Spaces:
Runtime error
Runtime error
Commit
·
583664a
1
Parent(s):
6a71d54
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os.path
|
| 3 |
+
import pathlib
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import numpy as np
|
| 7 |
+
import PyPDF2
|
| 8 |
+
from PyPDF2 import PdfReader
|
| 9 |
+
from os import walk
|
| 10 |
+
import nltk
|
| 11 |
+
import glob
|
| 12 |
+
|
| 13 |
+
import plotly.express as px
|
| 14 |
+
from wordcloud import WordCloud
|
| 15 |
+
import plotly.io as pio
|
| 16 |
+
from plotly.subplots import make_subplots
|
| 17 |
+
import plotly.graph_objs as go
|
| 18 |
+
import pandas as pd
|
| 19 |
+
import plotly.offline as pyo
|
| 20 |
+
|
| 21 |
+
@st.cache_resource()
|
| 22 |
+
def get_nl():
|
| 23 |
+
return nltk.download('punkt')
|
| 24 |
+
get_nl()
|
| 25 |
+
|
| 26 |
+
from nltk.tokenize import sent_tokenize
|
| 27 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 28 |
+
from transformers import pipeline
|
| 29 |
+
|
| 30 |
+
# if os.path.exists("report.html"):
|
| 31 |
+
# os.remove("report.html")
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
@st.cache_resource()
|
| 35 |
+
def get_model():
|
| 36 |
+
tokenizer = AutoTokenizer.from_pretrained("ProsusAI/finbert")
|
| 37 |
+
model = AutoModelForSequenceClassification.from_pretrained("ProsusAI/finbert")
|
| 38 |
+
return tokenizer,model
|
| 39 |
+
|
| 40 |
+
tokenizer,model = get_model()
|
| 41 |
+
|
| 42 |
+
def extract_text_from_pdf(path):
|
| 43 |
+
text=''
|
| 44 |
+
reader = PdfReader(path)
|
| 45 |
+
number_of_pages = len(reader.pages)
|
| 46 |
+
print(number_of_pages)
|
| 47 |
+
for i in range(number_of_pages):
|
| 48 |
+
page=reader.pages[i]
|
| 49 |
+
text = text + page.extract_text()
|
| 50 |
+
return text
|
| 51 |
+
|
| 52 |
+
# Create a button to download the HTML file
|
| 53 |
+
def download_html():
|
| 54 |
+
with st.spinner('Downloading HTML file...'):
|
| 55 |
+
# Get the HTML content
|
| 56 |
+
with open('report.html', "r") as f:
|
| 57 |
+
html = f.read()
|
| 58 |
+
f.close()
|
| 59 |
+
# Set the file name and content type
|
| 60 |
+
file_name = "report.html"
|
| 61 |
+
mime_type = "text/html"
|
| 62 |
+
# Use st.download_button() to create a download button
|
| 63 |
+
print('download button')
|
| 64 |
+
st.download_button(label="Download Report", data=html, file_name=file_name, mime=mime_type)
|
| 65 |
+
st.stop()
|
| 66 |
+
|
| 67 |
+
st.write("""
|
| 68 |
+
# Sentiment Analysis Tool
|
| 69 |
+
""")
|
| 70 |
+
#uploaded_file = st.file_uploader("Choose a PDF file")
|
| 71 |
+
#uploaded_file = st.file_uploader("Choose a PDF file", accept_multiple_files=False, type=['pdf'])
|
| 72 |
+
uploaded_file = st.file_uploader("Choose a PDF file", accept_multiple_files=True, type=['pdf'])
|
| 73 |
+
#if uploaded_file is not None:
|
| 74 |
+
if len(uploaded_file)>0:
|
| 75 |
+
import time
|
| 76 |
+
|
| 77 |
+
# Wait for 5 seconds
|
| 78 |
+
time.sleep(5)
|
| 79 |
+
#print('gone')
|
| 80 |
+
pdf_reader = PyPDF2.PdfReader(uploaded_file[0])
|
| 81 |
+
# Get the number of pages in the PDF file
|
| 82 |
+
num_pages = len(pdf_reader.pages)
|
| 83 |
+
|
| 84 |
+
if num_pages > 20:
|
| 85 |
+
st.error("Pages in PDF file should be less than 20.")
