--- title: Intelligent Documentation Generator Agent colorFrom: blue colorTo: purple sdk: gradio python_version: 3.11 sdk_version: 5.49.1 app_file: app.py short_description: Generate documentation and chat with code tags: - documentation - code-assistant - large-language-model - fire-works-ai models: - accounts/fireworks/models/glm-4p6 pinned: false --- # ๐Ÿง  Intelligent Documentation Generator Agent Built with **GLM-4.6 on Fireworks AI** and **Gradio** --- ## ๐Ÿ“˜ Overview The **Intelligent Documentation Generator Agent** automatically generates structured, multi-layer documentation and provides a chat interface to explore Python codebases. This version is powered by **GLM-4.6** via the **Fireworks AI Inference API** and implemented in **Gradio**, offering a lightweight, interactive browser-based UI. **Capabilities:** * Analyze Python files from uploads, pasted code, or GitHub links * Generate consistent, well-structured documentation (overview, API breakdown, usage examples) * Chat directly with your code to understand logic, dependencies, and optimization opportunities --- ## โš™๏ธ Architecture ``` User (Upload / Paste / GitHub) โ”‚ โ–ผ Gradio UI (Tabs) โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Documentation Tab โ”‚โ”€โ”€โ–บ Fireworks GLM-4.6 โ†’ Markdown Docs โ”‚ Chat Tab โ”‚โ”€โ”€โ–บ Fireworks GLM-4.6 โ†’ Q&A Responses โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ``` --- ## ๐Ÿงฉ Core Features ### ๐Ÿ“„ Documentation Generator * Input via: * Pasted Python code * Uploaded `.py` file * GitHub file link (supports automatic conversion to raw URL) * Produces: * Overview and purpose * Key functions/classes with signatures * Dependencies and relationships * Example usage and improvement suggestions * Outputs documentation in Markdown ### ๐Ÿ’ฌ Code Chatbot * Conversational Q&A with the analyzed code * References exact functions and dependencies * Maintains interactive chat history using Gradioโ€™s `Chatbot` component * Uses the same GLM-4.6 model context for accurate answers --- ## ๐Ÿงฑ Tech Stack | Layer | Technology | | ----------------- | ----------------------------------------------- | | **Model** | [GLM-4.6](https://fireworks.ai) on Fireworks AI | | **UI Framework** | [Gradio](https://gradio.app) | | **Language** | Python 3.9+ | | **HTTP Requests** | `requests` | | **Deployment** | Localhost / Containerized environments | --- ## ๐Ÿš€ Installation ### 1. Clone the Repository ```bash git clone https://github.com//intelligent-doc-agent.git cd intelligent-doc-agent ``` ### 2. Install Dependencies ```bash pip install gradio requests ``` ### 3. Configure Fireworks API Key Set your API key as an environment variable: ```bash export FIREWORKS_API_KEY="your_fireworks_api_key" ``` > Alternatively, enter your API key directly in the UI when prompted. ### 4. Run the Application ```bash python app_gradio.py ``` Then visit **[http://127.0.0.1:7860](http://127.0.0.1:7860)** in your browser. --- ## ๐Ÿ’ก Usage Guide ### ๐Ÿง  Generate Documentation 1. Open the **๐Ÿ“„ Generate Documentation** tab. 2. Choose an input mode: * Paste code into the text area * Upload a `.py` file * Enter a GitHub file link (e.g., `https://github.com/.../file.py`) 3. Click **๐Ÿš€ Generate Documentation** to process your file. 4. View formatted Markdown output instantly. ### ๐Ÿ’ฌ Chat with Code 1. Switch to the **๐Ÿ’ฌ Chat with Code** tab. 2. Ask questions about your code (e.g., โ€œWhat does this function do?โ€ or โ€œHow can I improve performance?โ€). 3. The model responds contextually, referencing the uploaded file. --- ## ๐Ÿง  Model Integration Example ```python payload = { "model": "accounts/fireworks/models/glm-4p6", "max_tokens": 4096, "temperature": 0.6, "messages": messages } response = requests.post( "https://api.fireworks.ai/inference/v1/chat/completions", headers={"Authorization": f"Bearer {FIREWORKS_API_KEY}"}, data=json.dumps(payload) ) print(response.json()["choices"][0]["message"]["content"]) ``` --- ## ๐Ÿ“ฆ Project Structure ``` . โ”œโ”€โ”€ app.py # Main Gradio interface โ”œโ”€โ”€ README.md # Project documentation โ””โ”€โ”€ requirements.txt # Dependencies (gradio, requests) ``` --- ## ๐Ÿ”ฎ Future Enhancements * **Multi-file repository analysis** with hierarchical context summarization * **Semantic vector store** (Chroma / Pinecone) for persistent knowledge retrieval * **Multi-agent orchestration** using LangGraph or MCP protocols * **Continuous documentation updates** via Git hooks or CI/CD pipelines --- ## ๐Ÿงพ Example **Input** ```python def calculate_mean(numbers): return sum(numbers) / len(numbers) ``` **Output** ```markdown ### Function: calculate_mean Computes the arithmetic mean of a numeric list. **Parameters:** - numbers (list): Sequence of numbers to average. **Returns:** - float: Mean of the list. **Usage Example:** >>> calculate_mean([1, 2, 3, 4]) 2.5 ``` **Chat Example** > โ€œHow can I modify this to avoid division by zero errors?โ€ --- ## ๐Ÿ” Best Practices * Use **raw GitHub links** (`https://raw.githubusercontent.com/...`) for accurate file fetches. * Limit input size (~4k tokens) for optimal latency and context accuracy. * Keep your **API key** private โ€” never commit it in source files. --- ## ๐Ÿงญ License Released under