n"))
|
| 445 |
|
| 446 |
-
fig.update_layout(height=
|
|
|
|
| 447 |
|
| 448 |
#pyo.plot(fig, filename='report.html')
|
| 449 |
|
|
|
|
| 52 |
|
| 53 |
tokenizer_emotion,model_emotion = get_emotion_model()
|
| 54 |
|
| 55 |
+
@st.cache(allow_output_mutation=True)
|
| 56 |
+
def get_intent_model():
|
| 57 |
+
classifier = pipeline("zero-shot-classification", model='cross-encoder/nli-deberta-v3-small')
|
| 58 |
+
return classifier
|
| 59 |
+
|
| 60 |
+
intent_classifier = get_intent_model()
|
| 61 |
+
|
| 62 |
def extract_text_from_pdf(path):
|
| 63 |
text=''
|
| 64 |
reader = PdfReader(path)
|
|
|
|
| 88 |
st.session_state.filename_key = ''
|
| 89 |
|
| 90 |
st.write("""
|
| 91 |
+
# Dcoument Analysis Tool
|
| 92 |
""")
|
| 93 |
#uploaded_file = st.file_uploader("Choose a PDF file")
|
| 94 |
#uploaded_file = st.file_uploader("Choose a PDF file", accept_multiple_files=False, type=['pdf'])
|
|
|
|
| 154 |
else:
|
| 155 |
useful_sentence.append(i)
|
| 156 |
|
| 157 |
+
useful_sentence_len = len(useful_sentence)
|
| 158 |
del sentences
|
| 159 |
|
| 160 |
+
############################ 2.1 Sentiment Modeling ############################
|
| 161 |
+
placeholder1 = st.empty()
|
| 162 |
+
placeholder1.text('Performing Sentiment Analysis...')
|
| 163 |
+
|
| 164 |
+
#with st.empty():
|
| 165 |
+
my_bar = st.progress(0)
|
| 166 |
+
tokenizer = tokenizer_sentiment
|
| 167 |
+
model = model_sentiment
|
| 168 |
+
pipe = pipeline(model="ProsusAI/finbert")
|
| 169 |
+
classifier = pipeline(model="ProsusAI/finbert")
|
| 170 |
+
#output = classifier(useful_sentence)
|
| 171 |
+
output=[]
|
| 172 |
+
i=0
|
| 173 |
+
for temp in useful_sentence:
|
| 174 |
+
output.extend(classifier(temp))
|
| 175 |
+
i=i+1
|
| 176 |
+
my_bar.progress(int((i/useful_sentence_len)*100))
|
| 177 |
|
| 178 |
+
my_bar.empty()
|
| 179 |
+
df = pd.DataFrame.from_dict(output)
|
| 180 |
+
df['Sentence']= pd.Series(useful_sentence)
|
| 181 |
+
|
| 182 |
+
############################ 2.2 Emotion Modeling ############################
|
| 183 |
+
#placeholder2 = st.empty()
|
| 184 |
+
placeholder1.text('Performing Emotion Analysis...')
|
| 185 |
+
|
| 186 |
+
# with st.empty():
|
| 187 |
+
my_bar = st.progress(0)
|
| 188 |
+
tokenizer = tokenizer_emotion
|
| 189 |
+
model = model_emotion
|
| 190 |
+
classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", top_k=1)
|
| 191 |
+
output_emotion = []
|
| 192 |
+
i=0
|
| 193 |
+
for temp in useful_sentence:
|
| 194 |
+
output_emotion.extend(classifier(temp)[0])
|
| 195 |
+
i=i+1
|
| 196 |
+
my_bar.progress(int((i/useful_sentence_len)*100))
|
| 197 |
+
|
| 198 |
+
my_bar.empty()
|
| 199 |
+
placeholder1.text('Emotion Analysis Completed')
|
| 200 |
+
|
| 201 |
+
############################ 2.3 Intent Modeling ############################
|
| 202 |
+
placeholder1.text('Performing Intent Analysis...')