|
| 86 |
+
# Check that only one file was uploaded
|
| 87 |
+
#elif isinstance(uploaded_file, list):
|
| 88 |
+
elif len(uploaded_file) > 1:
|
| 89 |
+
st.error("Please upload only one PDF file at a time.")
|
| 90 |
+
else:
|
| 91 |
+
#uploaded_file = uploaded_file[0]
|
| 92 |
+
# Check that the file is a PDF
|
| 93 |
+
if uploaded_file[0].type != 'application/pdf':
|
| 94 |
+
st.error("Please upload a PDF file.")
|
| 95 |
+
else:
|
| 96 |
+
|
| 97 |
+
############################ 1. Extract text from PDF ############################
|
| 98 |
+
text=''
|
| 99 |
+
# return text from pdf
|
| 100 |
+
pdf_reader = PyPDF2.PdfReader(uploaded_file[0])
|
| 101 |
+
# Get the number of pages in the PDF file
|
| 102 |
+
num_pages = len(pdf_reader.pages)
|
| 103 |
+
# Display the number of pages in the PDF file
|
| 104 |
+
st.write(f"Number of pages in PDF file: {num_pages}")
|
| 105 |
+
for i in range(num_pages):
|
| 106 |
+
page=pdf_reader.pages[i]
|
| 107 |
+
text = text + page.extract_text()
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
############################ 2. Sentiment Analysis ############################
|
| 112 |
+
text = text.replace("\n", " " )
|
| 113 |
+
sentences = sent_tokenize(text)
|
| 114 |
+
title = sentences[0]
|
| 115 |
+
long_sentence=[]
|
| 116 |
+
small_sentence=[]
|
| 117 |
+
useful_sentence=[]
|
| 118 |
+
for i in sentences:
|
| 119 |
+
if len(i) > 510:
|
| 120 |
+
long_sentence.append(i)
|
| 121 |
+
elif len(i) < 50:
|
| 122 |
+
small_sentence.append(i)
|
| 123 |
+
else:
|
| 124 |
+
useful_sentence.append(i)
|
| 125 |
+
|
| 126 |
+
del sentences
|
| 127 |
+
|
| 128 |
+
with st.spinner('Processing please wait...'):
|
| 129 |
+
|
| 130 |
+
pipe = pipeline(model="ProsusAI/finbert")
|
| 131 |
+
|
| 132 |
+
classifier = pipeline(model="ProsusAI/finbert")
|
| 133 |
+
output = classifier(useful_sentence)
|
| 134 |
+
|
| 135 |
+
df = pd.DataFrame.from_dict(output)
|
| 136 |
+
df['Sentence']= pd.Series(useful_sentence)
|
| 137 |
+
|
| 138 |
+
labels = ['neutral', 'positive', 'negative']
|
| 139 |
+
values = df.label.value_counts().to_list()
|
| 140 |
+
|
| 141 |
+
# removing words
|
| 142 |
+
words_to_remove = ["s", "quarter", "thank", "million", "Thank", "quetion", 'wa', 'rate', 'firt',
|
| 143 |
+
"customer", "business", "last year", "year", 'lat', 'well', 'jut', 'thi', 'cutomer',
|
| 144 |
+
"will", "think", "higher", "question", "going"]
|
| 145 |
+
for word in words_to_remove:
|
| 146 |
+
text = text.replace(word, "")
|
| 147 |
+
wordcloud = WordCloud(background_color='white', width=800, height=400).generate(text)
|
| 148 |
+
image = wordcloud.to_image()
|
| 149 |
+
|
| 150 |
+
pos_df = df[df['label']=='positive']
|
| 151 |
+
pos_df = pos_df[['score', 'Sentence']]
|
| 152 |
+
pos_df = pos_df.sort_values('score', ascending=False)
|
| 153 |
+
pos_df_mean = pos_df.score.mean()
|
| 154 |
+
pos_df['score'] = pos_df['score'].round(4)
|
| 155 |
+
pos_df.rename(columns = {'Sentence':'Positive Sentences'}, inplace = True)
|
| 156 |
+
|
| 157 |
+
neg_df = df[df['label']=='negative']
|
| 158 |
+
neg_df = neg_df[['score', 'Sentence']]
|
| 159 |
+
neg_df = neg_df.sort_values('score', ascending=False)
|
| 160 |
+