|
| 203 |
+
|
| 204 |
+
my_bar = st.progress(0)
|
| 205 |
+
candidate_labels = ['complaint', 'suggestion', 'query']
|
| 206 |
+
classifier = intent_classifier
|
| 207 |
+
# temp_intent = classifier(useful_sentence, candidate_labels)
|
| 208 |
+
# output_intent=[]
|
| 209 |
+
# for temp in temp_intent:
|
| 210 |
+
# output_intent.append({'label' : temp['labels'][0], 'score' : temp['scores'][0]})
|
| 211 |
+
output_intent=[]
|
| 212 |
+
i=0
|
| 213 |
+
for temp1 in useful_sentence:
|
| 214 |
+
temp = classifier(temp1, candidate_labels)
|
| 215 |
+
output_intent.append({'label' : temp['labels'][0], 'score' : temp['scores'][0]})
|
| 216 |
+
i=i+1
|
| 217 |
+
my_bar.progress(int((i/useful_sentence_len)*100))
|
| 218 |
+
df_intent = pd.DataFrame.from_dict(output_intent)
|
| 219 |
+
df_intent['Sentence']= pd.Series(useful_sentence)
|
| 220 |
+
|
| 221 |
+
my_bar.empty()
|
| 222 |
+
placeholder1.text('Processing Completed')
|
| 223 |
+
|
| 224 |
|
|
|
|
|
|
|
| 225 |
|
| 226 |
############################ 3. Processing ############################
|
| 227 |
|
|
|
|
| 243 |
pos_df = pos_df.sort_values('score', ascending=False)
|
| 244 |
pos_df_mean = pos_df.score.mean()
|
| 245 |
pos_df['score'] = pos_df['score'].round(4)
|
| 246 |
+
pos_df.rename(columns = {'Sentence':'Positive Sentences'}, inplace = True)
|
| 247 |
+
num_of_pos_sentences = pos_df.shape[0]
|
| 248 |
+
if num_of_pos_sentences == 0:
|
| 249 |
+
pos_df.loc[0] = [0.0, '-------No positive sentences found in report-------']
|
| 250 |
|
| 251 |
neg_df = df[df['label']=='negative']
|
| 252 |
neg_df = neg_df[['score', 'Sentence']]
|
|
|
|
| 254 |
neg_df_mean = neg_df.score.mean()
|
| 255 |
neg_df['score'] = neg_df['score'].round(4)
|
| 256 |
neg_df.rename(columns = {'Sentence':'Negative Sentences'}, inplace = True)
|
| 257 |
+
num_of_neg_sentences = neg_df.shape[0]
|
| 258 |
+
if num_of_neg_sentences == 0:
|
| 259 |
+
neg_df.loc[0] = [0.0, '-------No negative sentences found in report-------']
|
| 260 |
|
| 261 |
neu_df = df[df['label']=='neutral']
|
| 262 |
neu_df = neu_df[['score', 'Sentence']]
|
|
|
|
| 264 |
#neu_df_mean = neu_df.score.mean()
|
| 265 |
neu_df['score'] = neu_df['score'].round(4)
|
| 266 |
neu_df.rename(columns = {'Sentence':'Neutral Sentences'}, inplace = True)
|
| 267 |
+
num_of_neu_sentences = neu_df.shape[0]
|
| 268 |
+
if num_of_neu_sentences == 0:
|
| 269 |
+
neu_df.loc[0] = [0.0, '-------No neutral sentences found in report-------']
|
| 270 |
|
| 271 |
df_temp = neg_df
|
| 272 |
df_temp = df_temp['score'] * -1
|
| 273 |
df_temp = pd.concat([df_temp, pos_df])
|
| 274 |
|
| 275 |
############################ 3.2. Emotion Analysis ############################
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
|
| 277 |
df_emotion = pd.DataFrame.from_dict(output_emotion)
|
| 278 |
df_emotion['Sentence']= pd.Series(useful_sentence)
|
|
|
|
| 312 |
num_of_surprise_sentences = df_surprise.shape[0]
|
| 313 |
if num_of_surprise_sentences == 0:
|
| 314 |
df_surprise.loc[0] = [0.0, '-------No surprised sentences found in report-------']
|
| 315 |
+
|
| 316 |
+
df_temp_emotion = df_sadness
|
| 317 |
+
df_temp_emotion = pd.concat([df_sadness, df_anger])
|
| 318 |
+
df_temp_emotion = df_temp_emotion['score'] * -1
|
| 319 |
+
df_temp_emotion = pd.concat([df_temp_emotion, df_joy])
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
############################ 3.3. Intent Analysis ############################
|
| 323 |
+
df_query = df_intent[df_intent['label']=='query']
|
| 324 |
+
df_query = df_query[['score', 'Sentence']]
|
| 325 |
+
df_query = df_query.sort_values('score', ascending=False)
|
| 326 |
+
df_query['score'] = df_query['score'].round(4)
|
| 327 |
+
df_query.rename(columns = {'Sentence':'Queries'}, inplace = True)
|
| 328 |
+
df_query = df_query[df_query['score']>0.5]
|
| 329 |
+
num_of_queries = df_query.shape[0]
|
| 330 |
+
if num_of_queries == 0:
|
| 331 |
+
df_query.loc[0] = [0.0, '-------No queries found in report-------']
|
| 332 |
+
|
| 333 |
+
df_complaint = df_intent[df_intent['label']=='complaint']
|
| 334 |
+
df_complaint = df_complaint[['score', 'Sentence']]
|
| 335 |
+
df_complaint = df_complaint.sort_values('score', ascending=False)
|
| 336 |
+
df_complaint['score'] = df_complaint['score'].round(4)
|
| 337 |
+
df_complaint.rename(columns = {'Sentence':'Complaints'}, inplace = True)
|
| 338 |
+
df_complaint = df_complaint[df_complaint['score']>0.5]
|
| 339 |
+
num_of_complaints = df_complaint.shape[0]
|
| 340 |
+
if num_of_complaints == 0:
|
| 341 |
+
df_complaint.loc[0] = [0.0, '-------No complaints found in report-------']
|
| 342 |
+
|
| 343 |
+
df_suggestion = df_intent[df_intent['label']=='suggestion']
|
| 344 |
+
df_suggestion = df_suggestion[['score', 'Sentence']]
|
| 345 |
+
df_suggestion = df_suggestion.sort_values('score', ascending=False)
|
| 346 |
+
df_suggestion['score'] = df_suggestion['score'].round(4)
|
| 347 |
+
df_suggestion.rename(columns = {'Sentence':'Suggestions'}, inplace = True)
|
| 348 |
+
df_suggestion = df_suggestion[df_suggestion['score']>0.5]
|
| 349 |
+
num_of_suggestions = df_suggestion.shape[0]
|
| 350 |
+
if num_of_suggestions == 0:
|
| 351 |
+
df_suggestion.loc[0] = [0.0, '-------No suggestions found in report-------']
|
| 352 |
+
|
| 353 |
+
total_num_of_intent = num_of_queries + num_of_complaints + num_of_suggestions
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
|
| 357 |
############################ 4. Plotting ############################
|
| 358 |
|
| 359 |
fig = make_subplots(
|
| 360 |
+
rows=62, cols=6,
|
| 361 |
specs=[ [None, None, None, None, None, None],
|
| 362 |
[None, None, None, None, None, None],
|
|
|
|
| 363 |
[None, None, None, None, None, None],
|
| 364 |
+
[None, None, {"type": "indicator", "rowspan": 3, "colspan": 2}, None, None, None],
|
| 365 |