neg_df_mean = neg_df.score.mean()
|
| 161 |
+
neg_df['score'] = neg_df['score'].round(4)
|
| 162 |
+
neg_df.rename(columns = {'Sentence':'Negative Sentences'}, inplace = True)
|
| 163 |
+
|
| 164 |
+
neu_df = df[df['label']=='neutral']
|
| 165 |
+
neu_df = neu_df[['score', 'Sentence']]
|
| 166 |
+
neu_df = neu_df.sort_values('score', ascending=False)
|
| 167 |
+
#neu_df_mean = neu_df.score.mean()
|
| 168 |
+
neu_df['score'] = neu_df['score'].round(4)
|
| 169 |
+
neu_df.rename(columns = {'Sentence':'Neutral Sentences'}, inplace = True)
|
| 170 |
+
|
| 171 |
+
df_temp = neg_df
|
| 172 |
+
df_temp = df_temp['score'] * -1
|
| 173 |
+
df_temp = pd.concat([df_temp, pos_df])
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
fig = make_subplots(
|
| 177 |
+
rows=26, cols=6,
|
| 178 |
+
specs=[ [None, None, None, None, None, None],
|
| 179 |
+
[None, None, None, None, None, None],
|
| 180 |
+
[None, None, None, None, None, None],
|
| 181 |
+
[None, None, None, None, None, None],
|
| 182 |
+
[None, None, None, None, None, None],
|
| 183 |
+
[{"type": "pie", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None, {"type": "indicator", "rowspan": 6, "colspan": 2}, None],
|
| 184 |
+
[None, None, None, None, None, None],
|
| 185 |
+
[None, None, None, None, None, None],
|
| 186 |
+
[None, None, None, None, None, None],
|
| 187 |
+
[None, None, None, None, None, None],
|
| 188 |
+
[None, None, None, None, None, None],
|
| 189 |
+
[{"type": "image", "rowspan": 15, "colspan": 3}, None, None, {"type": "table", "rowspan": 5, "colspan": 3}, None, None],
|
| 190 |
+
[None, None, None, None, None, None],
|
| 191 |
+
[None, None, None, None, None, None],
|
| 192 |
+
[None, None, None, None, None, None],
|
| 193 |
+
[None, None, None, None, None, None],
|
| 194 |
+
[None, None, None, {"type": "table", "rowspan": 5, "colspan": 3}, None, None],
|
| 195 |
+
[None, None, None, None, None, None],
|
| 196 |
+
[None, None, None, None, None, None],
|
| 197 |
+
[None, None, None, None, None, None],
|
| 198 |
+
[None, None, None, None, None, None],
|
| 199 |
+
[None, None, None, {"type": "table", "rowspan": 5, "colspan": 3}, None, None],
|
| 200 |
+
[None, None, None, None, None, None],
|
| 201 |
+
[None, None, None, None, None, None],
|
| 202 |
+
[None, None, None, None, None, None],
|
| 203 |
+
[None, None, None, None, None, None],
|
| 204 |
+
],
|
| 205 |
+
)
|
| 206 |
+
colors = px.colors.diverging.Portland#RdBu
|
| 207 |
+
fig.add_trace(go.Pie(labels=labels, values=values, hole = 0.5,
|
| 208 |
+
title = 'Count by label',
|
| 209 |
+
marker=dict(colors=colors,
|
| 210 |
+
line=dict(width=2, color='white'))),
|
| 211 |
+
row=6, col=1)
|
| 212 |
+
|
| 213 |
+
fig.add_trace(go.Indicator(
|
| 214 |
+
mode = "number",
|
| 215 |
+
value = len(df.label.values.tolist()),
|
| 216 |
+
title = {"text": "Count of Sentence"}), row=6, col=3)
|
| 217 |
+
|
| 218 |
+
fig.add_trace(go.Indicator(
|
| 219 |
+
mode = "gauge+number",
|
| 220 |
+
value = df_temp.score.mean(),
|
| 221 |
+
domain = {'x': [0, 1], 'y': [0, 1]},
|
| 222 |
+
title = {'text': "Average of Score", 'font': {'size': 16}},
|
| 223 |
+
gauge = {
|
| 224 |
+
'axis': {'range': [-1, 1], 'tickwidth': 1, 'tickcolor': "darkblue"},
|