[None, None, None, None, None, None],
|
| 366 |
[{"type": "pie", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None],
|
| 367 |
[None, None, None, None, None, None],
|
|
|
|
| 381 |
[None, None, None, None, None, None],
|
| 382 |
[None, None, None, None, None, None],
|
| 383 |
[None, None, None, None, None, None],
|
|
|
|
| 384 |
[None, None, None, None, None, None],
|
| 385 |
[None, None, None, None, None, None],
|
| 386 |
+
[None, None, {"type": "indicator", "rowspan": 3, "colspan": 2}, None, None, None],
|
| 387 |
+
[None, None, None, None, None, None],
|
| 388 |
[None, None, None, None, None, None],
|
| 389 |
[{"type": "bar", "rowspan": 6, "colspan": 6}, None, None, None, None, None],
|
| 390 |
[None, None, None, None, None, None],
|
|
|
|
| 400 |
[None, None, None, None, None, None],
|
| 401 |
[None, None, None, None, None, None],
|
| 402 |
[None, None, None, None, None, None],
|
| 403 |
+
[None, None, None, None, None, None],
|
| 404 |
+
[None, None, {"type": "indicator", "rowspan": 3, "colspan": 2}, None, None, None],
|
| 405 |
+
[None, None, None, None, None, None],
|
| 406 |
+
[None, None, None, None, None, None],
|
| 407 |
+
[None, {"type": "indicator", "rowspan": 2, "colspan": 5}, None, None, None, None],#first bullet
|
| 408 |
+
[None, None, None, None, None, None],
|
| 409 |
+
[None, None, None, None, None, None],
|
| 410 |
+
[None, {"type": "indicator", "rowspan": 2, "colspan": 5}, None, None, None, None], #2nd bullet
|
| 411 |
+
[None, None, None, None, None, None],
|
| 412 |
+
[None, None, None, None, None, None],
|
| 413 |
+
[None, {"type": "indicator", "rowspan": 2, "colspan": 5}, None, None, None, None],
|
| 414 |
+
[None, None, None, None, None, None],
|
| 415 |
+
[None, None, None, None, None, None],
|
| 416 |
+
[{"type": "table", "rowspan": 4, "colspan": 2}, None, {"type": "table", "rowspan": 4, "colspan": 2}, None, {"type": "table", "rowspan": 4, "colspan": 2}, None],
|
| 417 |
+
[None, None, None, None, None, None],
|
| 418 |
+
[None, None, None, None, None, None],
|
| 419 |
+
[None, None, None, None, None, None],
|
| 420 |
+
[None, None, None, None, None, None],
|
| 421 |
+
[None, None, None, None, None, None],
|
| 422 |
+
[None, None, None, None, None, None],
|
| 423 |
],
|
| 424 |
)
|
| 425 |
|
| 426 |
############################ 4.1. Sentiment Analysis ############################
|
| 427 |
+
|
| 428 |
fig.add_trace(go.Indicator(
|
| 429 |
mode = "number",
|
| 430 |
+
value = int(df_temp.score.mean()*100),
|
| 431 |
+
number = {"suffix": "%"},
|
| 432 |
+
title = {"text": "<span style='font-size:1.5em'>Sentiment Analysis</span><br><span style='font-size:0.8em;color:gray'>Positivity Score</span>"}
|
| 433 |
+
), row=4, col=3)
|
| 434 |
|
| 435 |
colors = px.colors.diverging.Portland#RdBu
|
| 436 |
fig.add_trace(go.Pie(labels=labels, values=values, hole = 0.5,
|
|
|
|
| 499 |
)
|
| 500 |
fig.add_trace(table_trace2, row=18, col=1)
|
| 501 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 502 |
|
|
|
|
| 503 |
|
| 504 |
+
########################### 4.2. Emotion Analysis ###########################
|
| 505 |
+
|
| 506 |
+
fig.add_trace(go.Indicator(
|
| 507 |
+
mode = "number",
|
| 508 |
+
value = int(df_temp_emotion.score.mean()*100),
|
| 509 |
+
number = {"suffix": "%"},
|
| 510 |
+
title = {"text": "<span style='font-size:1.5em'>Emotion Analysis</span><br><span style='font-size:0.8em;color:gray'>Happiness Score</span>"}
|
| 511 |
+
), row=26, col=3)
|
| 512 |
|
| 513 |
# Add bar chart
|
| 514 |
colors_emotions = ['#174ecf', '#cfc517', '#940625', '#17cfcb']
|
|
|
|
| 525 |
marker_color=colors_emotions,
|
| 526 |
text=annotations,
|
| 527 |
textfont=dict(size=40)),
|
| 528 |
+
row=29, col=1)
|
| 529 |
+
fig.update_xaxes(title_text='Emotions', title_font=dict(size=16), row=29, col=1)
|
| 530 |
+
fig.update_yaxes(title_text='Number of sentences', title_font=dict(size=16), row=29, col=1)
|
| 531 |
|
| 532 |
# df_anger.loc[0] = [0.0, 'None']
|
| 533 |
# df_anger
|
|
|
|
| 537 |
cells=dict(values=[df_joy[name] for name in df_joy.columns], fill_color='white', align='left'),
|
| 538 |
columnwidth=[1, 4]
|
| 539 |
)
|
| 540 |
+
fig.add_trace(table_trace2, row=36, col=1)
|
| 541 |
|
| 542 |
################## sadness table
|
| 543 |
table_trace2 = go.Table(
|
|
|
|
| 545 |
cells=dict(values=[df_sadness[name] for name in df_sadness.columns], fill_color='white', align='left'),
|
| 546 |
columnwidth=[1, 4]
|
| 547 |
)
|
| 548 |
+
fig.add_trace(table_trace2, row=36, col=4)
|
| 549 |
|
| 550 |
################## surprise table
|
| 551 |
table_trace2 = go.Table(
|
|
|
|
| 553 |
cells=dict(values=[df_surprise[name] for name in df_surprise.columns], fill_color='white', align='left'),
|
| 554 |
columnwidth=[1, 4]
|
| 555 |
)
|
| 556 |
+
fig.add_trace(table_trace2, row=39, col=1)
|
| 557 |
|
| 558 |
################## anger table
|
| 559 |
table_trace2 = go.Table(
|
|
|
|
| 561 |
cells=dict(values=[df_anger[name] for name in df_anger.columns], fill_color='white', align='left'),
|
| 562 |
columnwidth=[1, 4]
|
| 563 |
)
|
| 564 |
+
fig.add_trace(table_trace2, row=39, col=4)
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
|
| 568 |
+
########################### 4.3. Intent Analysis ###########################
|
| 569 |
+
|
| 570 |
+
fig.add_trace(go.Indicator(
|
| 571 |
+
mode = "number",
|
| 572 |
+
value = round(num_of_suggestions/max(num_of_complaints,0), 2),
|
| 573 |
+
number = {"suffix": ""},
|
| 574 |
+
title = {"text": "<span style='font-size:1.5em'>Intent Analysis</span><br><span style='font-size:0.8em;color:gray'>Suggestion/Complaint Ratio</span>"}
|
| 575 |
+
), row=44, col=3)
|
| 576 |
+
|
| 577 |
+
fig.add_trace(go.Indicator(
|
| 578 |
+
mode = "number+gauge",
|
| 579 |
+
gauge = {'shape': "bullet", 'axis': {'range': [None, total_num_of_intent]}, 'bar': {'color': "blue"}},
|
| 580 |
+