| 225 |
+
'bar': {'color': "darkblue"},
|
| 226 |
+
'steps': [
|
| 227 |
+
{'range': [-0.29, 0.29], 'color': 'white'},
|
| 228 |
+
{'range': [0.3, 1], 'color': 'green'},
|
| 229 |
+
{'range': [-1, -0.3], 'color': 'red'}
|
| 230 |
+
],
|
| 231 |
+
'threshold': {
|
| 232 |
+
'line': {'color': "black", 'width': 4},
|
| 233 |
+
'thickness': 0.75,
|
| 234 |
+
'value': abs((pos_df_mean - neg_df_mean))
|
| 235 |
+
}
|
| 236 |
+
}
|
| 237 |
+
), row=6, col=5)
|
| 238 |
+
|
| 239 |
+
if df_temp.score.mean() < -0.29:
|
| 240 |
+
fig.update_traces(title_text="Cummulative Sentiment Negative", selector=dict(type='indicator'), row=6, col=5)
|
| 241 |
+
elif df_temp.score.mean() < 0.29:
|
| 242 |
+
fig.update_traces(title_text="Cummulative Sentiment Neutral", selector=dict(type='indicator'), row=6, col=5)
|
| 243 |
+
else:
|
| 244 |
+
fig.update_traces(title_text="Cummulative Sentiment Positive", selector=dict(type='indicator'), row=6, col=5)
|
| 245 |
+
|
| 246 |
+
fig.add_trace(go.Image(z=image), row=12, col=1)
|
| 247 |
+
fig.update_xaxes(visible=False, row=12, col=1)
|
| 248 |
+
fig.update_yaxes(visible=False, row=12, col=1)
|
| 249 |
+
|
| 250 |
+
table_trace1 = go.Table(
|
| 251 |
+
header=dict(values=list(pos_df.columns), fill_color='lightgray', align='left'),
|
| 252 |
+
cells=dict(values=[pos_df[name] for name in pos_df.columns], fill_color='white', align='left'),
|
| 253 |
+
columnwidth=[1, 4]
|
| 254 |
+
)
|
| 255 |
+
fig.add_trace(table_trace1, row=12, col=4)
|
| 256 |
+
|
| 257 |
+
table_trace2 = go.Table(
|
| 258 |
+
header=dict(values=list(neg_df.columns), fill_color='lightgray', align='left'),
|
| 259 |
+
cells=dict(values=[neg_df[name] for name in neg_df.columns], fill_color='white', align='left'),
|
| 260 |
+
columnwidth=[1, 4]
|
| 261 |
+
)
|
| 262 |
+
fig.add_trace(table_trace2, row=17, col=4)
|
| 263 |
+
|
| 264 |
+
table_trace2 = go.Table(
|
| 265 |
+
header=dict(values=list(neu_df.columns), fill_color='lightgray', align='left'),
|
| 266 |
+
cells=dict(values=[neu_df[name] for name in neu_df.columns], fill_color='white', align='left'),
|
| 267 |
+
columnwidth=[1, 4]
|
| 268 |
+
)
|
| 269 |
+
fig.add_trace(table_trace2, row=22, col=4)
|
| 270 |
+
|
| 271 |
+
import textwrap
|
| 272 |
+
wrapped_title = "\n".join(textwrap.wrap(title, width=50))
|
| 273 |
+
|
| 274 |
+
# Add HTML tags to force line breaks in the title text
|
| 275 |
+
wrapped_title = "<br>".join(wrapped_title.split("\n"))
|
| 276 |
+
|
| 277 |
+
fig.update_layout(height=700, showlegend=False, title={'text': f"<b>{wrapped_title} - Sentiment Analysis Report</b>", 'x': 0.5, 'xanchor': 'center','font': {'size': 32}})
|
| 278 |
+
|
| 279 |
+
pyo.plot(fig, filename='report.html')
|
| 280 |
+
|
| 281 |
+
import base64
|
| 282 |
+
|
| 283 |
+
# Convert the figure to HTML format
|
| 284 |
+
fig_html = pio.to_html(fig, full_html=False)
|
| 285 |
+
b64 = base64.b64encode(fig_html.encode()).decode()
|
| 286 |
+
|
| 287 |
+
# Generate a download link
|
| 288 |
+
filename = "figure.html"
|
| 289 |
+
href = f'<a href="data:file/html;base64,{b64}" download="{filename}">Download Report</a>'
|
| 290 |
+
|
| 291 |
+
# Display the link
|
| 292 |
+
st.markdown(href, unsafe_allow_html=True)
|