#delta = {'reference': 300},
|
| 581 |
+
value = num_of_queries,
|
| 582 |
+
#domain = {'x': [0.5, 1], 'y': [0.3, 0.9]},
|
| 583 |
+
title = {'text': "Queries"}), row=47, col=2)
|
| 584 |
+
|
| 585 |
+
fig.add_trace(go.Indicator(
|
| 586 |
+
mode = "number+gauge",
|
| 587 |
+
gauge = {'shape': "bullet", 'axis': {'range': [None, total_num_of_intent]},},
|
| 588 |
+
#delta = {'reference': 300},
|
| 589 |
+
value = num_of_suggestions,
|
| 590 |
+
#domain = {'x': [0.5, 1], 'y': [0.3, 0.9]},
|
| 591 |
+
title = {'text': "Suggestions"}), row=50, col=2)
|
| 592 |
+
|
| 593 |
+
fig.add_trace(go.Indicator(
|
| 594 |
+
mode = "number+gauge",
|
| 595 |
+
gauge = {'shape': "bullet", 'axis': {'range': [None, total_num_of_intent]}, 'bar': {'color': "red"}},
|
| 596 |
+
#delta = {'reference': 300},
|
| 597 |
+
value = num_of_complaints,
|
| 598 |
+
#domain = {'x': [0.5, 1], 'y': [0.3, 0.9]},
|
| 599 |
+
title = {'text': "Complaints"}), row=53, col=2)
|
| 600 |
+
|
| 601 |
+
############ query table
|
| 602 |
+
table_trace2 = go.Table(
|
| 603 |
+
header=dict(values=list(df_query.columns), fill_color='lightgray', align='left'),
|
| 604 |
+
cells=dict(values=[df_query[name] for name in df_query.columns], fill_color='white', align='left'),
|
| 605 |
+
columnwidth=[1, 4]
|
| 606 |
+
)
|
| 607 |
+
fig.add_trace(table_trace2, row=56, col=1)
|
| 608 |
+
|
| 609 |
+
############ complaints table
|
| 610 |
+
table_trace2 = go.Table(
|
| 611 |
+
header=dict(values=list(df_complaint.columns), fill_color='lightgray', align='left'),
|
| 612 |
+
cells=dict(values=[df_complaint[name] for name in df_complaint.columns], fill_color='white', align='left'),
|
| 613 |
+
columnwidth=[1, 4]
|
| 614 |
+
)
|
| 615 |
+
fig.add_trace(table_trace2, row=56, col=3)
|
| 616 |
+
|
| 617 |
+
############ suggestions table
|
| 618 |
+
table_trace2 = go.Table(
|
| 619 |
+
header=dict(values=list(df_suggestion.columns), fill_color='lightgray', align='left'),
|
| 620 |
+
cells=dict(values=[df_suggestion[name] for name in df_suggestion.columns], fill_color='white', align='left'),
|
| 621 |
+
columnwidth=[1, 4]
|
| 622 |
+
)
|
| 623 |
+
fig.add_trace(table_trace2, row=56, col=5)
|
| 624 |
|
| 625 |
import textwrap
|
| 626 |
if len(title) > 120:
|
|
|
|
| 630 |
# Add HTML tags to force line breaks in the title text
|
| 631 |
wrapped_title = "<br>".join(wrapped_title.split("\n"))
|
| 632 |
|
| 633 |
+
fig.update_layout(height=4000, showlegend=False, title={'text': f"<b>{wrapped_title} - Text Analysis Report</b>", 'x': 0.5, 'xanchor': 'center','font': {'size': 32}})
|
| 634 |
+
|
| 635 |
|
| 636 |
#pyo.plot(fig, filename='report.html')
|
| 637 |
|
requirements.txt
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
streamlit==1.17.0
|
| 2 |
transformers
|
|
|
|
| 3 |
torch
|
| 4 |
PyPDF2
|
| 5 |
nltk
|
|
|
|
| 1 |
streamlit==1.17.0
|
| 2 |
transformers
|
| 3 |
+
sentencepiece
|
| 4 |
torch
|
| 5 |
PyPDF2
|
| 6 |
nltk
|